03

Мгновенные спекл-структуры в частично когерентном оптическом волновом поле с широкими частотным и угловым спектрами

© В.П. Рябухо^{1,2}, Л.А. Максимова¹, Н.Ю. Мысина¹, Д.В. Лякин¹, П.В. Рябухо^{1,2}

¹ Институт проблем точной механики и управления РАН,

410028 Саратов, Россия

² Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского,

410012 Саратов, Россия e-mail: rvp-optics@yandex.ru

Поступила в редакцию 26.07.2018 г.

Рассмотрена гипотеза о мгновенных объемных спекл-структурах в частично когерентном оптическом волновом поле частотно широкополосного излучения протяженного источника света. Обсуждены пространственно-временные корреляционные свойства мгновенных спекл-структур и их связь с пространственно-временными когерентными свойствами волнового поля. Показано, что мгновенные спекл-структуры определяют пространственные флуктуации волнового поля и его пространственные когерентные свойства. С помощью численного расчета поля волновых возмущений в ближней области дифракции излучения протяженного источника света получены изображения мгновенных спекл-структур в продольном сечении волнового поля, исследованы корреляционные свойства пространственного распределения мгновенной интенсивности волнового поля в направлении его распространения в зависимости от ширины частотного и ширины углового спектров поля. Показано, что продольная длина мгновенных спеклов может определяться или шириной частотного спектра поля, или шириной его углового спектра, или совместно и шириной частотного, и шириной углового спектров поля. Установлены условия, при которых мгновенные спекл-структуры распространяются, испытывая декорреляционные изменения в процессе распространения, на расстояние, определяемое шириной углового спектра поля.

DOI: 10.21883/OS.2019.02.47202.226-18

Введение

Немонохроматическое оптическое волновое поле протяженного пространственно некогерентного или частично когерентного источника света имеет ограниченную область когерентности и конечное время когерентности волновых возмущений [1–3]. Такое волновое поле называют частично когерентным в пространстве и во времени.

Частично когерентное в пространстве волновое поле имеет конечные длины когерентности — поперечной и продольной по отношению к направлению распространения поля. В общем случае длины когерентности поля зависят как от ширины углового, так и от ширины частотного спектров поля [4-8]. Поперечные длины когерентности в основном определяются шириной углового спектра поля [1-3], и только при достаточно широком частотном спектре возникает зависимость этих длин от ширины частотного спектра возмущений поля [7-9]. Напротив, продольная длина когерентности поля может преимущественно определяться или шириной частотного спектра, или шириной углового спектра, или совместно шириной частотного и углового спектров поля [7,8]. Частотный и угловой спектры волнового поля оказывают конкурирующее влияние на длину продольной когерентности поля [5,7–10].

Перечисленные когерентные свойства поля следуют из формального корреляционного анализа волновых по-

лей с широкими угловым и частотным спектрами [7,10]. Эти свойства проявляются в натурных интерференционных экспериментах [7,9–11], а также имеют решающее влияние на пространственное разрешение и глубину зондирования при формировании сигналов в корреляционной интерференционной микроскопии слоистых слабо рассеивающих объектов [10,12-16], где с помощью объективов с большой числовой апертурой формируются поля с максимально широкими на практике угловыми спектрами в сочетании с широкими частотными спектрами используемых источников света. В то же время с физической точки зрения пространственные когерентные свойства поля с необходимостью должны быть обусловлены временными и пространственными стохастическими флуктуациями поля, характер которых определяется параметрами частотного и углового спектров волнового поля. В качестве таких флуктуаций, как предлагается в [8], следует рассматривать мгновенные сгустки и разряжения энергии колебаний мгновенные спекл-структуры, возникающие в волновом поле в результате мгновенной интерференции различных частотных и угловых составляющих этого поля. Пространственные и временные статистические свойства мгновенных спекл-структур должны определять пространственные когерентные свойства волнового поля как в поперечном, так и в продольном направлениях, а также и в процессе его распространения. Связь корреляционных свойств динамических спекл-структур, образующихся в лазерном излучении, дифрагированном на движущемся рассеивателе, с параметрами пространственной и временной когерентности волнового поля излучения тепловых источников света рассматривается в [17].

В настоящей работе теоретически обосновывается гипотеза о мгновенных спекл-структурах, образующихся в частично когерентном волновом поле. С помощью численных расчетов и моделирования мгновенных спеклструктур исследуются продольные когерентные свойства частично когерентных волновых полей с широкими частотным и угловым спектрами, анализируются их корреляционные свойства в направлении распространения поля.

Мгновенные спекл-структуры в пространственно частично когерентном волновом поле

В волновой оптике рассматриваются самосветящиеся первичные и в соответствии с принципом Гюгенса-Френеля вторичные протяженные источники света. В качестве вторичного протяженного источника света, в частности, могут рассматриваться рассеиватели, освещаемые волновым полем с теми или иными когерентными свойствами. При когерентном освещении рассеивателя, когда элементарные рассеянные волны — вторичные волны — оказываются взаимно когерентными и интерферируют в той или иной точке пространства, в рассеянном волновом поле формируется нерегулярная интерференционная структура — спекл-структура, имеющая явно выраженный стохастический характер в силу случайного пространственного расположения рассеивающих центров и/или их случайных оптических свойств [18-20].

Такие спекл-структуры имеют стационарный характер, если рассеиватель неподвижен в целом и неизменны во времени его элементарные рассеивающие центры. В противном случае в рассеянном поле формируется динамическая спекл-структура [20–23], изменение которой приобретает стохастический характер при стохастическом изменении рассеивающих центров.

