Магнитные свойства облученных электронами квазислоистых манганитов $La_{2-2x}Sr_{1+2x}Mn_2O_7$ (x = 0.3, 0.35, 0.4)

© Т.И. Арбузова, С.В. Наумов, В.Л. Арбузов

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

(Поступила в Редакцию 6 сентября 2002 г. В окончательной редакции 16 января 2003 г.)

Исследованы магнитные свойства поликристаллов La_{2-2x}Sr_{1+2x}Mn₂O₇ (x = 0.3-0.4) в широкой температурной области 80-600 К. Квазидвумерные манганиты имеют сложную магнитную структуру с несколькими переходами от одного типа магнитного упорядочения к другому. Отличительной особенностью этих манганитов является гиперболическая зависимость обратной восприимчивости в переходной области из магнитоупорядоченного в парамагнитное состояние при T > 360 К. Этот факт указывает на реализацию ферримагнетизма. Показано, что электронное облучение флюенсом $\Phi = 1 \cdot 18^{18}$ е/сm² не влияет на дальний магнитный порядок, однако способствует образованию парамагнитных поляронов и неоднородного парамагнитного состояния.

Работа выполнена при поддержке программы ФЦНТП Миннауки РФ № 40.012.1.1.1153-14/02 и проекта Российского фонда фундаментальных исследований № 02-02-16429.

Большой интерес к перовскитоподобным оксидам марганца из серии Руддлесдена-Поппера A_{n+1}Mn_nO_{3n+1} $(n = 1, 2, ..., \infty)$ связан с эффектом колоссального магнитосопротивления [1,2]. Эти соединения могут быть классифицированы как магнитные полупроводники с сильной связью между магнитной и электронной подсистемами. Наиболее полно изучены физические свойства трехмерных (3D) манганитов $La_{1-x}A_xMnO_3$ $(n = \infty)$. В А₃Мn₂O₇ (n = 2) кристаллическая структура квазидвумерная. Двойные магнитные слои MnO₂ удалены друг от друга на значительное расстояние и разделены изолирующими прослойками. Это может привести к низкоразмерному магнетизму при не очень низких температурах. Для выяснения влияния структурной размерности на магнитные свойства манганитов авторы [3] сравнили температурные зависимости намагниченности в поле H = 100 Ое для монокристаллов La_{0.6}Sr_{0.4}MnO₃ (3D) и La_{1.2}Sr_{1.8}Mn₂O₇ (квази-2D) с одинаковым содержанием стронция и отметили существенное различие между ними. La_{0.6}Sr_{0.4}MnO₃ имеет высокое значение $T_c = 361 \,\mathrm{K}$ и обнаруживает характерное для однородных ферромагнетиков резкое уменьшение намагниченности вблизи T_c . В La_{1.2}Sr_{1.8}Mn₂O₇ $T_c = 90$ K и намагниченность при T = 5 К значительно ниже. В области $100 < T < 360 \,\mathrm{K}$ зависимость M(T) несколько размыта. Согласно нейтронографическим исследованиям при низких температурах T < 10 K, $\text{La}_{2-2x} \text{Sr}_{1+2x} \text{Mn}_2 \text{O}_7$ с x = 0.3 является коллинеарным антиферромагнетиком, а составы с x = 0.32 - 0.40 — коллинеарными ферромагнетиками [2,4]. Магнитные моменты в бислое упорядочены ферромагнитно, но направление спинов зависит от уровня легирования. В настоящее время нет однозначного мнения относительно магнитного порядка в промежуточной области температур $T_c < T < 360$ К. Для монокристалла La_{1.4}Sr_{1.6}Mn₂O₇ в работах [5,6] обнаружены 2D ферромагнитные корреляции в области 90 < T < 270 K, тогда как авторы [7] не нашли доказательств 2D спиновых корреляций. Авторы [8] на основании данных по неупругому нейтронному рассеянию в La_{1.2}Sr_{1.8}Mn₂O₇ сделали заключение о сосуществовании антиферромагнитных кластеров с длиной корреляции $\xi = 6.7 \pm 2.2$ Å и ферромагнитных флуктуаций с длиной корреляции $\xi = 9.3 \pm 1.3$ Å в области $T > T_c$. Нейтронографические исследования не всегда позволяют выявить неколлинеарные магнитные структуры. Важную информацию о магнитном состоянии можно получить из магнитных измерений, в частности, при высоких температурах. Вид температурной зависимости $\chi^{-1}(T)$, знак парамагнитной температуры Кюри θ , соотношение между $T_c(T_N)$ и θ , величина эффективного магнитного момента µ_{eff} позволяют сделать вывод о магнитном порядке, механизмах обменного взаимодействия и параметрах обмена, а также о валентном состоянии магнитных ионов. В литературе практически отсутствуют данные магнитных измерений при высоких температурах для квазислоистых манганитов.

