17,09

Влияние деформации на энергетический спектр и спектр оптического поглощения фуллерена С₂₀ в модели Хаббарда

© А.В. Силантьев

Марийский государственный университет, Йошкар-Ола, Россия E-mail: kvvant@rambler.ru

(Поступила в Редакцию 13 августа 2018 г.)

В рамках модели Хаббарда в приближении статических флуктуаций получены в аналитическом виде антикоммутаторные функции Грина и энергетические спектры фуллерена C_{20} с группами симметрии I_h , D_{5d} , и D_{3d} . Используя методы теории групп проведена классификация энергетических состояний и определены разрешенные переходы в энергетических спектрах фуллерена C_{20} с группами симметрии I_h , D_{5d} , и D_{3d} . Показано также как расщепляются энергетические уровни фуллерена C_{20} с группой симметрии I_h при понижении симметрии.

DOI: 10.21883/FTT.2019.02.47143.231

1. Введение

После открытия в 1985 г. фуллеренов С₆₀ и С₇₀ [1] начался интенсивный поиск фуллеренов с другим содержанием атомов углерода. Эти исследования привели к открытию целого ряда фуллеренов С76, С78, С82, С84, С90, С94, С96 [2], а также нанотрубок [3]. Дальнейшие исследования показали, что кроме фуллеренов, кластеры которых являются пустыми, могут существовать также так называемые эндоэдральные фуллерены А@С_n, кластеры которых внутри содержат атомы металлов $Cd@C_{82}$ [4], атомы неметаллов $He@C_{60}$ [5] и молекулы Sc₂C₂@C₈₄ [6]. Исследования также проводились по поиску простейшего фуллерена С20, который состоит из 20 атомов углерода, см. рис. 1. Из теоремы Эйлера для полиэдра следует, что простейший фуллерен С₂₀ состоит из 12 пентагонов и не содержит гексагонов. Фуллерен С₂₀ был открыт в 2000 г. [7].

Простейшей структурой фуллерена С20 может служить додекаэдр с группой симметрии I_h, в вершинах которого располагаются атомы углерода. Однако теоретические исследования [8,9], выполненные полуэмпирическими методами, показали, что фуллерен С₂₀ с группой симметрии I_h, является неустойчивой молекулой, которая при нарушении симметрии І_h переходит в более устойчивое состояние. В работе [8] изучался фуллерен C_{20} с группой симметрии D_{5d} , а в работе [9] изучался этот же фуллерен, но с группой симметрии D_{3d} . Переход фуллерена С₂₀ с группой симметрии I_h в С₂₀ с группами симметрии D_{5d} и D_{3d} может происходить следующим образом. Если нарушение симметрии у фуллерена С₂₀ с группой симметрии *I_h* происходит вдоль оси симметрии пятого порядка, то это приводит к фуллерену C_{20} с группой симметрии D_{5d} , а если нарушение симметрии происходит вдоль оси симметрии третьего порядка, то это приводит к фуллерену С20 с группой симметрии D_{3d}. Отметим, что исследования наночастицы С₂₀@С₈₀, выполненные в работе [10] показали, что при помещении фуллерена C_{20} с группой симметрии D_{3d} во внутрь фуллерена C_{80} с группой симметрии I_h группа симметрии фуллерена C_{20} повышается до I_h .

Как известно, в фуллеренах углерод находится в sp^2 -гибридизированном состоянии [11], при чем гибритизированные электроны участвуют в образовании прочных связей между атомами углерода, а негибритизированные электроны являются достаточно свободными и могут перескакивать с одного атома углерода на другой. Поэтому считается, что π -электроны в основном определяют как электронные, так и химические свойства фуллеренов.

Исследование различных углеродных систем показало, что в этих структурах кулоновское взаимодействие π -электронов, находящихся на одном узле, является довольно большим и может достигать $\sim 10 \, \text{eV} \, [12-14]$. В работе [15] отмечается, что значение эффективной энергии кулоновского взаимодействия двух л-электронов, находящихся на одном узле, сильно зависит от того, как эту величину вычислять. Если при вычислении эффективной энергии кулоновского взаимодействия двух электронов не учитывать экранирование, которое создается ядром и электронами, которые лежат более глубоко, чем *п*-электроны, то в этом случае получим U ~ 17 eV. Если эффективную энергию взаимодействия π -электронов вычислять в приближении Хартри, то в этом случае мы получим $U \sim 11 \, {\rm eV}$. Если же учесть еще вклад, который вносит взаимодействие от электронов, находящихся на соседних узлах, то получим $U \sim 5 \,\mathrm{eV}$.

При исследовании физических систем, в которых кулоновское взаимодействие двух электронов, находящихся на одном узле является довольно большим, используется модель Хаббарда [16], подробный обзор которой содержится в работах [17,18]. В целом ряде работ [19–24] при исследовании физических свойств наносистем в рамках модели Хаббарда используется приближение статических флуктуаций (ПСФ). В работе [19] в рамках модели Хаббарда в ПСФ был получен энергетический спектр и спектр оптического поглощения фуллерена C_{60} , а также вычислены параметры, которыми этот фуллерен характеризуется в рамках модели Хаббарда. Отметим, что в работе [19] при изучении оптического спектра поглощения фуллерена C_{60} в рамках модели Хаббарда, исходя из экспериментально наблюдаемого спектра поглощения этого фуллерена было показано, что $U \approx 5.662 \text{ eV}$. Мы видим, что данный результат согласуется с результатом работы [15]. В работе [20] в рамках модели Хаббарда в ПСФ был получен энергетический спектр и спектр оптического поглощения фуллерена C_{70} . Полученные в работах [19,20] результаты достаточно хорошо согласуются с экспериментальными данными.

Целью данной работы является в рамках модели Хаббарда в ПСФ исследование влияния деформации фуллерена C₂₀ на энергетический спектр и спектр оптического поглощения этого фуллерена.

Рис. 1. Фуллерен C_{20} (*a*) и его диаграмма Шлегеля (*b*) с указанием положения атомов углерода.

2. Энергетический спектр фуллерена С₂₀

Для описания *л*-электронной системы фуллерена C₂₀ воспользуемся моделью Хаббарда [16]

$$H = \sum_{\sigma,i} \varepsilon_i n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c_{i\sigma}^+ c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_i n_{i\sigma} n_{i\overline{\sigma}}, \quad (1)$$

где $c_{i\sigma}^+$, $c_{j\sigma}$ — операторы рождения и уничтожения электронов со спином σ на узле i; $n_{i\sigma}$ — оператор числа частиц со спином σ на узле i; ε_i — энергия одноэлектронного атомного состояния на узле i; t_{ij} — интеграл переноса, описывающий перескоки электронов с узла iна узел j; U_i — энергия кулоновского отталкивания двух электронов с разными спинами, которые находятся на i-узле; $\overline{\sigma} = -\sigma$.

Найдем энергетический спектр фуллерена С₂₀. Для этого, как известно [25], необходимо вычислить антикоммутаторные функции Грина

$$\left\langle \left\langle c_{f\sigma}^{+} | c_{f\sigma} \right\rangle \right\rangle = \left\langle [c_{f\sigma}^{+}(\tau), c_{f\sigma}(0)]_{+} \right\rangle$$
 (2)

для любых неэквивалентных узлов данного фуллерена.