Аналогичные стационарные спекл-структуры должны возникать в поле излучения первичного самосветящегося протяженного источника при физически нереализуемом условии его строгой монохроматичности — одночастотности, когда все элементарные излучатели такого источника неподвижны и излучают строго монохроматические волны одной частоты. В противном случае, что всегда имеет место на практике, излучатели испускают немонохроматические волны и разной частоты, и в излучении такого источника возникает динамическая спеклструктура, которая имеет стохастический характер с временем флуктуаций (временем когерентности) τ_c , обратно пропорциональным ширине $\Delta \omega$ частотного спектра такого излучения, $\tau_c \approx 2\pi/\Delta \omega$ [1–3]. В течение времени когерентности τ_c разность фаз волн от разных излучателей остается приблизительно постоянной не изменяется больше чем на 2*π* rad. Поэтому эти волны в течение времени когерентности складываются в разных точках пространства с теми или иными почти постоянными фазовыми соотношениями, увеличивая или уменьшая амплитуду суммарного возмущения поля, что приводит к эффекту пространственного перераспределения энергии суммарных волновых возмущений — к их интерференции и образованию мгновенной спеклструктуры в поле излучения. По истечении времени когерентности τ_c существенно изменяются фазовые соотношения волн от элементарных излучателей, и, как следствие, стохастически изменяется пространственное распределение мгновенной интенсивности волнового поля — меняется реализация мгновенной спекл-структуры. Таким образом, в частично когерентном волновом поле протяженного частотно широкополосного источника света возникает динамическая мгновенная спеклструктура.

Изменяющаяся во времени мгновенная спеклструктура фактически определяет пространственные когерентные свойства волнового поля в зависимости от параметров его частотного и углового спектров. В частности, поперечные ε_{\perp} и продольные ε_{\parallel} длины корреляции спекл-структуры (размеры спеклов) определяют соответственно длины поперечной R_{\perp} и продольной L_c пространственной когерентности поля: $R_{\perp} \approx \varepsilon_{\perp}$, $L_c \approx \varepsilon_{\parallel}$.

Поперечная длина когерентности R_{\perp} в основном определяется шириной углового спектра θ волнового поля [1–3], и только при достаточно широком частотном спектре может проявиться зависимость от ширины частотного спектра [7–9]:

$$R_{\perp} \approx \frac{\lambda_0^2}{(2\lambda_0 + \Delta\lambda)\sin\theta} \approx \frac{\lambda_0}{2\sin\theta} \approx \frac{\lambda_0}{2\theta}, \qquad (1)$$

где λ_0 — средняя длина волны, $\Delta \lambda$ — ширина частотного спектра в шкале длин волн.

Продольная длина когерентности L_c , напротив, может преимущественно определяться или шириной частотного $\Delta \lambda$, или шириной углового θ спектров поля, или одновременно и в равной степени шириной обоих этих спектров [5–8,10]:

$$L_c \approx \left[rac{\Delta\lambda}{\lambda_0^2}\cos^2\left(rac{ heta}{2}
ight) + rac{2}{\lambda_0}\sin^2\left(rac{ heta}{2}
ight)
ight]^{-1} pprox \left[rac{1}{l_c} + rac{1}{
ho_{\parallel}}
ight]^{-1},$$
(2)

где $l_c \approx c \tau_c \approx \lambda_0^2 / \Delta \lambda$ — длина временной когерентности волнового поля, c — скорость света,

$$\rho_{\parallel} \approx \lambda_0 / 2 \sin^2(\theta/2) \approx 2\lambda_0 / \theta^2 \tag{3}$$

— длина продольной когерентности, преимущественно определяемая параметрами углового спектра поля при $l_c \gg \rho_{\parallel}$.

Следовательно, длина м
гновенных спеклов ε_{\parallel} — продольная длина корреляции спекл-структуры — должна

определяться в соответствии с выражением (2) или шириной частотного спектра поля, или шириной его углового спектра, или одновременно и шириной частотного и шириной углового спектров поля.

При $l_c \ll \rho_{\parallel}$ полагается, что l_c и ρ_{\parallel} отличаются примерно в 10 и более раз [8], длина мгновенных спеклов ε_{\parallel} определяется не шириной углового спектра волнового поля, а шириной его частотного спектра, поскольку в этом случае продольная длина корреляции флуктуаций поля ограничивается длиной волновых цугов возмущений поля. Следующие друг за другом в пространстве и во времени волновые цуги отличаются случайной фазой и случайной амплитудой, а значит и мгновенной интенсивностью, монотонно изменяющейся в пределах одного цуга. Ограниченные в поперечном направлении шириной углового спектра, а в продольном направлении — длиной временной когерентности l_c , мгновенные спеклы в процессе распространения поля движутся в направлении его распространения, постепенно испытывая частичную декорреляцию. Полная декорреляция возникает при распространении спеклов на расстояние Δz , равное длине продольной когерентности поля ρ_{\parallel} , определяемой, согласно (3), шириной его углового спектра θ . Эту длину продольной когерентности ρ_{\parallel} следует рассматривать в качестве длины коррелированного распространения отдельных волновых возмущений, волновых цугов в целом, ограниченных длиной временной когерентности, а также и мгновенных спеклов поля.

Ниже представлены результаты численного исследования этого эффекта распространения и декорреляции мгновенных спеклов в процессе их распространения в частично когерентном поле со сравнительно малой длиной временной когерентности $l_c \ll \rho_{\parallel}$.

В волновом поле с относительно узким частотным спектром и достаточно широким угловым спектром, когда $l_c \gg \rho_{\parallel}$ (l_c превышает ρ_{\parallel} примерно в 10 и более раз [8]), характер пространственно-временного изменения мгновенных спекл-структур качественно отличается от вышерассмотренного случая, когда $l_c \ll \rho_{\parallel}$. При $l_c \gg \rho_{\parallel}$ длина продольной когерентности L_c волнового поля, согласно (2), ограничивается не длиной временной когерентности lc, а длиной продольной когерентности ρ_{\parallel} , определяемой только параметрами углового спектра поля — преимущественно шириной углового спектра θ . В этом случае длина мгновенных спеклов, а также и длина волновых цугов ограничиваются шириной углового спектра поля θ . Это означает, что мгновенные спеклы и волновые цуги в целом не имеют какоголибо коррелированного распространения. Частично коррелированное распространение испытывают только отдельные возмущения волнового поля и только внутри спеклов на расстояние Δz , не превышающее длину когерентности ρ_{\parallel} . Возмущения, пробежавшие длину спекла ρ_{\parallel} , претерпевают фазовый набег, случайная составляющая которого примерно равна 2π rad, так что возникает полная декогерентность этих возмущений поля. Сами же мгновенные спеклы за время когерентности τ_c испытывают полную декорреляцию, не перемещаясь вдоль распространения поля, как это происходит в частотно широкополосном волновом поле при $l_c \ll \rho_{\parallel}$.