Изучение влияния решеточных и спиновых связей на магнитные свойства важно для понимания природы физических явлений в ряду оксидов переходных металлов, включая низкоразмерные системы. Радиационное разупорядочение в манганитах может привести к изменению длин связей Mn-O и углов Mn-O-Mn, к смещению температур магнитных фазовых переходов. В La_{1-x}A_xMnO₃ заметное уменьшение Т_с наблюдалось только при больших дозах облучения электронами или ионами [9,10]. Влияние радиационных дефектов на магнитные свойства квазидвумерных манганитов не изучалось. В данной работе исследованы магнитные свойства исходных и облученных электронами манганитов La₂₋₂ Sr₁₊₂ Mn₂O₇ (x = 0.3 - 0.4) в широком интервале температур, захватывающем как магнитоупорядоченную, так и парамагнитную область.

Таблица 1. Параметры решетки $La_{2-2x}Sr_{1+2x}Mn_2O_7$ (x = 0.3-0.4)

Соединение	$a, m \AA$ $(\pm 0.002 m \AA)$	$c, m \AA$ $(\pm 0.002 m \AA)$
$\begin{array}{c} La_{1.4}Sr_{1.6}Mn_2O_7\\ La_{1.3}Sr_{1.7}Mn_2O_7\\ La_{1.2}Sr_{1.8}Mn_2O_7\end{array}$	3.872 3.874 3.872	20.208 20.120 20.081

Образцы и экспериментальные результаты

Поликристаллические образцы La_{1.2}Sr_{1.8}Mn₂O₇, La_{1.3}Sr_{1.7}Mn₂O₇, La_{1.4}Sr_{1.6}Mn₂O₇ были синтезированы по стандартной керамической технологии. Синтез образцов проходил в два этапа. Сначала смесь порошков La₂O₃, SrCO₃, Mn₃O₄ отжигалась на воздухе в течение 50 h при температуре 1400°С. После перетирания и компактирования в таблетки проводился повторный отжиг. Полученные образцы являлись однофазными с тетрагональной симметрией решетки 14/ттт. В табл. 1 представлены параметры решетки для La_{2-2x}Sr_{1+2x}Mn₂O₇ (x = 0.3, 0.35, 0.4). При увеличении концентрации стронция параметр а практически не изменяется, а параметр с значительно уменьшается; следовательно, уменьшается расстояние между магнитными бислоями.

Температурные и полевые зависимости намагниченности и магнитной восприимчивости измерены на магнитных весах в области температур T = 80-600 К. Облучение образцов электронами с энергией 5 MeV и флюенсом $\Phi = 1 \cdot 10^{18}$ e/cm² проводилось при T = 273 К в проточном гелиевом криостате. После электронного облучения и последующей выдержки при комнатной температуре в течение нескольких суток изменений параметров решетки не наблюдалось.