Для того чтобы найти функции Грина, прежде всего определим зависимость операторов рождения от времени в ПСФ. Для этого, как и в работах [19,20], запишем в ПСФ уравнения движения для операторов $c_{1,\sigma}^+(\tau), c_{1,\sigma}^+n(\tau), \ldots, c_{20,\sigma}^+(\tau), c_{20,\sigma}^+n(\tau)$, заданных в представлении Гейзенберга

$$\begin{cases}
\frac{dc_{1\sigma}^{+}}{d\tau} = \varepsilon \cdot c_{1\sigma}^{+} + t_{1,2}c_{2\sigma}^{+} + t_{1,5}c_{5\sigma}^{+} \\
+ t_{1,8}c_{8\sigma}^{+} + Uc_{1\sigma}^{+}n_{1,\overline{\sigma}}
\end{cases}$$

$$\frac{d(c_{1\sigma}^{+}n_{1,\overline{\sigma}})}{d\tau} = (\varepsilon + U)c_{1\sigma}^{+}n_{1,\overline{\sigma}} + t_{1,2}c_{2\sigma}^{+}n_{2,\overline{\sigma}} \\
+ t_{1,5}c_{5\sigma}^{+}n_{5,\overline{\sigma}} + t_{1,8}c_{8\sigma}^{+}n_{8,\overline{\sigma}}$$

$$\frac{dc_{20\sigma}^{+}}{d\tau} = \varepsilon \cdot c_{20\sigma}^{+} + t_{20,13}c_{13\sigma}^{+} + t_{20,16}c_{16\sigma}^{+} + t_{20,19}c_{19\sigma}^{+} \\
+ Uc_{20\sigma}^{+}n_{20,\overline{\sigma}}$$

$$\frac{d(c_{20\sigma}^{+}n_{20,\overline{\sigma}})}{d\tau} = (\varepsilon + U)c_{20\sigma}^{+}n_{20,\overline{\sigma}} + t_{20,13}c_{13\sigma}^{+}n_{13,\overline{\sigma}} \\
+ t_{20,16}c_{16\sigma}^{+}n_{16,\overline{\sigma}} + t_{20,19}c_{19\sigma}^{+}n_{19,\overline{\sigma}}$$
(3)

где $\tau = it$.

Система уравнений (3) представляет собой замкнутую систему дифференциальных уравнений. Прежде чем решать систему уравнений (3) найдем неэквивалентные интегралы переноса для фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} .

Рассмотрим фуллерен C_{20} с группой симметрии I_h . В этом фуллерене, как видно из рис. 1, все атомы углерода, а также связи между ними эквивалентны. Поэтому для описания фуллерена C_{20} с группой симметрии I_h в рамках модели Хаббарда необходимо ввести один интеграл переноса, который обозначим через -b.

Если деформацию фуллерена C_{20} с группой симметрии I_h осуществить вдоль оси симметрии пятого порядка, проходящей через две плоскости, одна из которых содержит атомы углерода 1, 2, 3, 4, 5, а другая — 16, 17, 18, 19, 20, то в результате такой деформации симметрия фуллерена C_{20} изменится и будет характеризоваться группой D_{5d} . В результате такой деформации, как следует из рис. 1, все углерода можно разбить на два неэквивалентных множества $G_{5,1} = \{1, 2, 3, 4, 5, 16, 17, 18, 19, 20\},$ $G_{5,2} = \{6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$. В такой структуре можно выделить три типа неэквивалентных связей, которым в рамках модели Хаббарда можно сопоставить три различных интеграла переноса

$$t_{1,2} = t_{1,5} = t_{2,1} = t_{2,3} = t_{3,2} = t_{3,4} = t_{4,5} = t_{5,1} = t_{16,17}$$

= $t_{16,20} = t_{17,18} = t_{18,19} = t_{19,20} = -b$,
 $t_{1,8} = t_{2,10} = t_{3,12} = t_{4,14} = t_{5,6} = t_{7,17} = t_{9,18} = t_{10,2}$
= $t_{11,19} = t_{12,3} = t_{13,20} = t_{15,16} = -b_1$,
 $t_{6,7} = t_{6,15} = t_{7,8} = t_{8,9} = t_{9,10} = t_{10,11} = t_{11,12} = t_{12,13}$
= $t_{13,14} = t_{14,15} = -b_2$.

Если деформацию фуллерена C_{20} с группой симметрии I_h осуществить вдоль оси, проходящей через атомы углерода 1 и 20, то в результате такой деформации симметрия фуллерена C_{20} изменится и будет характеризоваться группой D_{3d} . В результате такой деформации, как следует из рис. 1, все углероды можно разбить на три неэквивалентных множества $G_{3,1} = \{1, 20\}, G_{3,2} = \{2, 5, 8, 13, 16, 19\}, G_{3,3} = \{3, 4, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18\}. В такой$ структуре можно выделить четыре типа неэквивалентных связей, которым в рамках модели Хаббарда можносопоставить четыре различных интеграла переноса

$$t_{1,2} = t_{1,5} = t_{1,8} = t_{13,20} = t_{16,20} = t_{19,20} = -b,$$

$$t_{2,3} = t_{2,10} = t_{4,5} = t_{5,6} = t_{7,8} = t_{8,9} = t_{11,19}$$

$$= t_{12,13} = t_{13,14} = t_{15,16} = t_{16,17} = t_{18,19} = -b_1,$$

$$t_{3,4} = t_{6,7} = t_{9,10} = t_{11,12} = t_{14,15} = t_{17,18} = -b_2,$$

$$t_{3,12} = t_{4,14} = t_{6,15} = t_{7,17} = t_{9,18} = t_{10,11} = -b_3.$$

Можно показать, что система уравнений (3) для фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} имеет точные аналитические решения. Подставляя решения системы уравнений (3) в соотношение (2) можно найти фурье-образы антикоммутаторных функций Грина для всех узлов фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d}

$$\left\langle \left\langle c_{j\sigma}^{+} | c_{j\sigma} \right\rangle \right\rangle_{E} = \frac{i}{2\pi} \cdot \sum_{m=1}^{p} \frac{F_{j,m}}{E - E_{m} + ih}$$

$$E_{k} = \varepsilon + e_{k}, \quad E_{k+p/2} = E_{k} + U \quad F_{j,m} = q_{m} \cdot Q_{j,m},$$

$$Q_{j,k+p/2} = Q_{j,k}, \quad k = 1 \dots p/2,$$

$$q_{m} = \begin{cases} 1 - \frac{n}{2}, \quad m = 1 \dots p/2, \\ \frac{n}{2}, \quad m = p/2 + 1 \dots p \end{cases}$$

$$(4)$$

где

— для фуллерена С₂₀ с группой симметрии *I_h*

$$Q_{j,1} = \frac{1}{20}, \quad Q_{j,2} = Q_{j,6} = \frac{3}{20},$$

$$Q_{j,3} = \frac{1}{4}, \quad Q_{j,4} = Q_{j,5} = \frac{1}{5}.$$

$$e_1 = -3b, \quad e_2 = -\sqrt{5}b, \quad e_3 = -b, \quad e_4 = 0,$$

$$e_5 = 2b, \quad e_6 = \sqrt{5}b, \quad p = 12,$$
(6)

— для фуллерена C₂₀ с группой симметрии D_{5d}

$$\begin{aligned} \mathcal{Q}_{s,m} &= \frac{1}{5} \cdot \frac{e_m b(1 - \sqrt{5}) + 2(b_1^2 + bb_2 \delta_2)}{e_m (b(1 - \sqrt{5}) + b_2 \delta_2 (1 + \sqrt{5})) + 4(b_1^2 + bb_2 \delta_3)}, \\ \mathcal{Q}_{s,m} &= \frac{1}{5} \cdot \frac{e_m b(1 + \sqrt{5}) + 2(b_1^2 + bb_2 \delta_3)}{e_m (b(1 + \sqrt{5}) + b_2 \delta_3 (1 - \sqrt{5})) + 4(b_1^2 + bb_2 \delta_3)}, \\ \mathcal{Q}_{s,m} &= \frac{1}{20} \cdot \frac{e_m + 2b_2 \delta_1}{e_m + b + b_2 \delta_1}, \\ \mathcal{Q}_{z,m} &= \frac{1}{20} \cdot \frac{e_m b_2 \delta_2 (1 + \sqrt{5}) + 2(b_1^2 + bb_2 \delta_2)}{e_m (b(1 - \sqrt{5}) + b_2 \delta_2 (1 + \sqrt{5})) + 4(b_1^2 + bb_2 \delta_2)}, \\ \mathcal{Q}_{z,m} &= \frac{1}{5} \cdot \frac{e_m b_2 \delta_3 (1 - \sqrt{5}) + 2(b_1^2 + bb_2 \delta_3)}{e_m (b(1 + \sqrt{5}) + b_2 \delta_3 (1 - \sqrt{5})) + 4(b_1^2 + bb_2 \delta_3)}, \\ s \in G_{5,1}, z = G_{5,2}, \\ \delta_1 &= \begin{cases} 1, & m = 1, 4 \\ -1, & m = 3, 12 \end{cases}, & \delta_2 = \begin{cases} 1, & m = 5, 10 \\ -1, & m = 2, 7 \end{cases}, \\ \delta_3 &= \begin{cases} 1, & m = 6, 9 \\ -1, & m = 8, 11 \end{cases}, & p = 24. \end{cases} \end{aligned}$$