Мгновенные спекл-структуры в частично когерентном световом поле могут быть экспериментально наблюдаемы только при условии предельно высокой степени монохроматичности поля, поскольку для этого требуется время реакции фотодетектора $\tau_{\rm ph}$, существенно меньшее времени когерентности τ_c , $\tau_{\rm ph} \ll \tau_c \approx 2\pi/\Delta\omega$, которое определяет время квазистационарности мгновенной спекл-структуры. В излучении с достаточно широким частотным спектром такие спекл-структуры оказываются экспериментально ненаблюдаемыми в силу малости τ_c и относительно большого времени $\tau_{\rm ph}$ существующих технических фотодетекторов. Однако мгновенные спекл-структуры могут быть численно смоделированы и исследованы качественно и количественно с использованием интегральных дифракционных преобразований полей [24,25], что сделано в настоящей работе и представлено ниже.

Численное моделирование мгновенных спекл-структур в частично когерентном волновом поле в ближней области дифракции

Пространственно частично когерентное волновое поле создается протяженным пространственно некогерентным или частично когерентным полихроматическим источником света [1,2]. В качестве самосветящихся пространственно некогерентных источников могут рассматриваться тепловые источники света, газоразрядные лампы, светодиоды и т.д., имеющие широкий частотный спектр излучения. В качестве частично когерентных источников на практике могут рассматриваться вторичные источники света, например тонкий рассеиватель или зрачок оптической системы, на которые падает пространственно частично когерентное волновое поле. В дифракционной области и тех, и других источников формируется пространственно частично когерентное волновое поле с ограниченными длинами пространственной когерентности и соответственно ограниченным объемом когерентности, которые определяются и шириной углового спектра, и шириной частотного спектра этого поля [8].

Корреляционные свойства таких волновых полей могут быть качественно и количественно исследованы с помощью численных расчетов пространственно-временных распределений возмущений волновых полей E(x, y, z, t)в ближней или дальней областях дифракции с использованием соответствующих дифракционных преобразований граничного поля источника в скалярном приближении [24,25]. В настоящей работе исследовались пространственные распределения мгновенной интенсивности дифракционного поля $I(x, y, z, t) \sim |E(x, y, z, t)|^2$

Рис. 1. Схема формирования исследуемого волнового поля в ближней области дифракции: S — протяженный источник света, D — область наблюдения мгновенной спекл-структуры IS.

в ближней области дифракции, где волновое поле с широким частотным спектром возмущений может иметь достаточно широкий угловой спектр, влияющий на продольные когерентные свойства поля. На рис. 1 приведена оптическая схема формирования исследуемого волнового поля, которой мы придерживались при расчетах возмущений поля в ближней области дифракции.

Численные расчеты комплексной амплитулы $U(x, y, z, \lambda)$ скалярных возмущений монохроматического волнового поля $E(x, y, z, \lambda, t) =$ $= U(x, y, z, \lambda) \exp(i 2\pi c t/\lambda)$ с длиной волны λ в ближней области дифракции производились с использованием дифракционного интеграла Френеля-Кирхгоффа [24,25]. В дискретной форме для полного возмущения E(x, y, z, t) полихроматического поля в определенном диапазоне длин волн $[\lambda_0 - \Delta \lambda/2, \lambda_0 + \Delta \lambda/2]$ можно записать следующее выражение:

$$\begin{split} E(x, y, z, t) &= \sum_{\lambda_0 - \Delta \lambda/2}^{\lambda_0 + \Delta \lambda/2} U(x, y, z, \lambda) \exp\left(i\frac{2\pi}{\lambda} ct\right) \\ &= \sum_{\lambda_0 - \Delta \lambda/2}^{\lambda_0 + \Delta \lambda/2} \sum_{k=0}^{M-1} \sum_{j=0}^{N-1} P(k, j) A(k, j, \lambda) \exp(i\Delta \varphi(k, j, \lambda)) \frac{1}{i\lambda} \\ &\times \frac{\exp\left(i\frac{2\pi}{\lambda} \left(R(k, j; x, y, z) + ct\right)\right)}{R(k, j; x, y, z)} \cos\left(\mathbf{n} \mathbf{R}(k, j; x, y, z)\right), \end{split}$$

$$(4)$$

где $A(k, j, \lambda)$ и $\Delta \varphi(k, j, \lambda)$ — пространственные распределения амплитуды и фазы граничного поля источника, P(k, j) — бинарная апертурная функция источника, определяющая его форму и размеры: P(k, j) = 1 в пределах источника и равна 0 за его пределами, R(k, j; x, y, z) — расстояние от квазиточечного элементарного излучателя источника с координатами (k, j) до точки наблюдения с координатами (x, y, z), $R = \sqrt{(x-k)^2 + (y-j)^2 + z^2}$, соs(**nR**) — косинус угла между направлением внешней нормали **n** к поверхности источника и вектором **R**(k, j; x, y, z), соединяющим точки с координатами (k, j) и (x, y, z), ось z проходит через центр апертуры источника, $M \times N$ — размер матрицы дискретных отсчетов в плоскости источника.

Для численного моделирования волнового поля излучения протяженного источника в вышеописанном представлении источник необходимо рассматривать как совокупность квазиточечных источников в плоскости (k, j), излучающих элементарные сферические волны с длинами волн в интервале $[\lambda_0 - \Delta\lambda/2, \lambda_0 + \Delta\lambda/2]$ со случайными начальными фазами, равномерно распределенными в интервале $[0, 2\pi]$, и со случайными амплитудами, распределенными по релеевскому закону [2]. Для задания конечных размеров апертуры источника и ее формы пространственное распределение комплексной амплитуды граничного поля $U(k, j, \lambda) = A(k, j, \lambda) \exp(\Delta\phi(k, j, \lambda))$ модулируется бинарной функцией P(k, j), равной 1 в пределах апертуры определенной формы и 0 за ее пределами.