На рис. 1 представлены температурные зависимости удельной намагниченности $\sigma(T)$ для La_{1.4}Sr_{1.6}Mn₂O₇, измеренные в различных постоянных магнитных полях. В поле H = 350 Ое при повышении температуры вблизи $T = 100 \, {\rm K}$ наблюдается резкое уменьшение намагниченности до $\sigma = 3.0 \,\mathrm{G} \cdot \mathrm{cm}^3/\mathrm{g}$. В этой области температур имеет место переход металл-изолятор и наблюдается максимум магнитосопротивления. Резкое падение $\sigma(T)$ и большая величина восприимчивости указывают на магнитный фазовый переход. В области 120 < T < 360 K намагниченность La_{1.4}Sr_{1.6}Mn₂O₇ плавно уменьшается с ростом Т. При полном разрушении магнитного порядка полевые зависимости намагниченности $\sigma(H)$ должны иметь линейный вид с экстраполяцией в нуль. Однако наличие петель гистерезиса намагниченности при комнатной температуре указывает на сохранение ферромагнитных спиновых корреляций [11]. На рис. 2 представлена температурная зависимость обратной восприимчивости, из которой видно, что La_{1.4}Sr_{1.6}Mn₂O₇ при высоких температурах находится в парамагнитном состоянии. Выше T = 400 К восприимчивость не зависит от напряженности магнитного поля и следует закону Кюри–Вейса $\chi = N\mu_{\rm eff}/3k(T-\theta)$ с положительным значением парамагнитной температуры Кюри θ и эффективным магнитным моментом $\mu_{\rm eff}$, близким к теоретическому значению. Качественно подобные зависимости $\sigma(T)$ и $\chi^{-1}(T)$ получены для La_{1.3}Sr_{1.7}Mn₂O₇.

La_{1.2}Sr_{1.8}Mn₂O₇ обнаруживает несколько иное поведение намагниченности $\sigma(T)$ выше T = 100 К (рис. 3). Вблизи T = 165 К наблюдается максимум восприимчивости $\chi = \sigma/H$, как для $\chi(T)$ в трехмерных манганитах La_{1-x}Ca_xMnO₃ при $0.6 \le x \le 0.9$ [12]. Обычно максимум χ проявляется в антиферромагнетиках около температуры Нееля T_N и в коллинеарных ферримагнетиках с двумя и более магнитными подрешетками, у которых

Рис. 1. Температурные зависимости удельной намагниченности для исходного ($\Phi = 0$) (1, 3) и облученного ($\Phi = 1 \cdot 10^{18} \text{ e/cm}^2$) (2, 4) образцов La_{1.4}Sr_{1.6}Mn₂O₇ в магнитных полях H = 0.35 (1, 2) и 2.65 kOe (3, 4).

Рис. 2. Температурные зависимости обратной восприимчивости для La_{1.4}Sr_{1.6}Mn₂O₇ в поле H = 2.65 kOe. $\Phi = 0$ (1) и $1 \cdot 10^{18}$ e/cm² (2).

Параметр	$La_{1.4}Sr_{1.6}Mn_2O_7$	$La_{1.3}Sr_{1.7}Mn_2O_7$	$La_{1.2}Sr_{1.8}Mn_2O_7$
$T_c^{(1)}, \mathbf{K}$	100	112	≤ 90
$T_c^{(2)}, \mathrm{K}$	354	350	315
heta, K	300	310	260
$\mu_{ ext{eff}}, \mu_{ ext{B}}$ (теория)	6.53	6.46	6.39
$\mu_{ ext{eff}}, \mu_{ ext{B}}$ (исходный образец)	6.54	6.51	6.71
$\mu_{ ext{eff}}, \mu_{ ext{B}}$ (облученный образец)	8.27	7.82	8.47
$\chi \cdot 10^{-2}, \mathrm{cm}^3/\mathrm{g}$	4.0144	4.4678	2.6994
$(T = 80 \mathrm{K}, H = 350 \mathrm{Oe})$			

Таблица 2. Магнитные характеристики $La_{2-2x}Sr_{1+2x}Mn_2O_7$ (x = 0.3-0.4)

 $T_N > T_c$ [13]. Выше T_N такие соединения переходят в парамагнитное состояние. В La_{1.2}Sr_{1.8}Mn₂O₇ восприимчивость зависит от напряженности *H* выше температуры максимума намагниченности, что свидетельствует

Рис. 3. Температурные зависимости удельной намагниченности для исходного ($\Phi = 0$) (*1*, 3) и облученного ($\Phi = 1 \cdot 10^{18} \text{ e/cm}^2$) (*2*, 4) образцов La_{1.2}Sr_{1.8}Mn₂O₇ в магнитных полях H = 0.35 (*1*, 2) и 2.65 kOe (*3*, 4).

Рис. 4. Температурные зависимости обратной восприимчивости для La_{1.2}Sr_{1.8}Mn₂O₇ в поле H = 2.65 kOe. $\Phi = 0$ (*I*) и $1 \cdot 10^{18}$ e/cm² (*2*).

