Теоретико-групповая интерпретация спектров гигантского комбинационного рассеяния фталоцианина меди, адсорбированного на фосфиде галлия

© А.М. Полуботко ¹, В.П. Челибанов²

02

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия
 ² Университет ИТМО, 197101 Санкт Петербург, Россия
 e-mail: Chelibanov@gmail.com

Поступила в редакцию 19.05.2018 г. В окончательной редакции 20.06.2018 г. Принята к публикации 06.11.2018 г.

> Исследованы спектры гигантского комбинационного рассеяния молекулы фталоцианина меди, адсорбированной на подложке из GaP. Показано, что в спектре появляются очень сильные линии, запрещенные в обычном комбинационном рассеянии. Анализ спектров указывает, что эти линии обусловлены возникновением в системе сильного квадрупольного взаимодействия, а также большим усилением тангенциальных компонент напряженности электрического поля. Как было показано ранее, последний эффект характерен для гигантского комбинационного рассеяния на полупроводниковых и диэлектрических подложках, где усиливается не только нормальная, но и тангенциальные компоненты напряженности поля на поверхности.

DOI: 10.21883/OS.2019.03.47363.143-18

Исследование гигантского комбинационного рассеяния (Гиг. КР) на полупроводниковых и диэлектрических подложках представляет большой интерес как с теоретической, так и с экспериментальной точек зрения. В [1] показано, что причиной Гиг. КР в этом случае, так же как и в случае металлических подложек, является поверхностная шероховатость. Причем усиление происходит в малых областях поверхности с большой положительной кривизной. Нами было показано, что в случае Гиг. КР на полупроводниках и диэлектриках усиление в этих областях меньше, чем на металле с таким же значением модуля диэлектрической проницаемости. Этот результат связан с тем, что диэлектрики и полупроводники в принципе прозрачны для электромагнитного поля в достаточно широкой области частот в отличие от металла, который стремится "вытолкнуть" Поэтому системы с полупроводниковыми или поле. диэлектрическими подложками в отличие от металлов имеют "меньшую неоднородность" среды, что приводит к меньшему усилению поля и его производных. Однако в соответствии с экспериментальными и теоретическими результатами [1] на шероховатых поверхностях полупроводников и диэлектриков должно происходить усиление как нормальной, так и тангенциальной компонент, что приводит к определенным особенностям в спектрах Гиг. КР. Нами была проведена интерпретация теоретико-групповыми методами спектров [2] Гиг. КР молекулы фталоцианина меди (рис. 1), адсорбированной на фосфиде галлия GaP. Как известно, молекула фталоцианина меди относится к группе симметрии D_{1h} .

Спектры этой молекулы, адсорбированной на частицах GaP со средним размером d = 106, 60, 40 nm в интервале волновых чисел 500-1700 cm⁻¹ показаны на рис. 2. Сразу отметим, что символ *2 около кривой 1 означает, что интенсивность всего спектра должна быть умножена на 2. Также отметим, что спектры снимались при длине волны падающего излучения 514.5 nm. При этом коэффициент усиления составил примерно 700, 300 и 200 соответственно для частиц со средними размерами d = 106, 60, и 40 nm. По нашим представлениям фта-

Рис. 1. Молекула фталоцианина меди.

Рис. 2. Спектры фталоцианина меди, адсорбированного на подложке фосфида галлия: *1* — средний размер частиц 106 nm, коэффициент усиления 700; *2* — средний размер частиц 60 nm, коэффициент усиления 300; *3* — средний размер частиц 40 nm, коэффициент усиления 200. LO, ТО-линии отвечают соответственно продольным и поперечным фононам подложки. Символ *2 у кривой *1* означает, что интенсивность всего спектра должна быть умножена на 2.