$$e_{1} = -b - b_{2} - h_{1}, \quad e_{2} = \frac{1}{4} \left(b - b_{2} - \sqrt{5}b - \sqrt{5}b_{2} - h_{5} \right),$$

$$e_{3} = -b + b_{2} - h_{2}, \quad e_{4} = \frac{1}{4} \left(b + b_{2} - \sqrt{5}b + \sqrt{5}b_{2} - h_{3} \right),$$

$$e_{5} = -b - b_{2} + h_{1}, \quad e_{6} = \frac{1}{4} \left(b + b_{2} + \sqrt{5}b - \sqrt{5}b_{2} - h_{4} \right),$$

$$e_{7} = \frac{1}{4} \left(b - b_{2} - \sqrt{5}b - \sqrt{5}b_{2} + h_{5} \right),$$

$$e_{8} = \frac{1}{4} \left(b - b_{2} + \sqrt{5}b + \sqrt{5}b_{2} - h_{6} \right),$$

$$e_{9} = \frac{1}{4} \left(b + b_{2} + \sqrt{5}b - \sqrt{5}b_{2} + h_{4} \right),$$

$$e_{10} = \frac{1}{4} \left(b + b_{2} - \sqrt{5}b + \sqrt{5}b_{2} + h_{3} \right),$$

$$e_{11} = \frac{1}{4} \left(b - b_{2} + \sqrt{5}b + \sqrt{5}b_{2} + h_{6} \right),$$

$$e_{12} = -b + b_{2} + h_{2},$$

$$h_{1} = \sqrt{(b - b_{2})^{2} + b_{1}^{2}}, \quad h_{2} = \sqrt{(b + b_{2})^{2} + b_{1}^{2}},$$

$$h_{3} = \sqrt{6b^{2} + 8b \cdot b_{2} + 6b_{2}^{2} + 16b_{1}^{2} + 2\sqrt{5}(b_{2}^{2} - b^{2})},$$

$$h_{4} = \sqrt{6b^{2} + 8b \cdot b_{2} + 6b_{2}^{2} + 16b_{1}^{2} - 2\sqrt{5}(b_{2}^{2} - b^{2})},$$

$$h_{5} = \sqrt{6b^{2} - 8b \cdot b_{2} + 6b_{2}^{2} + 16b_{1}^{2} - 2\sqrt{5}(b_{2}^{2} - b^{2})},$$

$$h_{6} = \sqrt{6b^{2} - 8b \cdot b_{2} + 6b_{2}^{2} + 16b_{1}^{2} - 2\sqrt{5}(b_{2}^{2} - b^{2})},$$
(8)
- для фуллерена С₂₀ с группой симметрии D_{3d}

$$Q_{s,2} = Q_{s,5} = Q_{s,6} = Q_{s,7} = Q_{s,8} = Q_{s,10} = Q_{s,12}$$

$$= Q_{s,13} = Q_{z,7} = Q_{z,10} = 0,$$

$$Q_{s,m} = \frac{1}{2} \cdot \frac{e_m^2 + e_m(b_2 + \delta_1 b_3) - 2b_1^2 - 3b^2}{3e_m^2 + 2e_m(b_2 + \delta_1 b_3) - 2b_1^2 - 3b^2},$$

$$Q_{z,m} = \frac{1}{6} \cdot \frac{e_m(e_m + b_2 + \delta_1 b_3)}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3},$$

$$Q_{z,m} = \frac{1}{3} \cdot \frac{e_m^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3},$$

$$Q_{x,m} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$Q_{x,m} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$Q_{x,m} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$Q_{x,n} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$Q_{x,n} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$Q_{x,m} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$Q_{x,n} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$Q_{x,n} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$Q_{x,n} = \frac{1}{3} \cdot \frac{e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3}{3e_m^2 - 2b_1^2 - b_2^2 - b_3^2 + \delta_2 b_2 b_3};$$

$$e_1 = -\frac{1}{3} \left(2h_9 \cdot \sin\left(\frac{\varphi_2}{3} + \frac{\pi}{6}\right) + b_2 + b_3\right),$$

$$e_2 = -2h_8 \cdot \sin\left(\frac{\varphi_4}{3} + \frac{\pi}{6}\right),$$

$$e_3 = -\frac{1}{3} \left(2h_{10} \cdot \cos\left(\frac{\varphi_3}{3}\right) + b_2 - b_3\right),$$

$$e_4 = -\frac{1}{3} \left(2h_9 \cdot \cos\left(\frac{\varphi_2}{3} + \frac{\pi}{3}\right) + b_2 + b_3\right),$$

$$e_{5} = -2h_{7} \cdot \sin\left(\frac{\varphi_{1}}{3} + \frac{\pi}{6}\right),$$

$$e_{6} = -2h_{7} \cdot \cos\left(\frac{\varphi_{1}}{3} + \frac{\pi}{3}\right),$$

$$e_{7} = b_{2} - b_{3},$$

$$e_{8} = -2h_{8} \cdot \cos\left(\frac{\varphi_{4}}{3} + \frac{\pi}{3}\right)$$

$$e_{9} = \frac{1}{3}\left(2h_{10} \cdot \cos\left(\frac{\varphi_{3}}{3} + \frac{\pi}{3}\right) - b_{2} + b_{3}\right),$$

$$e_{10} = b_{2} + b_{3},$$

$$e_{11} = \frac{1}{3}\left(2h_{9} \cdot \cos\left(\frac{\varphi_{2}}{3}\right) - b_{2} - b_{3}\right),$$

$$e_{12} = 2h_{7} \cdot \cos\left(\frac{\varphi_{1}}{3}\right),$$

$$e_{13} = 2h_{8} \cdot \cos\left(\frac{\varphi_{4}}{3}\right),$$

$$e_{14} = \frac{1}{3}\left(2h_{10} \cdot \sin\left(\frac{\varphi_{3}}{3} + \frac{\pi}{6}\right) - b_{2} + b_{3}\right),$$

$$\varphi_{1} = \arccos\left(\frac{b_{1}^{2} \cdot (b_{2} + b_{3})}{2h_{7}^{3}}\right),$$

$$\varphi_{2} = \arccos\left(\frac{(b_{2} + b_{3})(27b^{2} - 9b_{1}^{2} - (b_{2} + b_{3})^{2})}{h_{3}^{3}}\right),$$

$$\varphi_{4} = \arccos\left(\frac{b_{1}^{2} \cdot (b_{2} - b_{3})^{2}}{2h_{8}^{3}}\right),$$

$$h_{7} = \sqrt{\frac{1}{3} \cdot (2b_{1}^{2} + b_{2}^{2} - b_{2}b_{3} + b_{3}^{2})},$$

$$h_{8} = \sqrt{\frac{1}{3} \cdot (2b_{1}^{2} + b_{2}^{2} + b_{2}b_{3} + b_{3}^{2})},$$

$$h_{9} = \sqrt{9b^{2} + 6b_{1}^{2} + (b_{2} - b_{3})^{2}},$$

$$(10)$$

10

Зная фурье-образ антикоммутаторной функции Грина, можно найти энергетический спектр квантовой системы, который определяется полюсами функции Грина [25]. Следовательно, энергетические спектры фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} определяются величинами E_m , которые входят в функцию Грина (4).

