Влияние электрического поля на энергию активации локальных уровней в полупроводниках со слоистой (GaSe) и кубической структурой (Ga₂Se₃)

© А.М. Пашаев¹, Б.Г. Тагиев^{1,2,¶}, О.Б. Тагиев^{2,3}, В.Т. Межидова¹, И.З. Садыхов¹

¹ Национальная академия авиации,

Az-1045 Баку, Азербайджан

² Институт физики Национальой академии наук Азербайджана,

Az-1143 Баку, Азербайджан

³ Филиал Московского государственного университета им. М.В. Ломоносова,

Az-1143 Баку, Азербайджан

[¶] E-mail: bahadur34@mail.ru

(Получена 25 апреля 2018 г. Принята к печати 6 июня 2018 г.)

Представлены результаты измерений электропроводности слоистых кристаллов (GaSe, GaTe и их твердых растворов) и кубических кристаллов типа Ga₂Se₃ в сильных электрических полях до $5 \cdot 10^5$ В/см в интервале температур (77–300) К. Полученные результаты были сравнены с феноменологической теорией концентрационной неустойчивости в полупроводниках. В этой теории рассматривается роль эффекта Френкеля, связанного с термоэлектронной ионизацией ловушек, приводящих к процессу неустойчивости в полупроводниках с *S*-образной вольт-амперной характеристикой. На основании результатов измерений электропроводности слоистых и кубических кристаллов с эффектом Френкеля и теорией неустойчивости тока в полупроводниках оценена концентрация свободных носителей тока в указанных типах халькогенидных полупроводников: $n = (3 \cdot 10^{13} - 4 \cdot 10^{15})$ см⁻³.

DOI: 10.21883/FTP.2019.02.47102.8676

1. Введение

Фундаментальными параметрами полупроводников и диэлектриков являются ширина запрещенной зоны E_g , энергия активации доноров E_d (или акцепторов E_a) и др., которые определяются электрофизическими и оптическими методами [1-5]. Известно, что один из способов определения ширины запрещенной зоны и энергии активации локальных уровней в полупроводниках основан на температурной зависимости электропроводности в собственной и примесных областях проводимости. Теоретические и экспериментальные исследования показывают, что как ширина запрещенной зоны полупроводников, так и энергия активации локальных уровней зависят от внешних факторов. Такими факторами являются сильное электрическое поле (эффекты Френкеля [6], Франца-Келдыша [7], ударная ионизация [8] и др.), температура, которые влияют на ширину запрещенной зоны и энергию активации ловушек. Причины изменения запрещенной зоны и энергии активации локальных уровней хорошо объясняются в литературе (см., например, [9,10]). Зависимость электропроводности $(\sigma = en\mu)$ от температуры, сильного электрического поля, интенсивности света и других внешних факторов связана с изменением концентрации носителей тока *n* и их подвижности µ. Теория и эксперименты показывают, что во многих случаях концентрация носителей тока n сильнее зависит от величины внешних факторов (например, от температуры), чем от их подвижности. Исходя из этих соображений можно заключить, что температурная зависимость электропроводности полупроводников

в основном определяется температурной зависимостью концентрации носителей тока. Это величина экспоненциально зависит от температуры

$$n = n_0 e^{\frac{-E_t}{kT}},\tag{1}$$

где n_0 — концентрация носителей тока при, $\frac{10^3}{T} \rightarrow 0$, E_t — энергия активации локальных уровней.

Увеличение концентрации свободных носителей тока в зависимости от электрического поля, температуры и концентрации примесных уровней приводит к сдвигу и исчезновению локальных уровней [6–12]:

$$E_t = E_0 - e\sqrt{\frac{eE}{\pi\varepsilon\varepsilon_0}},\tag{2}$$

$$E_t = E_0 - \frac{n}{\overline{n}} kT.$$
(3)

Цель настоящей работы — исследовать электропроводность образцов слоистых кристаллов типа GaSe и кубических кристаллов типа Ga₂Se₃ в сильных электрических полях до $5 \cdot 10^5$ В/см в интервале температур (77–300) К и оценить концентрацию носителей тока на основании сопоставления формулы (2) и (3) с экспериментальными данными.

