18,12

О декорировании зигзагообразных краев наноленты эпитаксиального графена

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

E-mail: Sergei_Davydov@mail.ru

(Поступила в Редакцию 8 октября 2018 г.)

Предложена двухцепочечная модель наноленты эпитаксиального графена, зигзагообразные края которой декорированы чужеродными адчастицами. В качестве подложки рассматривается металл. Получены аналитические выражения для функций Грина адатомов углерода и адчастиц. Для свободного состояния определен зонный спектр и предложена аппроксимация плотностей состояний. Приведены аналитические выражения для чисел заполнения в режиме сильной связи адсорбционного комплекса с подложкой. Рассмотрена также декорированная адчастицами цепочка адатомов углерода — эпикарбин.

DOI: 10.21883/FTT.2019.03.47259.273

1. Введение

Декорирование графеновых образований путем присоединения к их краям чужеродных частиц (атомов, молекул, функциональных групп) продиктовано желанием управлять характеристиками таких объектов. В соответствующих теоретических работах рассматриваются наноленты [1,2], квадратные и треугольные островки [3]. Сходные во многом задачи возникали ранее при изучении кромок графита [4-6] и контактов латеральных графеноподобных структур [7-10]. Во всех цитированных работах отмечалось, что особый интерес представляют зигзагообразные кромки, электронный спектр которых характеризуется пиком плотности состояний вблизи точки Дирака. В этих работах, однако, рассматривались только свободные графеновые образования, хотя условием их реального существования в приборных структурах является наличие подложки. В настоящей работе мы рассмотрим декорирование наноленты эпитаксиального графена (эпиграфена), сформированного на металлической подложке. Поэтому в дальнейшем мы будем говорить об адатомах углерода графена и адчастицах. Для построения модели графеновой наноленты воспользуемся двумерной решеткой типа кирпичной стенки [11,12], топологически эквивалентной решетке графена. Отметим, что подобный подход уже использовался нами для построения моделей декорирования кромки полубесконечного листа графена [13] и гетероконтакта латеральных структур [14]. Основной целью настоящей работы является оценка перехода заряда между адатомами графена, адчастицами и металлической подложкой, причем, в отличие от [13,14] основное внимание уделяется режиму сильной связи адсорбированного комплекса с субстратом. Рассмотрена также задача о декорировании цепочки адатомов углерода (эпикарбина).

2. Функции Грина и зонная структура

Модель декорированной наноленты представлена на рис. 1. Имеем, таким образом, две сцепленные цепочки адатомов углерода с присоединенными к ним чужеродными адчастицами. Адчастицы связаны с каждым вторым адатомом края эпиграфена, что отвечает декорированию зигзагообразной кромки. Изолированным адатому углерода и адчастице припишем соответственно затравочные функции Грина

$$g = (\omega + i\Gamma)^{-1}, \qquad g_a = (\omega - \varepsilon_a + i\Gamma_a)^{-1}$$
(1)

где энергия *p*-состояния адатома углерода принята за нуль, ε_a — энергия уровня адчастицы, Γ и Γ_a полуширины квазиуровней адатома углерода и адчастицы [15,16]. Воспользовавшись нумерацией адатомов и адчастиц (*m*, *n*), представленной на рис. 1, и считая энергию перехода между ближайшими соседями (NN.) в графене равной *t*, а между атомами графена и частицами

Рис. 1. Модель декорированной наноленты и нумерация атомов графена и декорирующих частиц.

611

равной $\tau \tilde{t}$, запишем цепочку уравнений Дайсона для функций Грина $G_{mn,kl}$ [15,16]

$$G_{11,12} = g\tilde{t}G_{12,12} + gt(G_{01,12} + G_{21,12}),$$

$$G_{12,12}(1 - gg_a\tilde{t}^2) = g_a + gg_at\tilde{t}(G_{01,12} + G_{21,12})$$

$$(G_{01,12}+G_{21,12})\left(1-\frac{g^2t^2}{1-\frac{g^2t^2\Phi(k)}{1-gg_at^2}}\right)=gt\Phi(k)G_{11,12},$$

где $\Phi(k) = 4\cos^2(ka), a$ — расстояние между NN графена, k — волновой вектор, $|k| \le \pi/2$.Тогда получим

$$G_{01,01}(\omega,k) \equiv G_0(\omega,k)$$

= $g \left(1 - \frac{g^2 t^2 \Phi(k)}{1 - g g_a \tilde{t}^2} - \frac{g^2 t^2}{1 - \frac{g^2 t^2 \Phi(k)}{1 - g g_a \tilde{t}^2}} \right)^{-1}$. (2)