Энергетические состояния фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} можно классифицировать в соответствии с неприводимыми представлениями групп I_h , D_{5d} и D_{3d} . Можно показать, что энергетические состояния фуллерена C_{20} , определяемые полюсами функции Грина (4), связаны с неприводимыми представлениями групп I_h , D_{5d} и D_{3d} следующим образом: — для фуллерена C_{20} с группой симметрии I_h :

 $E_1(a_g), E_2(t_{1u}), E_3(h_g), E_4(g_u), E_5(g_g), E_6(t_{2u}), E_7(a_g), E_8(t_{1u}), E_9(h_g), E_{10}(g_u), E_{11}(g_g), E_{12}(t_{2u}),$

— для фуллерена C₂₀ с группой симметрии D_{5d}:

 $E_1(a_{1g}), E_2(e_{1u}), E_3(a_{2u}), E_4(e_{1g}), E_5(a_{1g}), E_6(e_{2g}), E_7(e_{1u}), E_8(e_{2u}), E_9(e_{2g}), E_{10}(e_{1g}), E_{11}(e_{2u}), E_{12}(a_{2u}), E_{13}(a_{1g}), E_{14}(e_{1u}), E_{15}(a_{2u}), E_{16}(e_{1g}), E_{17}(a_{1g}), E_{18}(e_{2g}), E_{19}(e_{1u}), E_{20}(e_{2u}), E_{21}(e_{2g}), E_{22}(e_{1g}), E_{23}(e_{2u}), E_{24}(a_{2u}), -$ для фуллерена C₂₀ с группой симметрии D_{3d} :

 $\begin{array}{l} E_1(a_{1g}), \quad E_2(e_u), \quad E_3(a_{2u}), \quad E_4(a_{1g}), \quad E_5(e_g), \quad E_6(e_g), \\ E_7(a_{1u}), \quad E_8(e_u), \quad E_9(a_{2u}), \quad E_{10}(a_{2g}), \quad E_{11}(a_{1g}), \quad E_{12}(e_g), \\ E_{13}(e_u), \quad E_{14}(a_{2u}), \quad E_{15}(a_{1g}), \quad E_{16}(e_u), \quad E_{17}(a_{2u}), \quad E_{18}(a_{1g}), \\ E_{19}(e_g), \quad E_{20}(e_g), \quad E_{21}(a_{1u}), \quad E_{22}(e_u), \quad E_{23}(a_{2u}), \quad E_{24}(a_{2g}), \\ E_{25}(a_{1g}), \quad E_{26}(e_g), \quad E_{27}(e_u), \quad E_{28}(a_{2u}). \end{array}$

Важной характеристикой каждого энергетического уровня является степень его вырождения. Для того чтобы найти степень вырождения энергетических уровней фуллерена С₂₀, воспользуемся следующим соотношением [19]

$$g_i = \sum_{j=1}^{N} Q_{j,i},$$
 (11)

где *N* — число узлов в наносистеме.

Подставляя величины $Q_{j,i}$, которые определяются соотношениями (5), (7) и (9), в формулу (11) получим, что энергетические уровни фуллерена С₂₀ имеют следующие степени вырождения:

— для фуллерена C_{20} с группой симметрии I_h :

$$g_1 = g_7 = 1, \quad g_2 = g_6 = g_8 = g_{12} = 3,$$

$$g_3 = g_9 = 5, \quad g_4 = g_5 = g_{10} = g_{11} = 4,$$
 (12)

— для фуллерена С₂₀ с группой симметрии D_{5d}:

$$g_{1} = g_{3} = g_{5} = g_{12} = g_{13} = g_{15} = g_{17} = g_{24} = 1,$$

$$g_{2} = g_{4} = g_{6} = g_{7} = g_{8} = g_{9} = g_{10} = g_{11} = g_{14}$$

$$= g_{16} = g_{18} = g_{19} = g_{20} = g_{21} = g_{22} = g_{23} = 2, (13)$$

— для фуллерена C₂₀ с группой симметрии D_{3d}:

$$g_{1} = g_{3} = g_{4} = g_{9} = g_{7} = g_{10} = g_{11} = g_{14} = g_{15}$$

$$= g_{17} = g_{18} = g_{23} = g_{21} = g_{24} = g_{25} = g_{28} = 1,$$

$$g_{2} = g_{5} = g_{6} = g_{8} = g_{12} = g_{13} = g_{16} = g_{19}$$

$$= g_{20} = g_{22} = g_{26} = g_{27} = 2.$$
 (14)

Таким образом, соотношения (4), (6), (8), (10) и (12)-(14) описывают энергетические спектры фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} в модели Хаббарда в ПСФ.

3. Обсуждение результатов

Исследования, выполненные в работах [8–10], показали, что расстояния между атомами углерода в фуллерене C₂₀ имеют следующие значения:

— для фуллерена С₂₀ с группой симметрии *I_h* [10]

$$x = 1.425 \,\mathrm{\AA},$$
 (15)

— для фуллерена
$$C_{20}$$
 с группой симметрии D_{5d} [8]:

$$x_a = 1.425 \text{ Å}, \quad x_b = 1.474 \text{ Å}, \quad x_c = 1.416 \text{ Å}, \quad (16)$$

— для фуллерена C_{20} с группой симметрии D_{3d} [9]:

$$x_a = 1.409 \text{ Å}, \quad x_b = 1.443 \text{ Å},$$

 $x_c = 1.450 \text{ Å}, \quad x_d = 1.51 \text{ Å}.$ (17)

Численные значения для интегралов переноса, которые соответствуют фуллерену C_{20} с группами симметрии I_h , D_{5d} и D_{3d} , найдем следующим образом. Как известно [15], зависимость интегралов переноса от расстояния между атомами можно представить в следующем виде:

$$t_s = k \cdot \exp(m \cdot x_s), \tag{18}$$

где x_s — расстояние между атомами, k и m — константы.

Для того чтобы по формуле (18) найти интегралы переноса, определим константы k и m следующим образом. Как известно, у фуллерена C₆₀ имеется два типа связей. Исследования, выполненные с помощью газовой электронографии, показали, что расстояния между атомами углерода в фуллерене C₆₀ имеют следующие значения: длина связи на границе двух гексагонов составляет 1.401 Å, а на границе гексагон-пентагон — 1.458 Å [26]. В работе [19] с помощью оптического спектра поглощения фуллерена C₆₀ были найдены интегралы переноса для фуллерена C₆₀: интеграл переноса на границе двух гексагонов составляет — 0.76 eV, а на границе гексагон-пентагон составляет — 0.69 eV. Подставляя данные величины в соотношение (18) и решая полученную систему уравнений, мы получим

$$k = -8.17065 \,\mathrm{eV}, \quad m = -1.69521 \,\mathrm{\AA}^{-1}.$$
 (19)

Теперь подставляя (19) в соотношение (18) мы получим

$$t_s = -8.17065 \cdot \exp(-1.69521 \cdot x_s). \tag{20}$$

Подставляя (15)–(17) в соотношение (20) мы получим численные значения для интегралов переноса:

— для фуллерена C₂₀ с группой симметрии *I_h*:

$$t_a = -0.7297 \,\mathrm{eV},$$
 (21)

— для фуллерена C₂₀ с группой симметрии D_{5d}:

$$t_a = -0.7297 \,\mathrm{eV}, \quad t_b = -0.67154 \,\mathrm{eV},$$

 $t_c = -0.74092 \,\mathrm{eV},$ (22)

— для фуллерена C₂₀ с группой симметрии D_{3d}:

$$t_a = -0.74976 \,\mathrm{eV}, \quad t_b = -0.70777 \,\mathrm{eV},$$

$$t_c = -0.69942 \,\mathrm{eV}, \quad t_d = -0.63178 \,\mathrm{eV}.$$
 (23)

Рис. 2. Энергетический спектр фуллерена С₂₀ с группой симметрии *I_h*.