2. Результаты измерений и их обсуждения

Монокристаллы халькогенидов галлия были выращены по видоизмененному методу Бриджмена медленным охлаждением слитка при постоянном градиенте температуры [13]. Исходными веществами служили селен марки В-5 (99.99999%) галлий и теллур марки В-3 (99.99999%). Синтез соединений GaSe, GaTe, GaSe_xTe_{1-x} (где x = 1.00, 0.95, 0.90, 0.80, 0.7, 0.30, 0.20, 0.10, 0) и Ga₂Se₃, GaTe₃ и выращивание их монокристаллов проведены в откачанных до 10^{-4} мм рт. ст. остроконечных кварцевых ампулах.

Методы синтеза, выращивания монокристаллов соединений со слоистой и кубической структурами, принадлежащих к обширному классу группы $A^{III}B^{VI}$ (GaSe, InSe, GaS, InS, и др) и $A_2^{III}B_3^{VI}$ (Ga₂S₃, Ga₂Se₃, Ga₂Te₃ и др.), а также изготовление образцов для электрических измерений в области сильных электрических полей описаны в [14–16].

Полученные кристаллы подвергались рентгенографическому исследованию с целью проверки их монокристалличности. Лауэграммы показали монокристалличность вышеуказанных кристаллов; были вычислены параметры их решеток. Анализ дифрактограмм, полученных от поликристаллических образцов GaSe_xTe_{1-x}, показывает, что твердые растворы со стороны GaTe сохраняют симметрию моноклинной, а со стороны GaSe — гексагональной решетки. Полученные монокристаллы были оптически однородными, высокоомными (~ 10^8 Oм · м), фоточувствительными и имели форму цилиндра высотой 80 мм и диаметром до 20 мм.

Электропроводность монокристаллов GaSe, GaTe и их твердых растворов, а также Ga₂Se₃ и Ga₂Te₃ была измерена в сильных импульсных электрических полях [14].

В выражениях (2) и (3) E_0 — энергия активации при отсутствии внешних факторов, E — величина электрического поля, при котором наблюдается зависимость E_t от T и E. В (3) $\overline{n} = m\varepsilon(kT)^2/2\pi\hbar^2q^2$ — характеристическая концентрация, уменьшающая E_0 на kT. Формула (2) впервые получена Френкелем, и авторами [12] использована для объяснений неустойчивости полупроводников с S-образной вольт-амперной характеристикой (BAX).

В последние годы эффект Френкеля используется для объяснения влияния сильного электрического поля на токопрохождение в полупроводниках и структурах на их основе [17–20].

На рис. 1 и 2 при разных температурах представлены результаты измерений электропроводности образцов слоистых кристаллов GaSe и GaTe (рис. 1, *a*, *b*) и кубических кристаллов Tuna Ga₂Se₃ (рис. 2). Видно, что с уменьшением температуры величина поля *E*, при котором закон Ома нарушается, увеличивается в обоих типах кристаллов. Измерения эффекта Холла [21–23] показывают, что в интервале температуры возрастает. Если нарушение закона Ома обусловлено разогревом носителей тока, то критическое поле, при которым закон Ома нарушается, должно было уменьшаться с понижением температуры. Из рис. 1, *a*, *b* и 2 видно, что в указанных слоистых и кубических кристаллах

Рис. 1. *а* — зависимость электропроводности (σ , Ом⁻¹ · см⁻¹) образца GaSe от напряженности электрического поля (*E*, B/см) при различных температурах (*T*, K): *I* — 285, *2* — 270, *3* — 258, *4* — 246, *5* — 230, *6* — 217, *7* — 204, *8* — 186, *9* — 167. *b* — зависимость электропроводности (σ , Ом⁻¹ · см⁻¹) образца GaTe от напряженности электрического поля (*E*, B/см) при различных температурах (*T*, K): *I* — 232, *2* — 217, *3* — 202, *4* — 185, *5* — 170, *6* — 150.

этот факт не подтверждается. Поэтому, как отмечается в [24], рост критического поля, при котором закон Ома нарушается с понижением температуры, связан с уменьшением вероятности термического возбуждения.