Аналогичным образом определим функции Грина

$$G_{11,11}(\omega, k) \equiv G_1(\omega, k)$$

= $g \left(1 - gg_a \tilde{t}^2 - \frac{g^2 t^2 \Phi(k)}{1 - \frac{g^2 t^2}{1 - \frac{g^2 t^2 \Phi(k)}{1 - gg_a \tilde{t}^2}}} \right)^{-1}$, (3)

$$G_{12,12}(\omega,k) \equiv G_a(\omega,k)$$

$$=g_{a}\left(1-\frac{gg_{a}\tilde{t}^{2}}{1-\frac{g^{2}t^{2}\Phi(k)}{1-\frac{g^{2}t^{2}\Phi(k)}{1-\frac{g^{2}t^{2}\Phi(k)}{1-gg_{a}\tilde{t}^{2}}}}\right)^{-1},\quad(4)$$

Рассмотрим зонную структуру системы нанолента — декорирующие частицы в отсутствии подложки, для чего положим $\Gamma = \Gamma_a = s \equiv 0^+$. Полюса функций Грина (2)–(4), определяющие дисперсию электронов, являются корнями уравнения

$$D(\omega, k) = D_+(\omega, k)D_-(\omega, k) = 0, \qquad (5)$$

где

$$D_{\pm}(\omega, k) = (\omega - \varepsilon_a)[\omega^2 - t^2 \Phi(k)]$$
$$-\omega \tilde{t}^2 \pm t[\omega(\omega - \varepsilon_a) - \tilde{t}^2]. \tag{6}$$

Легко видеть, что уравнение (5) инвариантно относительно одновременной замены ω на $-\omega$ и ε_a на $-\varepsilon_a$. На границе зоны Бриллюэна (при $|k| = \pi/2$ и $\Phi(k) = 0$)

Рис. 2. Зонная структура недекорированной (*a*) и декорированной (*b*) наноленты. Энергии зон приведены в ед. t. *a*): $\varepsilon_a = 0$, $\tau = 0$ (светлые кружки), $\tau = 1$ (темные кружки). Вследствие симметрии относительно $\omega = 0$ изображены только зоны, отвечающие положительной энергии. *b*): $\varepsilon_a = 1$, $\tau = 0.5$ (светлые квадраты), $\tau = 1$ (темные квадраты). Бездисперсионная зона $\omega(k) = \varepsilon_a = 1$, общая для случаев $\tau = 0.5$ и $\tau = 1$, обозначена квадратами с встроенными косыми крестами.

имеем $\omega = \pm t$ и $\omega = [\varepsilon_a \pm \sqrt{\varepsilon_a^2 + 4\tilde{t}^2}]/2$ (дважды вырожденный корень). Рассмотрим некоторые характерные частные случаи.

При $\tau \equiv \tilde{t}/t = 0$ из (7) получаем $\omega = \varepsilon_a$, что отвечает уровню изолированной частицы, и зоны

$$\omega(k) = \pm t \left[1 \pm \sqrt{1 + 4\Phi(k)} \right] / 2. \tag{7}$$

Для положительных значений энергии эти зоны, отвечающие простой модели недекорированной свободной наноленты, изображены на рис. 2, *a* светлыми кружками. При этом на границе зоны Бриллюэна $\omega(k) \propto \text{const} \pm (k'a)^2$, где $k' = (\pi/2a) - k$. При $\varepsilon_a = 0$ и $\tau = 1$ зоны $\omega(k)$ существенно изменяется: так, например, низкоэнергетическая ветвь $\omega(k)$ приобретает немонотонный характер с экстремумами при $ka \approx 0.84$. При этом в спектре появляется щель $\Delta \approx 2t/3$. Те же зонные особенности в низкоэнергетической области уже отмечались другими авторами: см., например, fig. 3 в [1], fig. 4 в [3], fig. 2 в [4], figs. 1 в[5] и [6].

Далее, положив $\omega = t + \omega'$, где $|\omega'| / \ll t$, легко показать, что при $\tau = 1$ и $ka \to \pi/2$ для верхней и нижней ветвей спектра имеем $\omega'_{1,2} = \sqrt{\Phi/2} \propto k'a$, для средней ветви получим $\omega'_2/t = \Phi/4 \propto (k'a)^2$ (здесь и далее мы нумеруем зоны сверху вниз по шкале энергии). В принципе, случай $\varepsilon_a = 0$, $\tau = 1$ можно также рассматривать в качестве модели свободной и не декорированной чужеродными частицами наноленты. Здесь краевой атом (типа -11, 11, -1 - 1, 1 - 1) характеризуется двумя оборванными связями, в отличие от случая $\varepsilon_a = 0$, $\tau = 0$, где краевой атом (типа -12, 12, -1 - 2, 1 - 2) имеет одну оборванную связь,

Более общий случай для $\varepsilon_a = t$, $\tau = 0.5$ и 1 представлен на рис. 2, *b*. При этом симметрия зон, отвечающих положительным и отрицательным энергиям, нарушается. При переходе от центра зоны Бриллюэна к ее границе наблюдается уплощение зависимостей $\omega(k)$, что также отмечалось ранее [1,3–6]. Имеется и бездисперсионная зона $\omega = \varepsilon_a = t$ как для $\tau = 0.5$, так и для $\tau = 1$. Вариация значения τ в наибольшей степени проявляется в области границы зоны Бриллюэна. Подчеркнем, что главное отличие полученных здесь зон от зон работы [13] состоит в немонотонной зависимости $\omega(k)$ для некоторых ветвей спектра, т.е. наличии экстремумов у функций $\omega(k)$.