лоцианин меди адсорбируется параллельно поверхности наночастиц. Из таблицы, составленной по результатам работы [3], видно, что в спектре присутствуют достаточно интенсивные линии, обусловленные колебаниями с неприводимыми представлениями A_{1g} и B_{1g} , с волновыми числами соответственно 680, 1030, $1440 \,\mathrm{cm}^{-1}$ и 580, 1030, 1400 ст $^{-1}$, характерные для обычного рамановского рассеяния. Однако в системе появляются и запрещенные линии с волновыми числами 1000, 1096, 1121, 1327, 1511, 1580 ст⁻¹ и неприводимым представлением Е_и, обусловленные колебаниями, преобразующимися как компоненты дипольного момента (d_x, d_y) , а также очень слабая линия с волновым числом 950 сm⁻¹ и неприводимым представлением A_{2u} , обусловленная колебанием, преобразующимся как дипольный момент d_z, перпендикулярный поверхности. Появление запрещенных линий с неприводимым представлением Е_и согласуется с теорией Гиг. КР на полупроводниковых и диэлектрических подложках [1], по которой на них происходит усиление не только нормальной, но и тан-

Соотнесение линий фталоцианина меди, адсорбированного на GaP [3], неприводимым представлениям группы *D*_{4h}

Волновое число, ст $^{-1}$	Соотнесение
580 cp.	B_{1g}
680 cp.	A_{1g}
830 оч. сл.	B_{1g}
950 оч. сл.	A_{2u}
1000 оч. сл.	E_u
1030 оч. сл.	A_{1g}
1096 оч. сл.	E_u
1121 оч. сл.	E_u
1327 с.	E_u
1400 оч. сл.	B_{1g}
1440 cp.	A_{1g}
1511 c.	E_u
1580 сл.	E_u

Примечание. оч. сл. — очень слабая, сл. — слабая, ср. — средняя, с — сильная.

генциальной компонент электрического поля. Согласно теории Гиг. КР [4] рассеяние может происходить через дипольные и квадрупольные моменты $d_x, d_y, d_z, Q_{xx},$ Q_{yy}, Q_{zz} или в симметричных молекулах через дипольные моменты и линейные комбинации вышеуказанных квадрупольных моментов, преобразующиеся по единичному неприводимому представлению. Для молекулы фталоцианина меди это $Q_1 = Q_{xx} + Q_{yy}$ и $Q_2 = Q_{zz}$, которые называются основными квадрупольными моментами Q_{main}. Здесь мы не будем повторять наши работы, в частности, монографию [4]. Укажем только, что рассеяние через основные квадрупольные моменты Q_1 , Q_2 и дипольные моменты, обозначенные как (*d* - *Q*_{main}), определяет появление запрещенных линий. Поэтому их появление, а также появление очень слабой линии с неприводимым представлением А2и говорит о возникновении достаточно сильного квадрупольного взаимодействия, которое возникает в данном случае в системе с полупроводниковой подложкой. Отметим, что мы уже указывали на появление запрещенных линий на молекуле гидрохинона, адсорбированной на подложке из TiO₂ [5], однако здесь запрещенные линии с неприводимым представлением имеют интенсивность даже большую, чем разрешенные линии с неприводимыми представлениями A_{1g} и B_{1g} — в отличие от гидрохинона, адсорбированного на TiO2, где они были очень слабы. Одной из причин может быть тот факт, что молекула фталоцианина меди значительно больше молекулы гидрохинона, а квадрупольное взаимодействие растет с увеличением размера молекул.

Список литературы

 Полуботко А.М., Челибанов В.П. // Опт. и спектр. 2017. Т. 122. № 6. С. 980.

- [2] Hayashi S., Koh R., Ichiyama Y., Yamamoto K. // Phys. Rev. Lett. 1988. V. 60. N 11. P. 1085.
- [3] Harbeck S., Mack H.-G. Электронный ресурс. Режим доступа. https://publikationen.uni-tuebingen.de/xmlui/ bitstream/handle/10900/49961/pdf/ CuPc_TiOPc_IR_Raman_Okt2013.pdf?sequence=1& isAllowed=y
- [4] Polubotko A.M. The Dipole Quadrupole Theory of Surface Enhanced / Raman Scattering. N. Y.: Nova Sci. Publ. Inc., 2009.
- [5] Полуботко А.М., Челибанов В.П. // Опт. и спектр. 2018.
 Т. 124. № 1. С. 68.