Рис. 2. Зависимость электропроводности монокристалла Ga₂Se₃ от напряженности электрического поля *E* при различных температурах (T, K): I = 250, 2 = 224, 3 = 200, 4 = 190, 5 = 150, 6 = 110, 7 = 83.

В слоистых кристаллах GaSe, GaTe и их твердых растворах наличие ковалентной связи внутри и ван-дерваальсовой связи между слоями приводит к анизотропии их физических свойств, что вызвало интерес к исследованию электропроводности σ в двух направлениях (σ_{\parallel} — параллельно и σ_{\perp} — перпендикулярно слоям).

Результаты измерений анизотропии электропроводности $\sigma_{\parallel}/\sigma_{\perp}$ для монокристаллов GaSe представлены на рис. 3. Видно, что σ в направлении, перпендикулярном слоям, в десятки раз меньше, чем в направлении, параллельном слоям. Аналогичные зависимости имеют место для всех твердых растворов исследуемых составов GaSe_xTe_{1-x}. При этом установлено, что энергия активации носителей тока в направлении, перпендикулярном слоям, превышает энергию активации в направлении, параллельном слоям. Поэтому можно предположить, что энергия активации Е_t ловушек носителей тока в GaSe, GaTe и в других слоистых полупроводниках, определенная из температурной зависимости электропроводности, в направлении, перпендикулярном слоям, равна сумме энергий активации носителей тока внутри слоя (E_{\parallel}) и высоты барьера (E_{δ}) между слоями:

$$E_{\perp} = E_{\parallel} + E_{\delta}. \tag{4}$$

Таким образом, можем написать, что

$$\sigma_{\perp} \sim \exp \frac{E_{\parallel} + E_{\delta}}{kT},\tag{5}$$

$$\sigma_{\parallel} \sim \exp\left(\frac{E_{\parallel}}{kT}\right).$$
 (6)

Физика и техника полупроводников, 2019, том 53, вып. 2

Из (5) и (6) имеем

$$\frac{\sigma_{\parallel}}{\sigma_{\perp}} \sim \exp\left(\frac{E_{\delta}}{kT}\right). \tag{7}$$

В соответствии с уравнением (7) с понижением температуры отношение $\sigma_{\parallel}/\sigma_{\perp}$ увеличивается и при определенной температуре, величина которой зависит от состава, достигает насыщения. По данным, представленным на рис. 3, оценена высота барьера между слоями, равная $E_{\delta} = (0.03 + 0.10)$ эВ для твердых растворов GaSe_xTe_{1-x}. Полученные значения для E_{δ} хорошо согласуются с результатами измерений холловской подвижности [21–23,25].

Как видно из рис. 1, *a*, *b* и рис. 2, линейная зависимость между $\lg \sigma$ и \sqrt{E} подтверждает, что в кристаллах GaSe_xTe_{1-x} и Ga₂Se₃, в соответствии с формулой (3), рост электропроводности с увеличением *E* обусловлен термоэлектронной ионизацией Френкеля. Согласно теории Френкеля, наклон β зависимости $\lg \sigma$ от \sqrt{E} с понижением температуры увеличивается:

$$\beta = \frac{\sqrt{e^3}}{kT\sqrt{\pi\varepsilon_0\varepsilon_\infty}},\tag{8}$$

где е — заряд электрона, $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/\text{M}$ — электрическая постоянная, $\varepsilon_{\infty} = n^2 (n - \text{коэффициент})$ преломления материала) — высокочастотная проницаемость полупроводника и диэлектрика.

Выражение (8) позволяет по экспериментальным данным определить высокочастотную диэлектрическую проницаемость ε_{∞} .

Рис. 3. Температурная зависимость $\lg \frac{\sigma_{||}}{\sigma_{\perp}}$ монокристалла GaSe при различных полях (*E*, кB/см): *I* — 17, *2* — 16, *3* — 13.

Рис. 4. Зависимость энергии активации E_t ловушек в монокристалле Ga₂Se₃ (1) и GaSe (2).