3. Свободная декорированная нанолента графена

Для нахождения энергетической плотности состояний необходимо вычислить зависящие только от энергии функции Грина вида

$$G_j(\omega) = \frac{a}{\pi} \int_{-\pi/2a}^{\pi/2a} G_j(\omega, k) dk, \qquad (8)$$

где j = 0, 1 и *а*. Начнем со свободной системы нанолента — адчастицы. При этом функции Грина (2)-(4) удобно представить в виде

$$G_j(\omega, k) = C_j(\omega, k) / D(\omega, k), \qquad (9)$$

где

$$C_{0}(\omega, k) = \left[\omega(\omega - \varepsilon_{a}) - \tilde{t}^{2}\right] \times \left[\left(\omega^{2} - t^{2}\Phi(k)\right)(\omega - \varepsilon_{a}) - \omega\tilde{t}^{2}\right], \quad (10)$$

$$C_{1}(\omega, k) = (\omega - \varepsilon_{a}) \left\{ \left(\omega^{2} - t^{2} \right) \left[\omega(\omega - \varepsilon_{a}) - \tilde{t}^{2} \right] - \omega(\omega - \varepsilon_{a}) t^{2} \Phi(k) \right\},$$
(11)

$$C_{a}(\omega, k) = \left(\omega^{2} - t^{2}\Phi(k)\right) \left[\left(\omega^{2} - t^{2}\right)(\omega - \varepsilon_{a}) - \omega\tilde{t}^{2}\right] - \omega t^{2} \left[\omega(\omega - \varepsilon_{a}) - \tilde{t}^{2}\right]$$
(12)

и $D(\omega, k)$ дается выражениями (7) и (8). Так как структура функций Грина (9) сложна, получить аналитические выражения для $\rho_i(\omega)$ не представляется возможным. Прибегнем поэтому к следующим упрощениям. Представим функции Грина (9) в виде

$$G_{j}(\omega, k) = \frac{1}{2} \left[G_{j}^{-}(\omega, k) + G_{j}^{-}(\omega, k) \right],$$
$$G_{j}^{\pm}(\omega, k) = \frac{c_{j}(\omega, k)}{D_{\pm}(\omega, k)},$$
(13)

 $c_i(\omega, k) = 2C_i(\omega, k)/C^*(\omega, k)$ И $C^*(\omega, k) =$ гле $= [D_{+}(\omega, k) + D_{-}(\omega, k)].$ Из выражений (6) и (10) получим $C_0(\omega) = \omega(\omega - \varepsilon_a) - \tilde{t}^2$. Независимость этого коэффициента от к позволяет получить аналитическое выражение для функции Грина $G_0(\omega)$ (см. ниже). коэффициентами $c_1(\omega, k)$ и $c_a(\omega, k)$ С лело обстоит сложнее вследствие их зависимости от k. Поэтому положим для простоты $c_{1,a}(\omega, k) = c_{1,a}^{0}(\omega) =$ $=2C_{1,a}^{0}(\omega)/(C^{*})^{0}(\omega)$, где верхний индекс "0" означает, что коэффициенты $C_{1,a}(\omega,k)$ и $C^*(\omega,k)$ вычислены при $\Phi(k) = 0$. Тогда получим $c_1^0 = (\omega - \varepsilon_a)(\omega^2 - t^2)/\omega$ и $c_a^0(\omega) = \omega^2 - t^2$. Такое приближение, которое в [14] называется низкоэнергетическим, представляются вполне адекватными для узких зон (см. рис. 2, b). Другой способ упрощения, который мы здесь не будем применять, состоит в замене функции $\Phi(k)$ ее средним по зоне Бриллюэна значением, равным 2 (приближение бездисперсионных зон [14]).

Представим $D_{\pm}(\omega, k)$ в виде

$$D_{\pm}(\omega, k) = d_{\pm(\omega)} - d(\omega)\cos(2ka), \qquad (14)$$

где $d_{\pm}(\omega) = (\omega \pm t)[\omega(\omega - \varepsilon_a) - \tilde{t}^2] - d(\omega)$ и $d(\omega) = 2t^2(\omega - \varepsilon_a)$. Вычислив интеграл (8) (см., например, [17]), с учетом (13) и (14) при $d_{\pm}^2(\omega) > d^2(\omega)$ получим,

$$G_{j}(\omega) = \frac{1}{2} \left[G_{j}^{+} + G_{j}^{-}(\omega) \right],$$

$$G_{j}^{\pm}(\omega) = \frac{c_{j}^{0}(\omega)}{\sqrt{d_{\pm}^{2}(\omega) - d^{2}(\omega)}}.$$
(15)