о сохранении ферромагнитной составляющей момента. При высоких температурах T > 400 K La_{1.2}Sr_{1.8}Mn₂O₇, так же как La_{1.3}Sr_{1.7}Mn₂O₇ и La_{1.4}Sr_{1.6}Mn₂O₇, переходит в парамагнитное состояние, однако эффективный магнитный момент $\mu_{\text{eff}} = 6.71 \,\mu_{\text{B}}$ выше теоретического значения (рис. 4 и табл. 2).

После проведенных измерений образцы были подвергнуты электронному облучению. Для выяснения влияния радиационных дефектов на магнитные свойства квазидвумерных манганитов получены зависимости $\sigma(T)$ и $\chi^{-1}(T)$ для исходных и облученных образцов (рис. 1-4). Видно, что после электронного облучения магнитные свойства в магнитоупорядоченной области T < 360 К практически не изменились. Только у La_{1.2}Sr_{1.8}Mn₂O₇ наблюдается небольшое увеличение ферромагнитного вклада при $T < 180 \, {\rm K}$. Наиболее отчетливо влияние электронного облучения проявилось в парамагнитной области. Хотя значения парамагнитных температур Кюри в после облучения остались прежними, эффективный магнитный момент во всех образцах существенно увеличился (табл. 2). Наблюдаемые значения $\mu_{\rm eff}$ нельзя объяснить присутствием ионов Mn^{2+} со спином S = 5/2. Они указывают на сохранение обменных связей между магнитными ионами в области высоких температур.

2. Обсуждение результатов

Кристаллическая структура перовскитоподобных манганитов $A_2Mn_2O_7$ является квазидвумерной: двойные манганитные слои MnO_2 , состоящие из октаэдров MnO_6 , разделены вдоль оси *с* изолирующими немагнитными прослойками AO_2 . Магнитные свойства манганитов определяются суммой вкладов нескольких механизмов обменного взаимодействия: сверхобменного взаимодействия ионов марганца через ионы кислорода, двойного обмена при наличии ионов марганца разной валентности и косвенного обмена через свободные носители заряда. Два последних механизма качественно подобны и осуществляют ферромагнитную связь между магнитными ионами. Величина и знак Mn–O–Mn-сверхобмена зависят как от параметров решетки, так и от степени перекрытия 3d-2p-волновых функций. Замещение части ионов La³⁺ ионами Sr²⁺ приводит к появлению ионов Mn⁴⁺. Известно, что в перовскитоподобных соединениях сверхобменные взаимодействия Mn³⁺–O^{2–}–Mn³⁺ и Mn⁴⁺–O^{2–}–Mn⁴⁺ являются антиферромагнитными, а взаимодействия Mn³⁺–O^{2–}–Mn⁴⁺ — ферромагнитными [14]. Наши образцы в области $T < T_c^{(1)}$ имеют металлический характер проводимости, поэтому в установлении ферромагнитного порядка при низких температурах наряду со сверхобменом важную роль играет двойной обмен. Реализация косвенного обмена для этих составов маловероятна из-за малой концентрации свободных носителей заряда. При повышении температуры, когда La_{2–2x}Sr_{1+2x}Mn₂O₇ (x = 0.3, 0.35, 0.4) переходит в полупроводниковое состояние, роль сверхобмена сильно возрастает.