Подставляя экспериментальные данные для β в (8) были определены значения ε_{∞} в слоистых кристаллах GaSe ($\varepsilon_{\infty}^{\parallel} = 10$, $\varepsilon_{\infty}^{\perp} = 8$), GaTe ($\varepsilon_{\infty}^{\parallel} = 7$, $\varepsilon_{\infty}^{\perp} = 6$) и в кубических кристаллах Ga₂Se₃ ($\varepsilon_{\infty} = 10.8$), Ga₂Te₃ ($\varepsilon_{\infty} = 11.5$).

Следует подчеркнуть, что эффект сильного электрического поля в полупроводниках, в которых наблюдается закон Френкеля, имеет преимущество перед другими методами при определении ε , в частности ее электронной части ε_{∞} . Измерение ε полупроводников с удельным сопротивлением ($10^2 - 10^6$) Ом \cdot см емкостным методом сопровождается диэлектрической потерей.

Что касается оптического метода, то здесь трудность связана с определением коэффициента преломления в направлении, перпендикулярном слоям. Выполнение закона Френкеля в полупроводниках позволяет легко определить электронную часть диэлектрической проницаемости в слоистых материалах как вдоль, так и поперек слоев. Отметим, что знание величины ε играет важную роль при интерпретации оптических свойств полупроводников и при определении емкости в полупроводников и при определении емкости в полупроводниковых преобразователях, в частности p-n-переходах и переключающих приборах.

На основе результатов измерений зависимости σ от \sqrt{E} , представленных на рис. 1, *a*, *b* и 2, построена зависимость кубических кристаллов σ от $10^3/T$ при различных электрических полях. Анализ полученных данных показывает, что как в области выполнения закона Ома, так и в сильных полях имеет место закономерность (3). При этом обнаружено уменьшение наклона прямых lg σ от $10^3/T$, т.е энергии активации E_t в зависимости от E. Уменьшение E_t при различных полях согласуется с выражением (4). Эта закономерность демонстрируется на рис. 4, где представлены зависимости E_t от E для монокристаллов GaSe и Ga₂Se₃ (кривые 1 и 2 соот-

ветственно). Экстраполяция кривых 1 и 2 для GaSe и Ga₂Se₃ соответственно в сторону увелечения электрического поля позволила определить поле пробоя для этих кристаллов, которые оказались равными $5 \cdot 10^5$ и $7 \cdot 10^5$ В/см. При этих полях

$$E_0-e\cdot\sqrt{rac{eE}{\piarepsilonarepsilon_0}}=0, \quad E_0=e\sqrt{rac{eE}{\piarepsilonarepsilon_0}}.$$

Отсюда следует вывод, что, когда в полупроводниках и диэлектриках локальные уровни полностью ионизируются, т. е исчезают, имеет место равенство

$$e\sqrt{\frac{eE}{\pi\varepsilon\varepsilon_0}} = \frac{n}{\overline{n}}kT.$$
(9)

Оценка $\overline{n} = m\varepsilon(kT)^2/2\pi\hbar^2 q^2$ по известным физическим величинам ($m = 9.1 \cdot 10^{-31}$ кг — эффективная масса электрона, $\varepsilon = \varepsilon_0 \varepsilon_\infty = 10 \cdot 8.85 \cdot 10^{-12}$ Ф/м, $k = 1.38 \cdot 10^{-23}$ Дж/К, T = 300 К, $\hbar = 1.05 \cdot 10^{-34}$ Дж·с, $q = 1, 6 \cdot 10^{-19}$ Кл), величина которой равна $\overline{n} = 7.3 \cdot 10^{17}$ см⁻³, позволила из (8) определить концентрацию свободных носителей тока в слоистых кристаллах GaSe_xTe_{1-x} ($4 \cdot 10^{14} - 5 \cdot 10^{13}$) см⁻³ и в кубических кристаллах Ga2Se₃ ($5 \cdot 10^8 - 10^{10}$ см⁻³).