Начальная фаза элементарных волн $\Delta \varphi(k, j, \lambda)$ определялась в виде дискретного массива случайных величин $\Delta \varphi(k, j, \lambda) = 2\pi h(k, j, \lambda)$, где случайная величина $h(k, j, \lambda)$ задавалась статистически равномерно распределенной от 0 до 1, что соответственно определяет статистически равномерное распределение фазы поля элементарных излучателей источника в интервале $[0, 2\pi]$. Поскольку определяющее значение для структуры дифракционного поля имеют не столько амплитуды элементарных волн, сколько их фазы, то при численных расчетах действительная амплитуда $A(k, j, \lambda)$ для упрощения расчетов полагалась не случайной, а детерминированной величиной, постоянной в пределах апертуры источника. Также для упрощения расчетов полагалось, что частотный спектр излучения равномерный $(A(\lambda) = \text{const})$ в интервале $[\lambda_0 - \Delta \lambda/2, \lambda_0 + \Delta \lambda/2].$

Путем изменения величины времени *t* или, что существенно проще и нагляднее, слагаемого *ct* в показателе экспоненты в (4) задавалась динамика пространственного изменения дифракционного поля — распространение отдельных возмущений поля, распространение и/или декорреляционные изменения мгновенных спекл-структур.

С точки зрения конкурентного влияния ширины частотного и ширины углового спектров волнового поля на его пространственно-временные когерентные свойства важно рассмотреть два предельных случая: 1) когда длина продольной когерентности поля L_c преимущественно определяется шириной частотного спектра $\Delta\lambda$ и равна длине временной когерентности $L_c \approx l_c$, 2) когда L_c преимущественно определяется шириной углового спектра θ и равна ρ_{\parallel} , $L_c \approx \rho_{\parallel}$. В соответствии с (2) в первом случае $l_c \ll \rho_{\parallel}$, а во втором $l_c \gg \rho_{\parallel}$.

Мгновенные спекл-структуры в частотно широкополосном поле с узким угловым спектром $(l_c \ll \rho_{\parallel})$

В экспериментальной практике часто используются направленные пучки частично когерентного света, ко-

торые имеют достаточно узкий угловой спектр при относительно широком частотном спектре, когда выполняется соотношение $l_c \ll \rho_{\parallel}$. В этом случае длина продольной когерентности практически равна длине временной когерентности $L_c \approx l_c$, а длина когерентности ρ_{\parallel} определяет длину коррелированного распространения волновых цугов. В рамках представления о мгновенных спекл-структурах длина временной когерентности *l*_c определяет продольную длину корреляции мгновенной спекл-структуры — длину мгновенных спеклов, а длина когерентности ρ_{\parallel} должна определять в этом случае длину коррелированного распространения мгновенной спекл-структуры — длину коррелированного распространения мгновенных спеклов. Численное моделирование мгновенных спекл-структур с использованием (4) подтверждает эти представления.

При численном моделировании мгновенных спеклструктур в соответствии с оптической схемой рис. 1 предполагались следующие параметры схемы, источника и его излучения. Использовалась квадратная форма апертуры источника, размеры источника и расстояние до области наблюдения спекл-структуры — угловые размеры источника 20 задавались такими, чтобы в пределах области наблюдения укладывалось достаточно большое число спеклов в поперечном и продольном направлениях и чтобы спеклы уверенно разрешались. Размер матрицы дискретных отсчетов $M \times N$ в плоскости источника варьировался в пределах от 100 × 100 до 600 × 600, размеры области наблюдения в отсчетах составляли 200 × 400 отсчетов. Центральная длина волны излучения $\lambda_0 = 0.55 \,\mu$ m, ширина частотного спектра $\Delta \lambda$ варьировалась от 10⁻⁵ µm для квазимонохроматического света до $\Delta\lambda \approx 0.2\,\mu\text{m}$, что соответствует ширине частотного контура видимого белого света.

На рис. 2 представлены получаемые в результате численного моделирования пространственные распределения мгновенной интенсивности волнового поля в его продольном сечении — в плоскости (x, z), рассчитанные для различных моментов времени t (рис. 2, а-е). Градациями серого на этих изображениях отображены пространственные изменения мгновенной интенсивности поля I(x, z). Области с повышенной мгновенной интенсивностью и соответственно большой амплитудой возмущений — продольные спеклы поля — на изображениях представлены светлыми. Фактически на рис. 2 представлены изображения мгновенных спекл-структур в продольном сечении волнового поля. На рис. 2, а-е представлены мгновенные спекл-структуры в полихроматическом излучении $(\lambda_0 = 0.55 \,\mu\text{m}, \,\Delta\lambda = 0.2 \,\mu\text{m})$, рассчитанные для различных моментов времени t в процессе распространения поля при $l_c \ll \rho_{\parallel}~(l_c \approx 1.5 \,\mu\text{m},~\rho_{\parallel} \approx 12 \,\mu\text{m}),$ а на рис. 2, f представлено изображение квазимонохроматической ($\lambda_0 = 0.55 \,\mu\text{m}, \Delta \lambda = 10^{-5} \,\mu\text{m}$) мгновенной спеклструктуры, образующейся при $l_c \gg
ho_{\parallel} \approx 12\,\mu{
m m}.$ Такая квазимонохроматическая спекл-структура (рис. 2, f) рассчитывалась для определения корреляционной функции

Рис. 2. Мгновенные спекл-структуры в продольном сечении x, z частично когерентного волнового поля ($\lambda_0 = 0.55 \,\mu$ m): $a - e - l_c \ll \rho_{\parallel} \ (l_c \approx 1.5 \,\mu$ m, $\rho_{\parallel} \approx 12 \,\mu$ m); $f - l_c \gg \rho_{\parallel} \approx 12 \,\mu$ m; $a - ct = 0, b - ct = 1.5 \,\mu$ m, $c - ct = 3 \,\mu$ m, $d - ct = 4.5 \,\mu$ m, $e - ct = 6 \,\mu$ m; размер области наблюдения $20 \times 40 \,\mu$ m.

распространения мгновенных спеклов и соответственно для определения длины ρ_{\parallel} коррелированного распространения мгновенных спекл-структур в полихроматическом излучении (рис. 2, *a*-*e*).