Квази-2Д манганиты $La_{2-2x}Sr_{1+2x}Mn_2O_7$ (x =при высоких температурах находят-= 0.3 - 0.4ся в парамагнитном состоянии. При понижении Т в области 300-400 К наблюдается гиперболическая зависимость $\chi^{-1}(T)$ с вогнутостью к оси температур. В ферромагнетиках и антиферромагнетиках вблизи Т_с и T_N функция $\chi^{-1}(T)$ должна иметь выпуклый к оси Tвид за счет сохранения ближнего порядка, как это наблюдается в 3D манганитах $La_{1-x}A_xMnO_3$. Гиперболическая зависимость $\chi^{-1}(T)$ в переходной области из парамагнитного состояния и соотношение температур Кюри $0 < \theta < T_c$ указывают на ферримагнитное упорядочение спинов и наличие нескольких магнитных подрешеток. В манганитах возможно разбиение на несколько магнитных подрешеток и реализация ферримагнетизма, так как магнитные моменты ионов Mn^{3+} и Mn^{4+} и их концентрации различаются [14]. Основной особенностью соединений со структурой перовскитов является слабое взаимодействие ионов, принадлежащих к разным подрешеткам. В определенной области температур может установиться неколлинеарное упорядочение спинов типа Яфета-Киттеля. В $La_{2-2x}Sr_{1+2x}Mn_2O_7$ параметр решетки с значительно больше параметра а, что способствует ослаблению сверхобменного взаимодействия между бислоями MnO_2 . Так, в La_{1.2}Sr_{1.8} Mn_2O_7 выше $T_c = 112$ К спиновые корреляции в плоскостях MnO₂ имеют в 2 раза бо́льшую длину, чем в перпендикулярном направлении [15]. Отметим, что в некоторых манганитах экспериментально обнаружено треугольное магнитное упорядочение.

В неколлинеарных ферримагнетиках направление магнитных моментов в субподрешетках зависит не только от температуры, но и от внешнего магнитного поля. При увеличении H изменяются углы между направлениями спинов и абсолютные значения магнитных моментов подрешеток. Намагниченность не достигает насыщения даже в больших H. Вид температурных зависимостей намагниченности в разных полях может различаться. Такое поведение намагниченности в La_{2-2x}Sr_{1+2x}Mn₂O₇ (x = 0.3-0.4) мы наблюдали в области 80 < T < 360 К. На изменение углов в приложенном магнитном по-

ле в квазислоистых манганитах указывают данные работы [15], согласно которым в La_{1.2}Sr_{1.8}Mn₂O₇ при $T = 125 \,\mathrm{K} > T_c = 112 \,\mathrm{K}$ угол между направлением момента и осью b изменяется с полем и составляет 86.6° при H = 0; 74.1° при H = 1 Т и 53° при H = 2 Т. При низких температурах треугольное упорядочение менее устойчиво, чем коллинеарное. Мы полагаем, что в La_{2-2x}Sr_{1+2x}Mn₂O₇ при низких температурах реализуется коллинеарный ферромагнетизм благодаря обменному взаимодействию через носители заряда и устойчивости коллинеарного упорядочения. Вблизи 100 К, когда соединения переходят в полупроводниковое состояние, антиферромагнитный сверхобмен становится сравнимым с ферромагнитным взаимодействием. Магнитная структура разбивается на подрешетки, и в промежуточной области температур реализуется неколлинеарный ферримагнетизм. Непосредственный переход неколлинеарного ферримагнетизма к парамагнетизму невозможен [13]. Должна существовать область, в которой неколлинеарное упорядочение спинов трансформируется в коллинеарное, и только после этого соединение переходит в парамагнитное состояние.

Отличительными чертами квази-2D манганитов (по сравнению с AMnO₃) являются плавное уменьшение намагниченности в широкой области температур, отсутствие насыщения намагниченности даже в сильных полях, гиперболический вид температурных зависимостей обратной восприимчивости. Такие признаки характерны для неоднородного состояния и неколлинеарного ферримагнитного упорядочения магнитных моментов типа Яфета-Киттеля [13,14]. Присутствие антиферромагнитных кластеров наряду с ферромагнитными корреляциями [8,16] также указывает на сложную магнитную структуру La_{2-2x}Sr_{1+2x}Mn₂O₇ в промежуточной области температур 100 < T < 360 К. Магнитные характеристики квазидвумерных манганитов представлены в табл. 2. Мы обозначили температуру перехода из коллинеарного ферромагнитного состояния в неоднородное магнитоупорядоченное как $T_c^{(1)}$, а температуру перехода из неоднородного состояния в парамагнитное — как $T_{c}^{(2)}$. Положительные, но более низкие по сравнению с $T_c^{(2)}$ значения парамагнитной температуры Кюри θ указывают на то, что ферромагнитные и антиферромагнитные взаимодействия одного порядка. При увеличении содержания Sr параметр решетки с уменьшается. Уменьшение расстояния между бислоями приводит к усилению антиферромагнитного взаимодействия между ними. Подтверждением увеличения антиферромагнитной составляющей в суммарном обменном взаимодействии может служить уменьшение значений $T_{c}^{(1)}$, $T_{c}^{(2)}$ и θ в La_{1.2}Sr_{1.8}Mn₂O₇.