Теперь для того чтобы получить энергетические спектры фуллерена C_{20} с группами симметрии I_h , D_{5d} , D_{3d} воспользуемся формулой, которая следует из функции Грина (4)

$$E_k = \varepsilon + \frac{U}{2} + \overline{e}_k, \qquad (24)$$

где \overline{e}_k — это энергия *k*-го энергетического уровня относительно энергии $\varepsilon + U/2$:

$$\overline{e}_{k} = \begin{cases} e_{k} - \frac{U}{2}, & k = 1 \dots p/2 \\ e_{k} + \frac{U}{2}, & k = p/2 + 1 \dots p. \end{cases}$$
(25)

Как видно из соотношений (24) и (25) для того чтобы найти энергетический спектр фуллерена C_{20} , необходимо определить еще численные значения параметров ε и U. В работе [19] исходя из экспериментально наблюдаемого оптического спектра поглощения фуллерена C_{60} в рамках модели Хаббарда в ПСФ были вычислены эти параметры $\varepsilon = -7.824 \,\mathrm{eV}, U = 5.662 \,\mathrm{eV}.$ Поэтому при вычислении энергетического спектра фуллерена C₂₀ воспользуемся этими значениями. Отметим, что $U = 5.662 \,\mathrm{eV}$ согласуется с результатами работы [15], согласно которой значение эффективной энергии кулоновского взаимодействия двух π -электронов, находящихся на одном узле, составляет $\sim 5 \,\mathrm{eV}.$

Подставляя численные значения для интегралов переноса (21)–(23) и численные значения для ε и U в соотношения (6), (8), (10), (24) и (25) мы получим для фуллерена С₂₀ с группами симметрии I_h , D_{5d} , D_{3d} численные значения для величин \overline{e}_k , E_k , которые приведены в табл. 1–3.

Рассмотрим теперь структуру энергетических спектров фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} , которые изображены на рис. 2–4. Как видно из соотношений (24), (25) и рис. 2–4, энергетические состояния фуллерена C_{20} образуют две подзоны Хаббарда. Энергетические состояния, образующие нижнюю

Рис. 3. Энергетический спектр фуллерена С₂₀ с группой симметрии *D*_{5d}.

Рис. 4. Энергетический спектр фуллерена C₂₀ с группой симметрии D_{3d}.

подзону Хаббарда, сосредоточены вблизи энергии ε , а энергетические состояния, образующие верхнюю подзону Хаббарда, сосредоточены вблизи энергии $\varepsilon + U$.

Из соотношений (6), (8), (24) и (25) следует, что при понижении симметрии фуллерена C_{20} от I_h до D_{5d} энергетические уровни данного фуллерена расщепляются следующим образом:

$$\begin{split} E_1(a_g) &\to E_1(a_{1g}), \\ E_2(t_{1u}) &\to \{E_2(e_{1u}), E_3(a_{2u})\}, \\ E_3(h_g) &\to \{E_4(e_{1g}), E_5(a_{1g}), E_6(e_{2g})\}, \\ E_4(g_u) &\to \{E_7(e_{1u}), E_8(e_{2u})\}, \\ E_5(g_g) &\to \{E_9(e_{2g}), E_{10}(e_{1g})\}, \\ E_6(t_{2u}) &\to \{E_{11}(e_{2u}), E_{12}(a_{2u})\}, \\ E_7(a_g) &\to E_{13}(a_{1g}), \end{split}$$

$$E_{8}(t_{1u}) \rightarrow \{E_{14}(e_{1u}), E_{15}(a_{2u})\},\$$

$$E_{9}(h_{g}) \rightarrow \{E_{16}(e_{1g}), E_{17}(a_{1g}), E_{18}(e_{2g})\},\$$

$$E_{10}(g_{u}) \rightarrow \{E_{19}(e_{1u}), E_{20}(e_{2u})\},\$$

$$E_{11}(g_{g}) \rightarrow \{E_{21}(e_{2g}), E_{22}(e_{1g})\},\$$

$$E_{12}(t_{2u}) \rightarrow \{E_{23}(e_{2u}), E_{24}(a_{2u})\}.$$
(26)

Из соотношений (6), (10), (24) и (25) следует, что при понижении симметрии фуллерена C_{20} от I_h до D_{3d} энергетические уровни данного фуллерена расщепляются следующим образом:

$$E_{1}(a_{g}) \rightarrow E_{1}(a_{1g}),$$

$$E_{2}(t_{1u}) \rightarrow \{E_{2}(e_{u}), E_{3}(a_{2u})\},$$

$$E_{3}(h_{g}) \rightarrow \{E_{4}(a_{1g}), E_{5}(e_{g}), E_{6}(e_{g})\},$$

$$E_{4}(g_{u}) \rightarrow \{E_{7}(a_{1u}), E_{8}(e_{u}), E_{9}(a_{2u})\},$$

$$E_{5}(g_{g}) \rightarrow \{E_{10}(a_{2g}), E_{11}(a_{1g}), E_{12}(e_{g})\},$$

$$E_{6}(t_{2u}) \rightarrow \{E_{13}(e_{u}), E_{14}(a_{2u})\},$$

$$E_{7}(a_{g}) \rightarrow E_{15}(a_{1g}),$$

$$E_{8}(t_{1u}) \rightarrow \{E_{16}(e_{u}), E_{17}(a_{2u})\},$$

$$E_{9}(h_{g}) \rightarrow \{E_{18}(a_{1g}), E_{19}(e_{g}), E_{20}(e_{g})\},$$

$$E_{10}(g_{u}) \rightarrow \{E_{21}(a_{1u}), E_{22}(e_{u}), E_{23}(a_{2u})\},$$

$$E_{11}(g_{g}) \rightarrow \{E_{27}(e_{u}), E_{28}(a_{2u})\}.$$
(27)

Относительное расположение энергетических уровней фуллерена C_{20} с группами симметрии D_{5d} и D_{3d} зависит от соотношения между интегралами перескока. Например, из соотношений (24) и (8) следует, что для фуллерена C_{20} с группой симметрии D_{5d}

$$E_7(e_{1u})=E_8(e_{2u})=arepsilon,$$
 $E_{19}(e_{1u})=E_{20}(e_{2u})=arepsilon+U$ при $b\cdot b_2=b_1^2,$

то есть в этом случае происходит случайное вырождение энергетических состояний. Из соотношений (24) и (8) также следует, что

$$E_7(e_{1u}) < \varepsilon < E_8(e_{2u}), \quad E_{19}(e_{1u}) < \varepsilon + U < E_{20}(e_{2u})$$

при $b \cdot b_2 > b_1^2,$
 $E_8(e_{2u}) < \varepsilon < E_7(e_{1u}), \quad E_{20}(e_{2u}) < \varepsilon + U < E_{19}(e_{1u})$
при $b \cdot b_2 < b_1^2,$

Одной из важнейших характеристик квантовой системы является ее спектр оптического поглощения. Используя полученные выше энергетические спектры фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} , можно найти

N⁰	\overline{e}_k , eV	E_k , eV	g_k ,	$E(\Gamma_k)$	N⁰	\overline{e}_k , eV	E_k, eV	g_k ,	$E(\Gamma_k)$
1	-5.0201	-10.013	1	$E_1(a_g)$	7	0.6419	-4.3511	1	$E_7(a_g)$
2	-4.4627	-9.4557	3	$E_{2}(t_{1u})$	8	1.1993	-3.7937	3	$E_8(t_{1u})$
3	-3.5607	-8.5537	5	$E_3(h_g)$	9	2.1013	-2.8917	5	$E_9(h_g)$
4	-2.831	-7.824	4	$E_4(g_u)$	10	2.831	-2.162	4	$E_{10}(g_u)$
5	-1.3716	-6.3646	4	$E_5(g_g)$	11	4.2904	-0.7026	4	$E_{11}(g_g)$
6	-1.1993	-6.1923	3	$E_6(t_{2u})$	12	4.4627	-0.5303	3	$E_{12}(t_{2u})$

Таблица 1. Энергетический спектр фуллерена С₂₀ с группой симметрии *I_h*: значения энергии (eV) уровней, кратность их вырождения и неприводимые представления группы *I_h*, к которым они относятся