Физика твердого тела, 2019, том 61, вып. 3

Рис. 3. Плотности состояний атомов углерода $\rho_0(\omega)$ и $\rho_1(\omega)$ и декорирующих частиц $\rho_a(\omega)$ в отсутствие подложки. Все энергетические величины измеряются в ед. *t*, плотности состояний — в ед. t^{-1} . *a*) Недекорированная ($\tau = 0$, светлые пустые квадраты и квадраты с крестом) и декорированная ($\varepsilon_a = 0$, $\tau = 1$, темные треугольники) наноленты. *b*) Декорированная нанолента при $\varepsilon_a = 1$ и $\tau = 0.5$. Штриховые линии соответствуют асимптотам (асимптота для $\rho_1(\omega)$ при $\tau = 0$ (светлые квадраты с крестом на рис. 3, *a*) совпадает с осью абсцисс); жирная вертикальная линия на рис. 3, *b* изображает плотность состояний $\rho_9(\omega) \propto \delta(\omega - 1)$, отвечающую бездисперсионной зоне (рис. 2, *b*).Темными кружками на оси энергии отмечены границы областей сплошного спектра.

При $d_{\pm}^2(\omega) \leq d^2(\omega)$ нужно в (15) заменить радикал $\sqrt{d_{\pm}^2(\omega) - d^2(\omega)}$ на $i\sqrt{d^2(\omega) - d_{\pm}^2(\omega)}$. Так как $\rho_j(\omega) = -\pi^{-1}\Im G_j(\omega)$, то ясно, что сплошному спектру соответствуют области энергии, в которых $d_{\pm}^2(\omega) \leq d^2(\omega)$. Таким образом, имеем

$$\rho_{j}(\omega) = \frac{1}{2} \left[\rho_{j0}^{+}(\omega)\Theta_{+} + \rho_{j0}^{-}(\omega)\Theta_{-} \right],$$

$$\rho_{j}^{\pm}(\omega) = \frac{|c_{j}^{0}(\omega)|}{\pi \sqrt{d^{2}(\omega) - d_{\pm}^{2}(\omega)}},$$
(16)

где $\Theta_{\pm}\equiv\Theta(|d(\omega)|-|d_{\pm}(\omega)|)$ и $\Theta(\ldots)$ — функция Хэвисайда, причем нижний индекс 0 означает, что подложка отсутствует. Плотности состояний для тех же, что и на рис. 2, значений параметров ε_a и τ , представлены на рис. 3. Характерные расходимости функций $\rho_i(\omega)$ (рис. 3) связаны с квазиодномерностью задачи о краях наноленты (аналог одномерной модели Лаббе-Фриделя [18]). Для случая $\varepsilon_a = 0$, $\tau = 0$ (рис. 3, *a*, пустые квадраты и квадраты с крестом) имеем $c_1^0(\omega) = c_a^0(\omega);$ при $\varepsilon = 0, \tau = 1$ получаем $c_0(\omega) = c_1^0(\omega) = c_a^0(\omega)$ (рис. 3, *a*, темные треугольники). Эти равенства являются результатом не только упрощений, связанных с переходом от коэффициентов $c_{1,a}$ к коэффициентам $c_{1,a}^0$, но и выбором параметров ε_a и τ . В общем случае, представленном на рис. 3, *b*, имеем $c_0 = \omega(\omega - t) - \dot{t}^2$, $c_1^0(\omega - t)(\omega^2 - t^2)/\omega$, $c_a^0 = \omega^2 - t^2$. Следствием равенства коэффициентов c_j^0 являются равенства соответствующих чисел заполнения n_i. Отметим, что с качественной точки зрения, приведенные здесь зависимости $\rho_i(\omega)$ аналогичны полученным в работах [13,14]. Отличием является конечные скачки функций $\rho_0(\omega)$ и $\rho_1(\omega)$, возникающие вследствие наличия экстремумов у зависимостей $\omega(k)$.

Нанолента эпиграфена, декорированная адчастицами

Как показано в работах [13,14], выражение (16) достаточно легко обобщить на случай слабой связи наноленты и декорирующих частиц с подложкой, когда отношения Γ^2/t^2 , Γ^2_a/t^2 , Γ^2/\tilde{t}^2 и Γ^2_a/\tilde{t}^2 можно считать малыми параметрами (режим слабой связи адсорбированного комплекса с субстратом). Тогда, по аналогии с [13,14], вместо выражений (16) можно приближенно записать $\rho_j^*(\omega) = \sum_{\alpha} v_{j\alpha} \rho^{\alpha}(\omega)$, где $\rho^{\alpha}(\omega) = \Gamma/\pi \left[(\omega - \omega_{\alpha})^2 + \Gamma^2 \right]$ и $v_{j\alpha}$ — весовые множители. Таким образом, в режиме слабой связи плотность состояний $\rho_i^*(\omega)$ представляет собой сумму лоренцовских контуров $\rho^{\alpha}(\omega)$ с весами $\nu_{j\alpha}$. При этом в точках расходимостей плотностей состояний $\rho_i(\omega)$ (рис. 3) у $\rho_i^*(\omega)$ появляются конечные максимумы с полушириной Γ (на половине высоты), функции $\rho_i^*(\omega)$ размываются, оставаясь ненулевыми на всей энергетической оси. В этом и состоит основной эффект, вносимый металлической подложкой.