Радиационное воздействие обычно приводит к разупорядочению ионов. В отличие от ионного и нейтронного облучений при облучении легкими электронами образуются точечные дефекты (вакансии и междоузлия). При малых дозах облучения смещаются из своих позиций в основном ионы кислорода. Расчеты показывают, что пороговая энергия смещения кислорода в ВТСП-соединениях, имеющих также структуру перовскита и ряд подобных свойств, в 5–6 раз меньше пороговой энергии смещения тяжелых элементов, а количество смещений атомов кислорода на два порядка больше [17]. Можно предположить, что аналогичная ситуация реализуется в манганитах. Мы полагаем, что химический состав наших образцов не изменился, поскольку облучение проводилось при низкой температуре, и параметры решетки облученных образцов остались неизменными.

В $La_{2-2x}Sr_{1+2x}Mn_2O_7$ существует пять идентичных коротких связей Mn-O(1) (одна апексная и четыре экваториальных) и одна длинная связь Mn–O(2) с кислородом в вершине октаэдра между бислоями MnO₆ [18]. Наиболее вероятным следствием облучения является смещение ионов кислорода из этой позиции. Смещенный кислород может локализоваться в таких же узлах O(2), так как только эти позиции имеют вакантные места [19]. Отметим, что в квазислоистых манганитах параметр c, а следовательно, и расстояние между бислоями велики, поэтому не исключена вероятность локализации смещенного кислорода в междоузлиях между бислоями MnO₆. Косвенным подтверждением этого может служить значительно большее изменение длины апексной связи Mg-O по сравнению с экваториальной длиной в La_{2-2x}Sr_{1+2x}Mn₂O₇ при гидростатическом давлении [20]. Смещению ионов кислорода могут способствовать также довольно большие динамические структурные искажения [16]. Например, в $La_{2-2x}Sr_{1+2x}Mn_2O_7$ в области $T = 360 \,\mathrm{K}$ атомные смещения из узлов регулярной решетки составляют u = 0.077 Å, что значительно больше $u = 0.061 \text{ \AA}$ для обычного термического поведения. В наших образцах после облучения дозой $\Phi = 1 \cdot 10^{18} \,\mathrm{e/cm^2}$ значения T_c и θ , а следовательно, и усредненные обменные параметры не изменились. Однако в результате смещения кислорода со своих позиций при облучении могут образоваться обогащенные кислородом области, в которых избыточный кислород является акцептором. Значительный выигрыш в энергии происходит за счет подстраивания спина носителя заряда к направлению локальных моментов ионов Mn, ближайших к ионизированному акцептору [21]. В этом случае образуются спиновые поляроны, восприимчивость которых больше восприимчивости свободных спинов. Свободная энергия спиновых поляронов минимальна по сравнению с однородным парамагнитным состоянием [22]. Выше Т_с в поле магнитная система имеет два типа "локальных" моментов: парамагнитные спиновые поляроны и свободные одиночные моменты ионов Mn. Из-за малого размера парамагнитных поляронов и наличия флуктуаций направлений из магнитных моментов система как целое в области высоких температур находится в парамагнитном состоянии, но с повышенным магнитным моментом.

 $La_{2-2x}Sr_{1+2x}Mn_2O_7$ Квазислоистые манганиты (x = 0.3 - 0.4) являются трехмерными магнетиками, испытывающими ряд магнитных фазовых переходов порядок-порядок, порядок-беспорядок. При низких температурах $T < T_c^{(1)} \sim 100 \, \text{K}$ в них реализуется коллинеарное ферромагнитное упорядочение. В промежуточной области температур 100 < T < 350 K дальний магнитный порядок сохраняется, однако магнитная система разбивается на подрешетки. Устанавливается ферримагнитное упорядочение, о чем свидетельствуют гиперболический вид температурной зависимости обратной восприимчивости и соотношение между положительной парамагнитной и ферромагнитной температурами Кюри. В La_{1.2}Sr_{1.8}Mn₂O₇ температурная зависимость восприимчивости имеет сложный вид с максимумом вблизи 165 К, что может быть связано с разным ходом зависимостй M(T) для подрешеток. Не исключена вероятность треугольной конфигурации магнитных моментов. При высоких температурах $T > 400 \, {
m K}$ квазислоистые манганиты переходят в однородное парамагнитное состояние. Электронное облучение малой дозой не влияет на дальний магнитный порядок. Радиационное разупорядочение приводит к образованию парамагнитных поляронов с повышенным магнитым моментом вблизи точечных дефектов и проявляется в неоднородном парамагнитном состоянии при высоких температурах.