Таблица 2. Энергетический спектр фуллерена C₂₀ с группой симметрии D_{5d}: значения энергии (eV) уровней, кратность их вырождения и неприводимые представления группы D_{5d}, к которым они относятся

N⁰	\overline{e}_k , eV	E_k , eV	g_k ,	$E(\Gamma_k)$	N⁰	\overline{e}_k , eV	E_k , eV	g_k ,	$E(\Gamma_k)$
1	-4.9732	-9.9662	1	$E_1(a_{1g})$	13	0.6888	-4.3042	1	$E_{13}(a_{1g})$
2	-4.4365	-9.4295	1	$E_{3}(a_{2u})$	14	1.2255	-3.7675	1	$E_{15}(a_{2u})$
3	-4.4245	-9.4175	2	$E_2(e_{1u})$	15	1.2375	-3.7555	2	$E_{14}(e_{1u})$
4	-3.63	-8.623	1	$E_{5}(a_{1g})$	16	2.032	-2.961	1	$E_{17}(a_{1g})$
5	-3.529	-8.522	2	$E_6(e_{2g})$	17	2.133	-2.86	2	$E_{18}(e_{2g})$
6	-3.5208	-8.5138	2	$E_4(e_{1g})$	18	2.1412	-2.8518	2	$E_{16}(e_{1g})$
7	-2.8873	-7.8803	2	$E_7(e_{1u})$	19	2.7747	-2.2183	2	$E_{19}(e_{1u})$
8	-2.7743	-7.7673	2	$E_8(e_{2u})$	20	2.8877	-2.1053	2	$E_{20}(e_{2u})$
9	-1.4103	-6.4033	2	$E_9(e_{2g})$	21	4.2517	-0.7413	2	$E_{21}(e_{2g})$
10	-1.3934	-6.3864	2	$E_{10}(e_{1g})$	22	4.2686	-0.7244	2	$E_{22}(e_{1g})$
11	-1.2491	-6.2421	2	$E_{11}(e_{2u})$	23	4.4129	-0.5801	2	$E_{23}(e_{2u})$
12	-1.2031	-6.1961	1	$E_{12}(a_{2u})$	24	4.4589	-0.5341	1	$E_{24}(a_{2u})$

Таблица 3. Энергетический спектр фуллерена C₂₀ с группой симметрии D_{3d}: значения энергии (eV) уровней, кратность их вырождения и неприводимые представления группы D_{3d}, к которым они относятся

N⁰	\overline{e}_k , eV	E_k , eV	g_k ,	$E(\Gamma_k)$	N⁰	\overline{e}_k , eV	E_k , eV	g_k ,	$E(\Gamma_k)$
1	-4.933	-9.926	1	$E_1(a_{1g})$	15	0.729	-4.264	1	$E_{15}(a_{1g})$
2	-4.4836	-9.4766	1	$E_{3}(a_{2u})$	16	1.1784	-3.8146	1	$E_{17}(a_{2u})$
3	-4.3508	-9.3438	2	$E_2(e_u)$	17	1.3112	-3.6818	2	$E_{16}(e_{u})$
4	-3.5694	-8.5624	2	$E_5(e_g)$	18	2.0926	-2.9004	2	$E_{19}(e_{g})$
5	-3.5486	-8.5416	1	$E_4(a_{1g})$	19	2.1134	-2.8796	1	$E_{18}(a_{1g})$
6	-3.4813	-8.4743	2	$E_6(e_g)$	20	2.1807	-2.8123	2	$E_{20}(e_{g})$
7	-2.8734	-7.8664	1	$E_9(a_{2u})$	21	2.7886	-2.2044	1	$E_{23}(a_{2u})$
8	-2.8455	-7.8385	2	$E_8(e_u)$	22	2.8165	-2.1765	2	$E_{22}(e_u)$
9	-2.7634	-7.7564	1	$E_7(a_{1u})$	23	2.8986	-2.0944	1	$E_{21}(a_{1u})$
10	-1.4998	-6.4928	1	$E_{10}(a_{2g})$	24	4.1622	-0.8308	1	$E_{24}(a_{2g})$
11	-1.4423	-6.4353	2	$E_{12}(e_g)$	25	4.2197	-0.7733	2	$E_{26}(e_g)$
12	-1.3426	-6.3356	1	$E_{11}(a_{1g})$	26	4.3194	-0.6736	1	$E_{25}(a_{1g})$
13	-1.2967	-6.2897	2	$E_{13}(e_u)$	27	4.3653	-0.6277	2	$E_{27}(e_u)$
14	-1.2036	-6.1966	1	$E_{14}(a_{2u})$	28	4.4584	-0.5346	1	$E_{28}(a_{2u})$

Таблица 4. Разрешенные переходы в энергетическом спектре фуллерена С20 с группой симметрии І_h

N₂	ΔE	ΔE , eV	N₂	ΔE	ΔE , eV	N₂	ΔE	ΔE , eV
1	$E_9(h_g) - E_6(t_{2u})$	3.301	5	$E_7(a_g) - E_2(t_{1u})$	5.106	9	$E_{10}(g_u) - E_3(h_g)$	6.392
2	$E_{10}(g_u) - E_5(g_g)$	4.203	6	$E_{11}(g_g) - E_6(t_{2u})$	5.49	10	$E_9(h_g) - E_2(t_{1u})$	6.564
3	$E_8(t_{1u}) - E_3(h_g)$	4.76	7	$E_{12}(t_{2u}) - E_5(g_g)$	5.834	11	$E_{11}(g_g) - E_4(g_u)$	7.121
4	$E_9(h_g) - E_4(g_u)$	4.932	8	$E_8(t_{1u}) - E_1(a_g)$	6.219	12	$E_{12}(t_{2u}) - E_3(h_g)$	8.023