В настоящей работе мы, однако, подробно рассмотрим противоположную ситуацию — режим сильной

связи с подложкой адсорбционного комплекса нанолента графена — декорирующие частицы. Полагая в (2)-(4) отношения t^2/Γ^2 , \tilde{t}^2/Γ^2 , t^2/Γ_a^2 , \tilde{t}^2/Γ_a^2 малыми параметрами и проинтегрировав по зоне Бриллюэна, получим $G_0(\omega) \approx (1+3g^2t^2)$, $G_1(\omega) \approx g(1_2g^2t^2+gg_a\tilde{t}^2)$, $g_a(\omega) \approx g_a(1+gg_a\tilde{t}^2)$, или

$$\rho_0^*(\omega) = \overline{\rho}(\omega) \left(1 + 3t^2 \frac{3\omega^2 - \Gamma^2}{(\omega^2 + \Gamma^2)^2} \right), \qquad (17)$$

$$\rho_1^*(\omega) = \overline{\rho}(\omega) \left(1 + 2t^2 \frac{3\omega^2 - \Gamma^2}{(\omega^2 + \Gamma^2)^2} + \tilde{t}^2 \frac{2\omega(\omega - \varepsilon_a) + \gamma_a \omega^2 - \Gamma\Gamma_a}{(\omega^2 + \Gamma^2)[(\omega - \varepsilon_a)^2 + \Gamma^2]} \right), \quad (18)$$

$$\rho_a^*(\omega) = \overline{\rho}_a(\omega) \left(1 + \tilde{t}^2 \frac{2\omega(\omega - \varepsilon_a) + \gamma_a^{-1}(\omega - \varepsilon_a)^2 - \Gamma \Gamma_a}{(\omega^2 + \Gamma^2) \left[(\omega - \varepsilon_a)^2 + \Gamma_a^2 \right]} \right),$$
(19)

где $\gamma_a = \Gamma_a / \Gamma$ и локальные плотности состояний на изолированных адатомах графена и адчастицах равны соответственно

$$\overline{\rho}(\omega) = \frac{1}{\pi} \frac{\Gamma}{\omega^2 + \Gamma^2}, \quad \overline{\rho}_a(\omega) = \frac{1}{\pi} \frac{\Gamma_a}{(\omega - \varepsilon_a)^2 + \Gamma_a^2}.$$
 (20)

Легко показать, что при $\varepsilon_a = 0$ плотности состояний представляют собой двугорбые кривые с экстремумами, равными $\rho_0^*(0) = (1-3t^2/\Gamma^2)/\pi\Gamma$, $\rho_1^*(0) = (1-2t^2/\Gamma^2 - -3t^2/\Gamma\Gamma_a)/\pi\Gamma$ и $\rho_a^*(0) = (1-3t^2/\Gamma\Gamma_a)/\pi\Gamma$. При $|\omega| \gg |\varepsilon_a|$, Γ имеем $\rho_j^*(\omega) \propto \Gamma/\pi\omega^2$. Из рис. 4, a ($\Gamma = \Gamma_a = 2t$, $\tau = 0.7$, $\varepsilon_a = 0$) следует, что исходные одногорбые лоренцевы распределения $\overline{\rho}(\omega)$ и $\rho_1^*(\omega)$, тогда как для $\rho_a^*(\omega)$ наблюдается лишь уплощение максимума. При $\varepsilon_a = 0$ имеем $\rho_j^*(\omega) = \rho_j^*(-\omega)$. Если же $\varepsilon_a \neq 0$, эта симметрия нарушается, что и отражает рис. 4, b ($\varepsilon_a = t$). Так, например, при $\omega \to 0$ получаем

$$\rho_1^*(\omega) \approx (\pi\Gamma)^{-1} \Big[1 - 2t^2 / \Gamma^2 - \gamma_a \tilde{t}^2 / \left(\varepsilon_a^2 + \Gamma_a^2 \right) - 2\omega\varepsilon_a \tilde{t}^2 / \Gamma^2 \left(\varepsilon_a^2 + \Gamma_a^2 \right) \Big],$$
(21)

$$\rho_a^*(\omega) \approx (\pi \Gamma_a)^{-1} \Big[1 - \gamma_a \tilde{t}^2 / \left(\varepsilon_a^2 + \Gamma^2 \right) \\ - 2\omega \varepsilon_a (1 + \gamma_a^{-1}) \tilde{t}^2 / \Gamma^2 \left(\varepsilon_a^2 + \Gamma_a^2 \right).$$
(22)

Отметим, что плотности состояний $\rho_1^*(\omega)$ и $\rho_a^*(\omega)$ инвариантны относительно одновременной замены ε_a на $-\varepsilon_a$ и ω на $-\omega$.