На рис. 2, a-e отчетливо прослеживается смещение слева направо по ходу распространения поля спеклструктуры в целом и отдельных ее элементов (спеклов) в продольном направлении — вдоль оси z, определяющей направление распространения света (рис. 1), при постепенном видоизменении структуры и отдельных спеклов, что обусловлено нарастающей декорреляцией спекл-структуры (нарастающей декогерентностью) в процессе распространения волнового поля.

Эффекты распространения мгновенной спеклструктуры и эффекты ее декорреляции можно выявить и количественно определить с помощью функций корреляции пространственных распределений мгновенной интенсивности $I_1(x, z)$ и $I_2(x, z)$ спеклструктуры, образующихся в различные моменты времени t и $t + \Delta t$ (рис. 2, a-e).

Функции автокорреляции $B_{11}(\Delta x, \Delta z)$ и взаимной корреляции $B_{12}(\Delta x, \Delta z)$ спекл-структур в продольном (x, z) сечении поля с распределениями интенсивностей $I_1(x, z)$ и $I_2(x, z)$ можно определить в приближении статистической однородности этих распределений, используя свойства преобразования Фурье [25,26], с помощью следующих выражений:

$$B_{11}(\Delta x, \Delta z) = \sum_{x=1}^{N} \sum_{z=1}^{M} I_1(x, z) I_1(x - \Delta x, z - \Delta z) \\ \times \mathbf{F}^{-1} \{ \mathbf{F}(I_1(x, z)) \mathbf{F}^*(I_1(x, z)) \},$$
(5)

$$B_{12}(\Delta x, \Delta z) = \sum_{x=1}^{N} \sum_{z=1}^{M} I_1(x, z) I_2(x - \Delta x, z - \Delta z)$$
$$\times \mathbf{F}^{-1} \{ \mathbf{F}(I_1(x, z)) \mathbf{F}^*(I_2(x, z)) \}, \qquad (6)$$

где Δx и Δz — величины взаимного смещения распределений мгновенной интенсивности вдоль осей координат *x* и *z*, **F** и **F**⁻¹ — символы прямого и обратного двумерных преобразований Фурье.

На рис. З представлены графики нормированных функций продольной корреляции $B(\Delta x = 0, \Delta z) = B(\Delta z)$ автокорреляции (кривые 1 и 6) и взаимной корреляции (кривые 2–5) спекл-структур в продольном (x, z)сечении волнового поля, отдельные реализации которых представлены на рис. 2. Ширина кривой функции автокорреляции 1 определяется длиной мгновенных спеклов, ограничиваемой (в рассматриваем случае $l_c \ll \rho_{\parallel}$) длиной временной когерентности поля $l_c \approx 1.5 \,\mu$ m. Смещение максимумов взаимной корреляции на кривых 2–5 относительно кривой автокорреляции 1 показывает эффект смещения мгновенных спекл-структур в процессе распространения волнового поля, а снижение величины максимумов с увеличением смещения Δz показывает эффект декорреляции спекл-структуры в процессе ее

Рис. 3. Нормированные функции автокорреляции (кривые 1 и 6) и взаимной корреляции (кривые 2–5), усредненные по 10 парам реализаций мгновенных спекл-структур, рассчитанным по различным реализациям граничного поля источника: I - функция автокорреляции спекл-структуры при $l_c \ll \rho_{\parallel}$, $\rho_{\parallel} \approx 12 \,\mu$ m, $l_c \approx 1.5 \,\mu$ m (рис. 2, *a*); 2–5 — функции взаимной корреляции пар спекл-структур при t = 0 и $t = \Delta t$ (рис. 2, *a*-e): $2 - c\Delta t = 1.5 \,\mu$ m, $3 - c\Delta t = 3 \,\mu$ m, $4 - c\Delta t = 4.5 \,\mu$ m, $5 - c\Delta t = 6 \,\mu$ m; 6 — автокорреляционная функция квазимонохроматической спекл-структуры при $l_c \gg \rho_{\parallel}$, $\rho_{\parallel} \approx 12 \,\mu$ m, $l_c \approx 30 \,$ mm (рис. 2, *f*).

распространения. Огибающей максимумов (кривая 6), как и ожидалось из теоретических представлений, служит функция автокорреляции квазимонохроматических спекл-структур (рис. 2, *f*), образующихся в поле при той же ширине углового спектра θ , но при существенно более узком частотном спектре $\Delta\lambda$, когда $l_c \gg \rho_{\parallel}$ и продольная когерентность поля ограничивается длиной когерентности ρ_{\parallel} , определяемой шириной углового спектра.

Поперечные размеры мгновенных спеклов *R*_⊥ определяются, согласно (1), преимущественно шириной θ углового спектра волнового поля. Если изменять ширину углового спектра поля с длиной когерентности L_c , определяемой шириной его частотного спектра $\Delta \lambda$, $L_c \approx l_c$, то это повлечет изменение поперечных размеров спеклов при неизменной их продольной длине, ограничиваемой l_c. На рис. 4 показано, как трансформируются изображения мгновенных спеклов в продольном (x, z)сечении поля при уменьшении угловых размеров источника θ при неизменной ширине частотного спектра $\Delta \lambda$. С уменьшением $\Delta \lambda$ спеклы вытягиваются в поперечном направлении ($R_{\perp} \gg L_c \approx l_c$), превращаясь в пределе, когда источник становится почти точечным ($\theta \approx 0$, $R_{\perp} \approx \infty$), в слои квазисферической формы толщиной l_c с центром на источнике (рис. 4, e, f). При моделировании изображений мгновенных спекл-структур расстояние z₀ от источника до области наблюдения, равное 130 µm, выбиралось таким, чтобы была заметна кривизна слоев квазисферической формы при малых размерах источника (рис. 4, *e*, *f*).

Рис. 4. Мгновенные спекл-структуры в продольном сечении (x, z) частично когерентного волнового поля при $l_c \ll \rho_{\parallel}$, $\lambda_0 = 0.55 \,\mu$ m, $l_c \approx 1.5 \,\mu$ m: $a - \theta \approx 0.23 \,\text{rad}$, $b - \theta \approx 0.15 \,\text{rad}$, $c - \theta \approx 0.077 \,\text{rad}$, $d - \theta \approx 0.038 \,\text{rad}$, $e - \theta \approx 0.015 \,\text{rad}$, $f - \theta \approx 0.0077 \,\text{rad}$; размер области наблюдения $20 \times 40 \,\mu$ m; расстояние z_0 от источника до области наблюдения $130 \,\mu$ m.