N₂	ΔE	ΔE , eV	N₂	ΔE	ΔE , eV	N₂	ΔE	ΔE , eV
1	$E_{13}(a_{1g}) - E_{12}(a_{2u})$	1.892	20	$E_{16}(e_{1g}) - E_8(e_{2u})$	4.916	39	$E_{17}(a_{1g}) - E_3(a_{2u})$	6.468
2	$E_{15}(a_{2u}) - E_{10}(e_{1g})$	2.619	21	$E_{17}(a_{1g}) - E_7(e_{1u})$	4.919	40	$E_{17}(a_{1g}) - E_2(e_{1u})$	6.457
3	$E_{14}(e_{1u}) - E_{10}(e_{1g})$	2.631	22	$E_{18}(e_{2g}) - E_7(e_{1u})$	5.02	41	$E_{18}(e_{2g}) - E_2(e_{1u})$	6.558
4	$E_{14}(e_{1u}) - E_9(e_{2g})$	2.648	23	$E_{16}(e_{1g}) - E_7(e_{1u})$	5.029	42	$E_{16}(e_{1g}) - E_2(e_{1u})$	6.566
5	$E_{17}(a_{1g}) - E_{12}(a_{2u})$	3.235	24	$E_{13}(a_{1g}) - E_3(a_{2u})$	5.125	43	$E_{16}(e_{1g}) - E_3(a_{2u})$	6.578
6	$E_{16}(e_{1g}) - E_{12}(a_{2u})$	3.344	25	$E_{13}(a_{1g}) - E_2(e_{1u})$	5.113	44	$E_{21}(e_{2g}) - E_8(e_{2u})$	7.026
7	$E_{18}(e_{2g}) - E_{11}(e_{2u})$	3.382	26	$E_{22}(e_{1g}) - E_{12}(a_{2u})$	5.472	45	$E_{22}(e_{1g}) - E_8(e_{2u})$	7.043
8	$E_{16}(e_{1g}) - E_{11}(e_{2u})$	3.39	27	$E_{21}(e_{2g}) - E_{11}(e_{2u})$	5.501	46	$E_{21}(e_{2g}) - E_7(e_{1u})$	7.139
9	$E_{13}(a_{1g}) - E_7(e_{1u})$	3.576	28	$E_{22}(e_{1g}) - E_{11}(e_{2u})$	5.518	47	$E_{22}(e_{1g}) - E_7(e_{1u})$	7.156
10	$E_{19}(e_{1u}) - E_{10}(e_{1g})$	4.168	29	$E_{23}(e_{2u}) - E_{10}(e_{1g})$	5.806	48	$E_{19}(e_{1u}) - E_1(a_{1g})$	7.748
11	$E_{19}(e_{1u}) - E_9(e_{2g})$	4.185	30	$E_{23}(e_{2u}) - E_9(e_{2g})$	5.823	49	$E_{23}(e_{2u}) - E_4(e_{1g})$	7.934
12	$E_{20}(e_{2u}) - E_{10}(e_{1g})$	4.281	31	$E_{24}(a_{2u}) - E_{10}(e_{1g})$	5.852	50	$E_{23}(e_{2u}) - E_6(e_{2g})$	7.942
13	$E_{20}(e_{2u}) - E_9(e_{2g})$	4.298	32	$E_{15}(a_{2u}) - E_1(a_{1g})$	6.199	51	$E_{24}(a_{2u}) - E_4(e_{1g})$	7.98
14	$E_{14}(e_{1u}) - E_4(e_{1g})$	4.758	33	$E_{14}(e_{1u}) - E_1(a_{1g})$	6.211	52	$E_{24}(a_{2u}) - E_5(a_{1g})$	8.089
15	$E_{15}(a_{2u}) - E_4(e_{1g})$	4.746	34	$E_{19}(e_{1u}) - E_4(e_{1g})$	6.295	53	$E_{21}(e_{2g}) - E_2(e_{1u})$	8.676
16	$E_{14}(e_{1u}) - E_6(e_{2g})$	4.766	35	$E_{19}(e_{1u}) - E_6(e_{2g})$	6.304	54	$E_{22}(e_{1g}) - E_2(e_{1u})$	8.693
17	$E_{15}(a_{2u}) - E_5(a_{1g})$	4.856	36	$E_{19}(e_{1u}) - E_5(a_{1g})$	6.405	55	$E_{22}(e_{1g}) - E_3(a_{2u})$	8.705
18	$E_{14}(e_{1u}) - E_5(a_{1g})$	4.867	37	$E_{20}(e_{2u}) - E_4(e_{1g})$	6.408	56	$E_{24}(a_{2u}) - E_1(a_{1g})$	9.432
19	$E_{18}(e_{2g}) - E_8(e_{2u})$	4.907	38	$E_{20}(e_{2u}) - E_6(e_{2g})$	6.417			

Таблица 5. Разрешенные переходы в энергетическом спектре фуллерена C₂₀ с группой симметрии D_{5d}

Таблица 6. Разрешенные переходы в энергетическом спектре фуллерена С₂₀ с группой симметрии D_{3d}

N₂	ΔE	ΔE , eV	N₂	ΔE	ΔE , eV	N₂	ΔE	ΔE , eV
1	$E_{15}(a_{1g}) - E_{14}(a_{2u})$	1.933	29	$E_{20}(e_g) - E_7(a_{1u})$	4.944	57	$E_{19}(e_g) - E_2(e_u)$	6.443
2	$E_{15}(a_{1g}) - E_{13}(e_u)$	2.026	30	$E_{18}(a_{1g}) - E_8(e_u)$	4.959	58	$E_{18}(a_{1g}) - E_2(e_u)$	6.464
3	$E_{17}(a_{2u}) - E_{11}(a_{1g})$	2.521	31	$E_{19}(e_g) - E_9(a_{2u})$	4.966	59	$E_{21}(a_{1u}) - E_5(e_g)$	6.468
4	$E_{17}(a_{2u}) - E_{12}(e_g)$	2.621	32	$E_{18}(a_{1g}) - E_9(a_{2u})$	4.987	60	$E_{20}(e_g) - E_2(e_u)$	6.531
5	$E_{16}(e_u) - E_{12}(e_g)$	2.753	33	$E_{20}(e_g) - E_8(e_u)$	5.026	61	$E_{19}(e_g) - E_3(a_{2u})$	6.576
6	$E_{16}(e_u) - E_{10}(a_{2g})$	2.811	34	$E_{20}(e_g) - E_9(a_{2u})$	5.054	62	$E_{18}(a_{1g}) - E_3(a_{2u})$	6.597
7	$E_{19}(e_g) - E_{14}(a_{2u})$	3.296	35	$E_{15}(a_{1g}) - E_2(e_u)$	5.08	63	$E_{20}(e_g) - E_3(a_{2u})$	6.664
8	$E_{18}(a_{1g}) - E_{14}(a_{2u})$	3.317	36	$E_{15}(a_{1g}) - E_3(a_{2u})$	5.213	64	$E_{24}(a_{2g}) - E_7(a_{1u})$	6.926
9	$E_{20}(e_g) - E_{14}(a_{2u})$	3.384	37	$E_{26}(e_g) - E_{14}(a_{2u})$	5.423	65	$E_{26}(e_g) - E_7(a_{1u})$	6.983
10	$E_{19}(e_g) - E_{13}(e_u)$	3.389	38	$E_{24}(a_{2g}) - E_{13}(e_u)$	5.459	66	$E_{24}(a_{2g}) - E_8(e_u)$	7.008
11	$E_{18}(a_{1g}) - E_{13}(e_u)$	3.41	39	$E_{26}(e_g) - E_{13}(e_u)$	5.516	67	$E_{26}(e_g) - E_8(e_u)$	7.065
12	$E_{20}(e_g) - E_{13}(e_u)$	3.477	40	$E_{25}(a_{1g}) - E_{14}(a_{2u})$	5.523	68	$E_{26}(e_g) - E_9(a_{2u})$	7.093
13	$E_{15}(a_{1g}) - E_8(e_u)$	3.575	41	$E_{25}(a_{1g}) - E_{13}(e_u)$	5.616	69	$E_{25}(a_{1g}) - E_8(e_u)$	7.165
14	$E_{15}(a_{1g}) - E_9(a_{2u})$	3.602	42	$E_{27}(e_u) - E_{11}(a_{1g})$	5.708	70	$E_{25}(a_{1g}) - E_9(a_{2u})$	7.193
15	$E_{23}(a_{2u}) - E_{11}(a_{1g})$	4.131	43	$E_{28}(a_{2u}) - E_{11}(a_{1g})$	5.801	71	$E_{23}(a_{2u}) - E_1(a_{1g})$	7.722
16	$E_{22}(e_u) - E_{11}(a_{1g})$	4.159	44	$E_{27}(e_u) - E_{12}(e_g)$	5.808	72	$E_{27}(e_u) - E_6(e_g)$	7.847
17	$E_{23}(a_{2u}) - E_{12}(e_g)$	4.231	45	$E_{27}(e_u) - E_{10}(a_{2g})$	5.865	73	$E_{27}(e_u) - E_4(a_{1g})$	7.914
18	$E_{22}(e_u) - E_{12}(e_g)$	4.259	46	$E_{16}(e_u) - E_5(e_g)$	5.881	74	$E_{27}(e_u) - E_5(e_g)$	7.935
19	$E_{22}(e_u) - E_{10}(a_{2g})$	4.316	47	$E_{28}(a_{2u}) - E_{12}(e_g)$	5.901	75	$E_{28}(a_{2u}) - E_6(e_g)$	7.94
20	$E_{21}(a_{1u}) - E_{12}(e_g)$	4.341	48	$E_{17}(a_{2u}) - E_1(a_{1g})$	6.111	76	$E_{28}(a_{2u}) - E_4(a_{1g})$	8.007
21	$E_{21}(a_{1u}) - E_{10}(a_{2g})$	4.398	49	$E_{16}(e_u) - E_1(a_{1g})$	6.244	77	$E_{28}(a_{2u}) - E_5(e_g)$	8.028
22	$E_{17}(a_{2u}) - E_6(e_g)$	4.66	50	$E_{23}(a_{2u}) - E_6(e_g)$	6.27	78	$E_{24}(a_{2g}) - E_2(e_u)$	8.513
23	$E_{17}(a_{2u}) - E_4(a_{1g})$	4.727	51	$E_{22}(e_u) - E_6(e_g)$	6.298	79	$E_{26}(e_g) - E_2(e_u)$	8.571
24	$E_{17}(a_{2u}) - E_5(e_g)$	4.748	52	$E_{23}(a_{2u}) - E_4(a_{1g})$	6.337	80	$E_{25}(a_{1g}) - E_2(e_u)$	8.67
25	$E_{16}(e_u) - E_6(e_g)$	4.793	53	$E_{23}(a_{2u}) - E_5(e_g)$	6.358	81	$E_{26}(e_g) - E_3(a_{2u})$	8.703
26	$E_{19}(e_g) - E_7(a_{1u})$	4.856	54	$E_{22}(e_u) - E_4(a_{1g})$	6.365	82	$E_{25}(a_{1g}) - E_3(a_{2u})$	8.803
27	$E_{16}(e_u) - E_4(a_{1g})$	4.86	55	$E_{21}(a_{1u}) - E_6(e_g)$	6.38	83	$E_{28}(a_{2u}) - E_1(a_{1g})$	9.391
28	$E_{19}(e_g) - E_8(e_u)$	4.938	56	$E_{22}(e_u) - E_5(e_g)$	6.386			