Перейдем теперь к расчету чисел заполнения n_j^* . Так как при нулевой температуре $n_j^* = 2 \int_{-\infty}^{\varepsilon_{\rm F}} \rho_j^*(\omega) d\omega$, получим

$$n_0^* = \overline{n} - \frac{6t^2 \Gamma \varepsilon_{\rm F}}{\pi (\varepsilon_{\rm F}^2 + \Gamma^2)^2},\tag{23}$$

где $\overline{n} = (2/\pi) \operatorname{arcctg}(-\varepsilon_{\mathrm{F}}/\Gamma)$ — число заполнения изолированного адатома графена (см. [17]). Для вычисления n_1^*

Рис. 4. Плотности состояний $\rho_0^*(\omega)$ (темные кружки), $\rho_1^*(\omega)$ (темные квадраты) и $\rho_a^*(\omega)$ (светлые кружки с крестом) в режиме сильной связи с подложкой при $\Gamma = \Gamma_a = 2$, $\tau = 0.7$ и $\varepsilon_a = 0$ (*a*) и 1 (*b*). Все энергетические величины измеряются в ед. t, плотности состояний —в ед. t^{-1} . На рис. 4, *a* изображены только правые (отвечающие положительной энергии) части кривых.

и n_a^* положим $\Gamma_a = \Gamma$. Тогда, пренебрегая для простоты членами порядка ε_a^2/Γ^2 , найдем

$$n_{1}^{*} = \overline{n} - 4t^{2}\Gamma\varepsilon_{\rm F}/\pi\left(\varepsilon_{\rm F}^{2} + \Gamma^{2}\right)^{2} + 2\pi^{-1}\tilde{t}^{2}\Gamma\left(A + B\right),$$
$$n_{a}^{*} = \overline{n}_{a} + 2\pi^{-1}\tilde{t}^{2}\Gamma\left(A - B\right), \tag{24}$$

Физика твердого тела, 2019, том 61, вып. 3

Рис. 5. Зависимости зарядов адатомов графена Z_0^* (темные кружки) и Z_1^* (темные квадраты), декорирующих адчастиц Z_a^* (светлые кружки с крестами) и изолированных адатома углерода и адчастицы $\overline{Z} = \overline{Z}_a$ (светлые ромбы) от положения уровня Ферми $\varepsilon_{\rm F} > 0$ при $\Gamma = \Gamma_a = 2$, $\tau = 0.7$ и $\varepsilon_a = 0$. На рис. 5 область энергий $\varepsilon_{\rm F} < 0$ не отображена, так как $|Z_j^*(\varepsilon_{\rm F})| = |Z_j^*(-\varepsilon_{\rm F})|$ и $|\overline{Z}_j(\varepsilon_{\rm F})| = |\overline{Z}_j(-\varepsilon_{\rm F})|$). Энергия уровня Ферми измеряется в ед.t.

где $\overline{n} = (2/\pi) \operatorname{arcctg}(-\varepsilon_{\mathrm{F}}/\Gamma)$ — число заполнения изолированной адчастицы и

$$A = -\frac{\varepsilon_{\rm F}}{\left(\varepsilon^2 + \Gamma^2\right)^2} - \frac{\varepsilon_a (3\varepsilon_{\rm F}^2 - \Gamma^2)}{2\left(\varepsilon^2 + \Gamma^2\right)^3},$$
$$B = \frac{\varepsilon_a \left(3\varepsilon_{\rm F}^2 - \Gamma^2\right)}{\left(\varepsilon^2 + \Gamma^2\right)^3}.$$
(25)

На рис. 5 представлены зависимости зарядов адатомов графена и декорирующих адчастиц $Z_{ii}^* = 1 - n_i^*$, а также изолированных (одиночных) адатомов углерода и адчастиц $\overline{Z} = 1 - \overline{n} = \overline{Z}_a = 1 - \overline{n}_a$ от энергии уровня Ферми $\varepsilon_{\rm F}$ для $\Gamma = \Gamma_a = 2t, \ \tau = 0.7$ и $\varepsilon_a = 0.$ При $\varepsilon_{\rm F} > 0$ все заряды отрицательны, при $\varepsilon_{\rm F} < 0$ положительны, причем, $|Z_i^*(\varepsilon_F)| = |Z_i^*(-\varepsilon_F)|$ и $|\overline{Z}(\varepsilon_F)| = |\overline{Z}(\varepsilon_F)|$. Из рис. 5 следует, что $|\overline{Z}| > |Z_1^*| > |Z_a^*| > |Z_0^*|$ при $\varepsilon_{\mathrm{F}} \neq 0$. Этот результат в корне отличается от случая свободной наноленты с декорирующими частицами, где, согласно предложенной нами схеме оценок, все числа заполнения равны 1, а заряды — 0. Величина заряда численно равна значению перехода заряда между адсорбатом и субстратом. При положительном заряде адсорбата имеет место переход электронов с адсорбата в подложку, при отрицательном — из подложки на адсорбат. Неравенства $|\overline{Z}| > |Z_{0,1}^*|$ и $|\overline{Z}_a| > |Z_a^*|$ показывают, что учет взаимодействия адатомов углерода между собой и с адчастицами понижает величины всех зарядов, т.е. ведет к деполяризации адсорбата. Этот результат хорошо известен в теории адсорбции [15,16].