Рис. 5. Мгновенная продольная спекл-структура волнового поля при $l_c \ll \rho_{\parallel}$ ($\lambda_0 = 0.55 \,\mu$ m, $l_c \approx 1.5 \,\mu$ m, $\rho_{\parallel} \approx 21 \,\mu$ m), размер области наблюдения $20 \times 40 \,\mu$ m (*a*); *b* — изображение пространственного распределения объемной плотности энергии поля S(z) в продольном (x, z) сечении в выделенной на рис. 5 *a* области размером 2.4 × 5 μ m; *c* — график распределения S(z) вдоль оси *z*.

Мгновенные спеклы имеют внутреннюю осциллирующую энергетическую структуру — объемную плотность потока энергии $S(z) \sim [\text{Re}\{E(z)\}]^2$ — с пространственным периодом осцилляций Λ_s , определяемым параметрами и частотного, и углового спектров волнового поля [7]:

$$\Lambda_{S} \approx \frac{\lambda_{0}}{2} \left(\cos^{2}(\theta/2) + \frac{1}{2} \frac{\Delta \lambda}{\lambda_{0}} \sin^{2}(\theta/2) \right)^{-1}.$$
 (7)

На рис. 5, *а* представлено изображение мгновенной спекл-структуры I(x, z) в продольном сечении волнового поля с длинами продольной когерентности $l_c \ll \rho_{\parallel}$, $l_c \approx 1.5 \,\mu\text{m}$, $\rho_{\parallel} \approx 21 \,\mu\text{m}$, а на рис. 5, *b* для этого же поля в увеличенном масштабе представлено изображение пространственного распределения объемной плотности потока энергии S(x, z) в пределах области, отмеченной

Рис. 6. Мгновенные спекл-структуры в продольном (x, z) сечении узкополосного волнового поля с широким угловым спектром $(l_c \gg \rho_{\parallel}, \lambda_0 = 0.55 \,\mu\text{m}, \Delta \lambda = 4 \cdot 10^{-3} \,\mu\text{m}, l_c \approx 75.6 \,\mu\text{m}, \theta = 0.36 \,\text{rad}, \rho_{\parallel} \approx 8.6 \,\mu\text{m})$ в различные моменты времени: $a - ct = 0, b - ct = 20 \,\mu\text{m}, c - ct = 30 \,\mu\text{m}, d - ct = 40 \,\mu\text{m}, e - ct = 70 \,\mu\text{m}, f - ct = 100 \,\mu\text{m};$ размер области наблюдения $20 \times 40 \,\mu\text{m}.$

Рис. 7. Мгновенные спекл-структуры в продольном (x, z) сечении узкополосного волнового поля $(l_c \gg \rho_{\parallel}, \lambda_0 = 0.55 \,\mu\text{m}, \Delta \lambda = 4 \cdot 10^{-3} \,\mu\text{m}, l_c \approx 75.6 \,\mu\text{m}, \theta = 0.54 \,\text{rad}, \rho_{\parallel} \approx 3.9 \,\mu\text{m})$ в различные моменты времени: $a - ct = 0, b - ct = 20 \,\mu\text{m}, c - ct = 30 \,\mu\text{m}, d - ct = 40 \,\mu\text{m}, e - ct = 70 \,\mu\text{m}, f - ct = 100 \,\mu\text{m};$ размер области наблюдения $20 \times 40 \,\mu\text{m}.$

Рис. 8. Функции автокорреляции (кривые 1) и взаимной корреляции (кривые 2-6) мгновенных спекл-структур волновых полей ($\lambda_0 = 0.55 \,\mu$ m, $\Delta \lambda = 4 \cdot 10^{-3} \,\mu$ m, $l_c \approx 75.6 \,\mu$ m) с различной шириной θ углового спектра: $a - \theta = 0.36$ rad, $\rho_{\parallel} \approx 8.6 \,\mu$ m, $b - \theta = 0.54$ rad, $\rho_{\parallel} \approx 3.9 \,\mu$ m; $1 - c\Delta t = 0 \,\mu$ m, $2 - c\Delta t = 20 \,\mu$ m, $3 - c\Delta t = 30 \,\mu$ m, $4 - c\Delta t = 40 \,\mu$ m, $5 - c\Delta t = 70 \,\mu$ m, $6 - c\Delta t = 100 \,\mu$ m.

рамкой на рис. 5, a, и в графической форме на рис. 5, c представлено пространственное распределение S(z) в направлении распространения поля.

Таким образом, с помощью численного моделирования подтверждаются гипотеза и представления о возникновении и распространении мгновенных спеклструктур в частично когерентном поле, об эффекте их декорреляции в процессе распространения и о длине коррелированного распространения, определяемой шириной углового спектра волнового поля, продольная когерентность которого ограничивается шириной его частотного спектра.

Мгновенные спекл-структуры в частотно узкополосном поле с широким угловым спектром ($l_c \gg \rho_{\parallel}$)

В волновом поле с узким частотным спектром и достаточно широким угловым спектром длина продольной когерентности волнового поля *L*_c определяется

шириной углового спектра θ , $L_c \approx \rho_{\parallel}$. Следовательно, и длина мгновенных спеклов поля также ограничивается шириной углового спектра и равна ρ_{\parallel} . На рис. 6 и 7 представлены рассчитанные изображения мгновенных спеклов в продольном сечении поля, полученные при одной и той же ширине частотного спектра $\Delta \lambda = 4 \cdot 10^{-3} \,\mu\text{m}, \, l_c \approx 75.6 \,\mu\text{m},$ но при разной ширине θ углового спектра и соответственно разной длине когерентности ρ_{\parallel} : рис. 6 — $\theta = 0.36$ rad, $\rho_{\parallel} \approx 8.6 \,\mu\text{m}$, рис. 7 — $\theta = 0.54$ rad, $ho_{\parallel} \approx 3.9\,\mu$ m. Отчетливо видно, что с увеличением ширины углового спектра уменьшается и поперечная, и продольная длины спеклов. Различия в продольной длине мгновенных спеклов количественно можно определить по ширине автокорреляционных функций (5) спекл-структур. На рис. 8, а, в представлены автокорреляционные функции спекл-структур (кривые 1), показанных на рис. 6 и 7, по которым можно оценить продольную длину спеклов ρ_{\parallel} .