переходы, которые обуславливают оптические спектры поглощения этих молекул. С помощью теории групп [27] найдем, какие переходы в фуллерене C₂₀ разрешены, а какие запрещены с точки зрения симметрии.

Можно показать, что в энергетическом спектре молекулярной системы разрешены следующие переходы: — если симметрия молекулярной системы *I_h*

 $\begin{array}{ll} t_{1g} \leftrightarrow a_u, \quad t_{1g} \leftrightarrow h_u, \quad t_{1u} \leftrightarrow a_g, \quad t_{1u} \leftrightarrow t_{1g}, \quad t_{1u} \leftrightarrow h_g, \\ t_{2u} \leftrightarrow g_g, \quad t_{2u} \leftrightarrow h_g, \quad t_{2g} \leftrightarrow g_u, \quad t_{2g} \leftrightarrow h_u, \quad g_u \leftrightarrow g_g, \end{array}$

$$g_u \leftrightarrow h_g, \quad g_g \leftrightarrow h_u, \quad h_g \leftrightarrow h_u, \quad (28)$$

— если симметрия молекулярной системы *D*_{5d}

$$a_{1g} \leftrightarrow a_{2u}, \quad a_{2g} \leftrightarrow a_{1u}, \quad e_{1g} \leftrightarrow e_{1u}, \quad e_{2g} \leftrightarrow e_{2u},$$
$$a_{1g} \leftrightarrow e_{1u}, a_{2g} \leftrightarrow e_{1u}, \quad a_{1u} \leftrightarrow e_{1g}, \quad a_{2u} \leftrightarrow e_{1g},$$
$$e_{1g} \leftrightarrow e_{2u}, \quad e_{1u} \leftrightarrow e_{2g}, \qquad (29)$$

— если симметрия молекулярной системы D_{3d}

$$a_{1g} \leftrightarrow a_{2u}, \quad a_{2g} \leftrightarrow a_{1u}, \quad e_g \leftrightarrow e_u, \quad a_{1g} \leftrightarrow e_u,$$
$$a_{2g} \leftrightarrow e_u, \quad a_{1u} \leftrightarrow e_g, \quad a_{2u} \leftrightarrow e_g. \tag{30}$$

Из функций Грина (4)-(10) для фуллерена С₂₀ с группами симметрии I_h , D_{5d} и D_{3d} и соотношений (28)–(30) следует, что у этих фуллеренов имеется 12, 56 и 83 разрешенных переходов, соответственно, которые представлены в табл. 4-6. Для фуллерена C₂₀ с группой симметрии I_h разрешенные переходы приведены на рис. 2. Остальные переходы являются запрещенными. Следует сказать, что в фуллерене С20 атомы углерода совершают малые колебания около положения равновесия. Это приводит к тому, что происходит нарушение симметрии молекулы С₂₀. В результате этого запрещенные согласно симметрии системы оптические переходы становятся разрешенными с небольшой интенсивностью. На рис. 3 и 4 приведены разрешенные переходы из табл. 5 и табл. 6 для фуллерена С₂₀ с группами симметрии D_{5d} и D_{3d} , которые, как следует из (28)–(30), становятся запрещенными при восстановлении у этого фуллерена симметрии I_h .

4. Заключение

Исследование фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} в рамках модели Хаббарда в ПСФ показало, что энергетический спектр фуллерена C_{20} и его оптический спектр поглощения существенно зависят от симметрии этого фуллерена. Отметим также, что исследование энергетических спектров и оптических спектров поглощения фуллеренов C_{60} и C_{70} , выполненные в рамках модели Хаббарда в ПСФ в работах [19,20], показали хорошее соответствие между экспериментальными данными и теоретическими результатами. Это позволяет считать, что модель Хаббарда в ПСФ достаточно хорошо описывает электронные свойства углеродных наносистем.

Список литературы

- H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature 318, 162 (1985).
- [2] Э.Д. Раков. Нанотрубки и фуллерены. Логос, М. (2006).
- [3] S. Iijima. Nature 354, 56 (1991).
- [4] N. Tanaka, Y. Honda, M. Kawahara, H. Shinohara. Thin Solid Films 281, 613 (1996).
- [5] M. Saunders, H.A. Jimenez-Vazquez, R.J. Cross, S. Mroczkowski, D.I. Freedberg, F.A.L. Anet. Nature 367, 256 (1994).
- [6] C.R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, H. Shinohara. Angew. Chem. Int. Ed. 40, 397 (2001).
- [7] H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L.T. Scott, M. Gelmont, D. Olevano, B.V. Issndorff. Nature 407, 60 (2000).
- [8] V. Parasuk, J. Almlof. Chem. Phys. Lett. 184, 187 (1991).
- [9] G. Galli, F. Gygi, J-.C. Golaz. Phys. Rev. B 57, 1860 (1998).
- [10] О.Е. Глухова, А.И. Жбанов, А.Г. Резков. ФТТ **47**, 376 (2005).
- [11] В.И. Минкин, Б.Я. Симкин, Р.М. Миняев. Теория строения молекул. Феникс, Р/на Д. (1997).
- [12] А.А. Левин. Введение в квантовую химию твердого тела. Химия, М. (1974).
- [13] Р.О. Зайцев. Письма в ЖЭТФ 94, 224 (2011).
- [14] Р.О. Зайцев. Письма в ЖЭТФ 95, 423 (2012).
- [15] R.A. Harris, L.M. Falicov. J. Chem. Phys. 51, 5034 (1969).
- [16] J. Hubbard. Proc. Roy. Soc. London A 276, 238 (1963).
- [17] Д.И. Хомский. ФММ 29, 31 (1970).
- [18] Ю.А. Изюмов, М.И. Кацнельсон, Ю.Н. Скрябин. Магнетизм коллективизированных электронов. Наука, М. (1994).
- [19] А.В. Силантьев. ЖЭТФ 148, 749 (2015).
- [20] А.В. Силантьев. Изв. вуз. Физика 60, 6, 50 (2017).
- [21] А.В. Силантьев, Изв. вуз. Физика 56, 2, 70 (2013).
- [22] А.В. Силантьев. Изв. вуз. Поволжский регион. Физ.-мат. науки 2, 164 (2015).
- [23] А.В. Силантьев. Изв. вуз. Физика 57, № 11, 37 (2014).
- [24] А.В. Силантьев. Изв. вуз. Поволжский регион. Физ.-мат. науки, № 1, 168 (2015).
- [25] С.В. Тябликов. Методы квантовой теории магнетизма. Наука, М. (1975).
- [26] M. Bühl, A. Hirsch. Chem. Rev. 101, 1153 (2001).
- [27] И.Г. Каплан. Симметрия многоэлектронных систем. Наука, М. (1969).

Редактор Т.Н. Василевская