5. Декорирование цепочки адатомов углерода

Одномерные углеродные структуры (карбины) вызывают интерес уже достаточно долгое время (см., например, [19-22] и ссылки, приведенные там), но некоторые связанные с ними вопросы так и остаются открытыми. Различают два вида карбинов: металлический кумулен с двойными связями $(\ldots = C = C = \ldots)$ и полупроводниковый полиин с чередующимися одинарными и тройными связями $(\ldots -C \equiv C - \ldots)$, между которыми возможен пайерлсовский переход. В рамках постановки рассматриваемой здесь проблемы, карбин интересен тем, что, активно присоединяет посторонние молекулы (в частности, ДНК [22]) и может выступать в качестве сенсора. Таким образом, проблема декорирования является для карбина актуальной. Здесь мы рассмотрим кумулен, характеризуемый однородным распределением π-электронов вдоль цепочки [19].

Воспользуемся результатами работы [13], заменив на рис. 1 этой работы адатомы графена типа -2-1, 0-1 и 2-1 декорирующими адчастицами. Такое расположение декорирующих частиц имеет вполне определенную аналогию с графаном, где атомы водорода расположены по обеим сторонам графенового листа, что уменьшает кулоновское межатомное отталкивание их электронов. Таким образом, имеем симметричную структуру, представляющую собой цепочку адатомов углерода (эпикарбин) с прикрепленными к ней с двух сторон адчастицами. Тогда для углеродных адатомов и адчастиц из выражений (4) и (5) из [13] получим соответственно следующие функции Грина:

$$G'(\omega, k) \equiv G'_{0}(\omega, k) = G'_{1}(\omega, k)$$
$$= g \left(1 - g g_{a} \tilde{t}^{2} - \frac{g^{2} t^{2} \Phi(k)}{1 - g g_{a} \tilde{t}^{2}} \right)^{-1}, \qquad (26)$$

$$G'_{a}(\omega,k) = g_{a} \left(1 - \frac{gg_{a}\tilde{t}^{2}}{1 - \frac{g^{2}t^{2}\Phi(k)}{1 - gg_{a}\tilde{t}^{2}}} \right)^{-1}, \qquad (27)$$

где $|k| \le \pi/2a$. Полюса функций Грина (26) и (27), определяющие закон дисперсии, являются корнями уравнения

$$(\omega - \varepsilon_a)[\omega^2 - t^2 \Phi(k)] - 2\omega \tilde{t}^2 = 0.$$
(28)

Соответствующие зоны изображены на рис. 6 для различных значений параметров задачи. При $k = \pi/2a$ имеем $\omega_0 = 0$ и $\omega_{\pm}(\pi/2a) = (\varepsilon_a \pm \sqrt{\varepsilon_a^2 + 8t^2})/2$. Если $\varepsilon_0 = 0$, то $\omega_0 = 0$ и $\omega_{\pm(k)} \pm t \sqrt{\Phi(k) + 2\tau^2}$. В общем случае ($\varepsilon_a = t$, $\tau = 0.5$) симметрия зон, отвечающих положительным и отрицательным энергиям нарушается.

Рис. 6. Энергетические зоны декорированной цепочки атомов углерода для $\varepsilon_a = 0$ (светлые символы) и $\varepsilon_a = 1$ (темные символы) при $\tau = 0.5$ (темные квадраты, треугольники и кружки) и $\tau = 1$ (светлые квадраты, треугольники и кружки). Энергетическая зона недекорированной цепочки ($\tau = 0$, прямые и косые кресты) сведена в зону Бриллюэна декорированной цепочки. Энергии зон приведены в ед.t.

Сравнение рис. 6 с рис. 2 показывает качественное согласие спектров за тем, однако, важным исключением, что в случае цепочки на зависимостях $\omega(k)$ отсутствуют экстремумы в интервале $0 < |k| < \pi/2a$, наблюдаемые для наноленты. Ниже, как и в п. 4, мы рассмотрим режим сильной связи декорированной углеродной цепочки и адчастиц с металлической подложкой, что может быть определено как декорированный эпикарбин.