Список литературы

- [1] E. Dagotto, T. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [2] T. Kimura, Y. Tokura. Ann. Rev. Mater Sci. 30, 451 (2000).
- [3] Y. Moritomo, A. Asamitsu, H. Kuwahara, Y. Tokura. Nature **380**, 141 (1996).
- [4] T.G. Perring, G. Aeppli, T. Kimura, Y. Tokura, M.A. Adams. Phys. Rev. B 58, R14693 (1998).
- [5] Y. Tokura, T. Kimura, T. Ishikawa. J. Korean Phys. Soc. 33, 168 (1998).
- [6] R. Osborn, S. Rosenkranz, D.N. Argyrion, L. Vasiliu-Doloc, J.W. Lynn, S.K. Sinha, J.F. Mitchell, K.E. Gray, S.D. Bader. Phys. Rev. Lett. 81, 3964 (1998).
- [7] R.H. Heffner, D.E. Mac Laughlin, G.J. Nieuwenhuys, T. Kimura, G.M. Luke, Y. Tokura, Y.J. Uemura. Phys. Rev. Lett. 81, 1706 (1998).
- [8] T.G. Perring, G. Aeppli, Y. Moritomo, Y. Tokura. Phys. Rev. Lett. 78, 3197 (1997).
- [9] B.I. Belevsev, V.B. Krasovitsky, V.V. Bobkov. Eur. Phys. J. B 15, 461 (2000).
- [10] C.-H. Chen, V. Talyanski, C. Kwon, M. Rajeswari, R.P. Sharma, R. Ramesh, T. Venkatesan, J.J. Melngailis, Z. Zhang, W.K. Chu. Appl. Phys. Lett. 69, 20, 3089 (1996).
- [11] T.I. Arbuzova, I.B. Smolyak, S.V. Naumov, A.A. Samokhvalov. Phys. Met. Metallogr. 91, *Supp. 1*, 5219 (2000).
- [12] Т.И. Арбузова, И.Б. Смоляк, С.В. Наумов, А.А. Самохвалов, А.В. Королев. ЖЭТФ 119, 115 (2001).
- [13] Я. Смит, Х. Вейн. Ферриты. ИЛ. М. (1962).

- [14] Д. Гуденаф. Магнетизм и химическая связь. Металлургия, М. (1968).
- [15] S. Rosenkranz, R. Osborn, J.F. Mitchell, L. Vasiliu-Doloc, J.W. Lynn, S.K. Sinha, D.N. Argyrion. J. Appl. Phys. 83, 7348 (1998).
- [16] R.P. Sharma, P. Fourmier, R.L. Greene, T. Venkatesan, J.F. Mitchell, D. Miller. J. Appl. Phys. 83, 7351 (1998).
- [17] В.В. Кирсанов, Н.Н. Мусин, Е.И. Шамарина. СФХТ 7, 427 (1994).
- [18] R.D. Sanchez, J. Rivas, C. Vazques-Vazques, A. Lopez-Quintella, M.T. Causa, M. Tovar, S. Oseroff. Appl. Phys. Lett. 68, 134 (1996).
- [19] J.F. Mitchell, D.N. Argyrion, J.D. Jorgensen, D.G. Hinks, C.D. Potter, S.D. Bader. Phys. Rev. B 55, 63 (1997).
- [20] T. Kimura, A. Asamitsu, Y. Tomioka, Y. Tokuraet. Phys. Rev. Lett. 79, 3720 (1997).
- [21] Э.Л. Нагаев. УФН 168, 8, 833 (1996).
- [22] X. Vang, A.F. Freeman. J. Magn. Matter. 171, 103 (1997).