Ограничение длины мгновенных спеклов шириной углового спектра принципиально меняет характер пространственно временной динамики мгновенной спеклструктуры волнового поля. В этом случае спеклструктура не смещается в продольном направлении отсутствует эффект ее распространения, как это происходит при $l_c \ll
ho_{\parallel}$, а испытывает в течение времени tдекорреляционные изменения — происходит бурление (кипение) спеклов в продольном сечении поля. На рис. 6, *a-f* и 7, *a-f* представлены изображения спеклструктур, образующихся в разные моменты времени, на которых, как это можно видеть, никак не проявляется продольное смещение спеклов — слева направо. Взаимно корреляционные функции этих спеклструктур (рис. 8) также не показывают их смещение максимумы этих функций практически не смещаются. Наблюдается взаимная декорреляция спекл-структур с течением времени, о чем свидетельствует уменьшение максимумов функции взаимной декорреляции (рис. 8, кривые 2-6). Отметим, что максимум взаимной корреляции становится практически нулевым (возникает почти полная декорреляция) при $ct = 70 \, \mu m$, что примерно равно заданной длине временной когерентности рассматриваемого поля $l_c \approx 75.6\,\mu\text{m}$.

Заключение

В настоящей работе показано, что в частично когерентном оптическом волновом поле формируются изменяющиеся во времени мгновенные спекл-структуры, определяющие пространственно-временные флуктуации поля и соответственно его пространственные когерентные свойства. С помощью численного расчета волновых возмущений в ближней области дифракции поля излучения протяженного источника света исследованы корреляционные свойства пространственного распределения мгновенной интенсивности волнового поля в направлении его распространения. Показано, что в продольном направлении дифракционного поля (в направлении его распространения) длина корреляции мгновенной интенсивности (длина мгновенных спеклов) может определяться или шириной частотного спектра поля, или шириной его углового спектра, или совместно и шириной частотного, и шириной углового спектров поля. Последняя ситуация напрямую не анализировалась в настоящей работе, однако такой вывод можно сделать по аналогии с продольной пространственной когерентностью поля, где такая зависимость показана теоретически и подтверждена натурным экспериментом [6-8], рассмотрев два предельных случая, когда длина мгновенных спеклов определяется либо только шириной частотного спектра поля, либо только его угловым спектром. Эти два рассмотренных в работе предельных случая важны, поскольку характер формирования мгновенных спеклкартин и их изменения в процессе распространения волнового поля для этих двух предельных случаев различается существенным образом.

В случае частотно широкополосного волнового поля, когда длина спеклов ограничивается длиной временной когерентности, мгновенная спекл-структура поля распространяется в пространстве как целое, испытывая декорреляционные изменения в процессе распространения на расстояние, определяемое шириной углового спектра поля. Объемные спеклы волнового поля в этом случае можно рассматривать в качестве объемных волновых цугов поля, распространяющихся в пространстве в волновом поле.

Если поле имеет относительно узкий частотный спектр, но достаточно широкий угловой спектр, то длина мгновенных спеклов определяется шириной углового спектра. В этом случае спекл-структура поля испытывает декорреляционные изменения без распространения в пространстве как целое, а длина продольных спеклов определяет продольную длину когерентности волнового поля.

Корреляционный анализ численно смоделированных мгновенных спекл-структур подтвердил различия в процессах формирования и распространения в пространстве флуктуаций волнового поля для двух рассмотренных предельных случаев и тем самым подтвердил предложенную ранее в [8] гипотезу о подобных различиях.

Таким образом, можно сказать, что представления о мгновенных спекл-структурах волнового поля и о зависимостях их параметров от частотного и углового спектров поля не только позволяют в физически наглядной образной форме проводить качественный анализ, но и дают возможность осуществлять количественные оценки пространственных когерентных свойств волнового поля, не прибегая к феноменологическому анализу проявления когерентности света в интерференционном эксперименте. Данная возможность интересна и с прикладной точки зрения, например для более точной количественной оценки процессов декорреляции волновых полей с широкими частотными и угловыми спектрами при их прохождении через границы раздела сред с различными показателями преломления [27] при исследовании слоистых объектов технического и биологического происхождения в методах корреляционной интерференционной микроскопии [10,12–16] с целью расширения диагностических и измерительных возможностей этих методов, в частности для увеличения точности определения геометрических и оптических параметров объектов [28], а также для оценки влияния оптических полей на биологические объекты на клеточном уровне [29]. Полагаем также, что полученные результаты и выработанные представления будут полезны для анализа волновых полей других частотных диапазонов, в частности терагерцового диапазона, для которого уже создаются фокусирующие устройства для формирования полей с большой числовой апертурой [30].

Исследования выполнены за счет гранта Российского научного фонда, проект № 16-19-10528.