Полагая в (27) и (28) отношения t^2/Γ^2 , \tilde{t}^2/Γ^2 , t^2/Γ_a^2 , \tilde{t}^2/Γ_a^2 малыми параметрами и проинтегрировав по зоне Бриллюэна, получим функции Грина $g'(\omega) \approx g(1 + 2g^2t^2 + gg_a\tilde{t}^2)$, $G'_a(\omega) \approx g_a(1 + gg_a\tilde{t}^2)$, идентичные функциям Грина $G_1(\omega)$ и $G_a(\omega)$ из п. 4. Отсюда следует, что формулы (18), (19), (24) и (25) справедливы и для декорированной углеродной цепочки. Справедливы и результаты, представленные на рис. 4 и 5: $\rho_a(\omega)$ соответствует $\rho'(\omega)$, $\rho_a(\omega) - \rho'_a(\omega)$, $Z_1^* - Z'$ и $Z_a^* - Z_a'$. Таким образом, в приближении сильной связи с подложкой задача о декорированной наноленте эпиграфена.

6. Выводы

1. Сопоставление результатов зонных расчетов в рамках использованных в настоящей работе двухцепочечной и одноцепочечной моделей показывает, помимо прочего, что лишь первая модель правильно отражает электронную структуру наноленты графена, то есть наличие экстремумов у зависимостей $\omega(k)$. С другой стороны, вторая модель представляется вполне приемлемой для описания металлического карбина.

2. Из сопоставления полученных здесь зависимостей зарядов адатомов углерода и адчастиц от положения уровня Ферми в режиме сильной связи с подложкой, с соответствующими зависимостями, полученными в [14] в задаче о декорировании кромки графена в режиме слабой связи, следует, что эти зависимости качественно согласуются. Это согласие подтверждает важный результат теории адсорбции [15]: оценить величину чисел заполнения для адатомов, образующих когерентные решетки, можно в модели адсорбированного димера. Отметим, что приближенные значения функций Грина $G_0(\omega), G_1(\omega), G_a^{\omega}$ (п. 4) и $G'(\omega), G'_a(\omega)$ (п. 5) для режима сильной связи отвечают именно адсорбированным димерам.

Оба приведенных вывода серьезно упрощают оценки. Численные расчеты при почти полном отсутствии экспериментальной информации представляется нам преждевременным.

Список литературы

- R. Taira, A. Yamanaka, S. Okada. Appl. Phys. Express 9, 115102 (2016).
- [2] M.R. Mananghaya, G.N. Santos, D. Yu, C. Stampfl. Sci. Rep. 7, 15727 (2017).
- [3] K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus. Phys. Rev. B 54, 17954 (1996).
- [4] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe. J. Phys. Soc. Jpn 65, 1920 (1996).
- [5] Y. Miyamoto, K. Nakada, M. Fujita. Phys. Rev. B 59, 9858 (1999).
- [6] S. Okada, M. Igami, K. Nakada, A. Oshiyama. Phys. Rev. B 62, 9896 (2000).
- [7] M.P. Levendorf, C.-J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park. Nature 488, 627 (2012).
- [8] Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K.P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou, P.M. Ajayan. Nature Nanotechnology 8, 119 (2013).
- [9] G.C. Loh, R. Pandey. J. Mater. Chem. C 3, 5918 (2015).
- [10] С.Ю. Давыдов. ФТТ 60, 1389 (2018).
- [11] J. Cserti. Am. J. Phys. 68, 896 (2000).
- [12] G. Jose, R. Malla, V. Srinivasan, A. Sharma, S. Gangadharaiah. arXiv: 1711.08204v.1.
- [13] С.Ю, Давыдов. Цепочечная модель декорирования зигзагообразной кромки графена. ФТП 53, 83 (2019).
- [14] С.Ю. Давыдов. Письма в ЖТФ 44 (21), 55 (2018).
- [15] С.Ю. Давыдов. Теория адсорбции: метод модельных гамильтонианов. Изд-во СПбГЭТУ "ЛЭТИ", СПб. (2013). 235 с. twirpx.com/file/1596114/
- [16] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Элементарное введение в теорию наносистем. Лань, СПб. (2014). 192 с.
- [17] Г.Б. Двайт. Таблицы интегралов и другие математические формулы. Лань, СПб. (2009). 232 с.

- [18] С.В. Вонсовский, Ю.А. Изюмов, Э.З. Курмаев. Сверхпроводимость переходных металлов, их сплавов и соединений. Наука, М. (1977). Гл. V. 384 с.
- [19] F. Banhart. J. Nanotechnology, 6, 559 (2015).
- [20] L. Shi, P. Rohringer, K. Suenaga, Y. Niimi, J. Kotakoski, J.C. Meyer, H. Peterlik, M. Wanko, S. Cahangirov, A. Rubio, Z.J. Lapin, L. Novotny, P. Ayala, T. Pichler. Nature Mater. 15, 634 (2016).
- [21] L. Shi, P. Rohringer, M. Wanko, A. Rubio, S. Waserroth, S. Reich, S. Cambre, W. Wenseleers, P. Ayala, T. Pichler. Phys. Rev. Mater. 1, 075601 (2017).
- [22] Z. Salman, A. Nair, S. Tung. Proc. 12th IEEE Int. Conf. on Nano/micro Engineered and Molecular Systems (April 9–12, 2017), Los Angeles, USA. P. 667–681.

Редактор К.В. Емцев