Список литературы

- Mandel L., Wolf E. Optical Coherence and Quantum Optics. NY.: Cambridge University Press, 1995. 1166 р.; Мандель Л., Вольф Э. Оптическая когерентность и квантовая оптика. М.: Физматлит, 2000. 896 с. doi 10.1017/CBO9781139644105
- [2] Goodman J.W. Statistical Optics. Wiley, 2000. 567 р.; Гудмен Дж. Статистическая оптика. М.: Мир, 1988. 528 с. doi 10.1063/1.2815179
- [3] Ахманов С.А., Дьяков Ю.Е., Чиркин А.С. Статистическая радиофизика и оптика. Случайные колебания и волны в линейных системах. М.: Физматлит, 2010. 428 с.
- [4] Rosen J., Yariv A. // Opt. Commun. 1995. V. 117. N 1–2.
 P. 8. doi 10.1016/0030-4018(95)00086-N
- [5] Abdulhalim I. // J. Opt. A: Pure Appl. Opt. 2006. V. 8. N 11.
 P. 952. doi 10.1088/1464-4258/8/11/004
- [6] Рябухо В.П., Лякин Д.В. // Опт. и спектр. 2005. Т. 98. В. 2.
 С. 309; Ryabukho V.P., Lyakin D.V. // Opt. Spectrosc. 2005.
 V. 98. N 2. P. 273. doi 10.1134/1.1870071
- [7] Ryabukho V.P., Lyakin D.V., Grebenyuk A.A., Klykov S.S. // J. Optics. 2013. V. 15. N 2. P. 025405. doi 10.1088/2040-8978/15/2/025405
- [8] Лякин Д.В., Мысина Н.Ю., Рябухо В.П. // Опт. и спектр. 2018. Т. 124. В.З. С. 348; Lyakin D.V., Mysina N.Yu., Ryabukho V.P. // Opt. Spectrosc. 2018. V. 124. N 3. P. 349. doi 10.1134/S0030400X18030165
- [9] Рябухо В.П., Кальянов А.Л., Лычагов В.В., Лякин Д.В. // Опт. и спектр. 2010. Т. 108. В. 6. С. 1032; Ryabukho V.P., Kal'yanov A.L., Lyakin D.V., Lychagov V.V. // Opt. Spectrosc. 2010. V. 108. N 6. P. 979. doi 10.1134/S0030400X1006024X
- [10] Abdulhalim I. // Ann. Phys. 2012. V. 524. N 12. P. 787. doi 10.1002/andp.201200106
- [11] Рябухо В.П., Лякин Д.В., Лычагов В.В. // Опт. и спектр. 2006. Т. 100. № 5. С. 788; Ryabukho V.P., Lyakin D.V., Lychagov V.V. // Opt. Spectrosc. 2006. V. 100. N 5. P. 724. doi 10.1134/S0030400X06050146
- [12] De Groot P., Colonna de Lega X., Kramer J., Turzhitsky M. // Appl. Opt. 2004. V. 43. N 25. P. 4821. doi 10.1364/AO.43.004821

- [13] Labiau S., David G., Gigan S., Boccara A.C. // Opt. Lett. 2009. V. 34. N 10. P. 1576. doi 10.1364/OL.34.001576
- [14] Лякин Д.В., Рябухо В.П. // Квант. электрон. 2013. Т. 43.
 № 10. С. 949; Lyakin D.V., Ryabukho V.P. // Quant. Electron. 2013. V. 43. N 10. Р. 949. doi 10.1070/QE2013v043n10ABEH015187
- [15] Gao W. // J. Mod. Opt. 2015. V. 62. N 21. P. 1764. doi 10.1080/09500340.2014.952689
- [16] Dubois A. // Appl. Opt. 2017. V. 56. I. 9. P. D142. doi 10.1364/AO.56.00D142
- [17] Martienssen W., Spiller E. // Am. J. Physics. 1964. V. 32.
 N 12. P. 919. doi 10.1119/1.1970023
- [18] Dainty J.C. (ed.) Laser Speckle and Related Phenomena. Springer Science & Business Media, 2013. V. 9. 286 p. doi 10.1007/978-3-662-43205-1
- [19] Франсон М. Оптика спеклов. М.: Мир, 1980. 171 с.; Françon M. La Granularute Laser (Spekle) et ses Applications en Optique. Masson Paris, NY., Barcelone, Milan, 1978. 171 p.
- [20] Goodman J.W. Speckle Phenomena in Optics: Theory and Applications. Roberts & Company, Publishers, Englewood, 2007. 387 p.
- [21] Yoshimura T., Iwamoto S. // J. Opt. Soc. Am. A. 1993. V. 10.
 I. 2. P. 324. doi 10.1364/JOSAA.10.000324
- [22] Okamoto T., Asakura T. // Progress in Optics. 1995. V. 34.
 P. 183. doi 10.1016/S0079-6638(08)70326-3
- [23] Rabal H.J., Braga Jr R.A. Dynamic Laser Speckle and Applications. CRC Press, 2008. 282 p. doi 10.1201/9781420060164
- [24] Born M., Wolf E. Principles of Optics. Cambridge University Press, 2002. 994 р.; Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 720 с. doi 10.1017/CBO9781139644181
- [25] Goodman J.W. Introduction to Fourier Optics, 3rd Edition. Roberts & Company Publishers, 2005. 528 p.
- [26] Локшин Г.Р. Основы радиооптики. М.: Интеллект, 2009. 344 с.
- [27] Рябухо В.П., Лычагов В.В., Лякин Д.В., Смирнов И.В. // Опт. и спектр. 2011. Т. 110. № 5. С. 854; Ryabukho V.P., Lychagov V.V., Lyakin D.V., Smirnov I.V. // Opt. Spectrosc. 2010. V. 110. N 5. P. 802. doi 10.1134/S0030400X11050134
- [28] Лякин Д.В., Максимова Л.А., Сдобнов А.Ю., Рябухо В.П. // Опт. и спектр. 2017. Т. 123. № 3. С. 463. Lyakin D.V., Maksimova L.A., Sdobnov A.Yu., Ryabukho V.P. // Opt. Spectrosc. 2017. V. 123. N 3. P. 487. doi 10.1134/S0030400X17090235
- [29] Будаговский А.В., Маслова М.В., Будаговская О.Н., Будаговский И.А. // Квант. электрон. 2017. Т. 47. № 2. С. 158; Budagovsky A.V., Budagovskaya O.N., Maslova M.V., Budagovsky I.A. // Quant. Electron. 2017. V. 47. N 2. P. 158. doi 10.1070/QEL16168
- [30] Черномырдин Н.В., Щадько А.О., Лебедев С.П., Спектор И.Е., Толстогузов В.Л., Кучерявенко А.С., Малахов К.М., Командин Г.А., Горелик В.С., Зайцев К.И. // Опт. и спектр. 2018. Т. 124. № 3. С. 420; Chernomyrdin N.V., Shchadko A.O., Lebedev S.P., Spektor I.E., Tolstoguzov V.L., Kucheryavenko A.S., Malakhov K.M., Komandin G.A., Gorelik V.S., Zaytsev K.I. // Opt. Spectrosc. 2018. V. 124. N 3. P. 428. doi 10.1134/S0030400X18030086