3. Заключение

Анализ результатов измерений электропроводности слоистых $GaSe_{x}Te_{1-x}$ и кубических $Ga_{2}Se_{3}$ кристаллов показывает, что наклон температурной зависимости $\lg \sigma = f\left(rac{10^3}{T}
ight)$ с увеличением E уменышается в соответствии с формулой (2) и при этом Е_t линейно уменьшается с ростом \sqrt{E} . Экстраполяция этой зависимости в строну увеличения электрического поля позволила определить величину электрического поля пробоя в слоистых (типа GaSe) и кубических (типа Ga₂Se₃) кристаллах, которая находится в интервале $(5 \cdot 10^5 - 7 \cdot 10^5)$ В/см. Совместно решая уравнение (3) и (4) с учетом экспериментальных данных об электропроводности в зависимости от электрического поля, определена концентрация избыточных носителей тока, равная $(4 \cdot 10^{14} - 5 \cdot 10^{13}) \text{ см}^{-3}$ и $(5 \cdot 10^8 - 10^{10}) \text{ см}^{-3}$ для кристаллов типа GaSe и кубических кристаллов типа Ga₂Se₃ соответственно.

Список литературы

- Ф. Мейзда. Электронные измерительные приборы и методы измерений (М., Мир, 1990).
- [2] А.А. Рогачев, И.Н. Саблина. ФТТ, 8 (1), 187 (1966).
- [3] К.В. Шалимова. Практикум по полупроводникам и полупроводниковым приборам (М., Высш. шк., 1968).
- [4] И.Ю. Уханов. Оптические свойства полупроводников (М., Наука, 1977).
- [5] В.И. Фистуль. Введение в физику полупроводников (М., Высш. шк., 1984).

225

- [6] Я.И. Френкель. ЖЭТФ, 8, 1893 (1938).
- [7] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников (М., Мир, 1977).
- [8] Ф. Блатт. Теория подвижности электронов в твердых телах (М., Физматгиз, 1963).
- [9] Я.И. Френкель. ЖЭТФ, 23, 619 (1952).
- [10] А.М. Саржевский. Оптика. Полный курс (Едиториал УРСС, 2004).
- [11] И.З. Фишер, Ч.К. Смолик. ФТТ. Сб. статей, ч. 2 (М., 1959).
- [12] В.Б. Сандомирский, А.А. Суханов, А.Г. Ждан. ЖЭТФ, 58 (5), 1683 (1970).
- [13] З.С. Медведева. Халькогениды элементов III (Б) подгруппы Периодической системы (М., Наука, 1968).
- [14] E.S. Guseinova, V.A. Gadzhiev, B.G. Tagiyev. Phys. Status Solidi B, 36, 75 (1969).
- [15] А.М. Пашаев, Б.Г. Тагиев, О.Б. Тагиев. ФТТ, 55 (5), 861 (2013).
- [16] А.Ф. Иоффе. Физика полупроводников (М.; Л., Изд-во АН СССР, 1957).
- [17] S.D. Ganichev, I.N. Yassievich, A.A. Istratov, Eicke R. Weber. Phys. Rev. B, 61 (15), 361 (2000).
- [18] К.А. Насыров, В.А. Гриценко, Ю.Н. Новиков, Д.В. Гриценко, Д.-В. Ли, Ч.В. Ким. Изв. РГПУ им. А.И. Герцена., №5 (13),447 (2005).
- [19] Y.Q. Wu, H.C. Lin, P.D. Ye. Appl. Phys. Lett., 90 (7), 072105 (2007).
- [20] В.А. Гриценко. УФН, 182 (5), 531 (2012).
- [21] C. Manfredotti, R. Murri, A. Rizzo. Phys. Rev. B, 10 (8), 3387 (1974).
- [22] C. Manfredotti, A.M. Mancini, R. Murri, A. Rizzo, L. Vasenelli. Nuovo Cimento B, 39 (1), 257 (1977).
- [23] А.П. Одринский. ФТП, 44, 883 (2010).
- [24] G.A. Dussel, K.W. Boer. Phys. Status Solidi B, 39, 375 (1970).
- [25] Б.Н. Брудный, А.В. Кособуцкий, С.Ю. Саркисов. ФТП, 44, 1194 (2010).

Редактор Г.А. Оганесян

Influence of electric field on the activation energy of local levels in semiconductors with layered (GaSe) and cubic structure (Ga₂Se₃)

A.M. Pashayev¹, B.H. Tagiyev^{1,2}, O.B. Tagiyev^{2,3}, V.T. Majidova¹, I.Z. Sadikhov¹

¹ National Aviation Academy,

Az-1045 Baku, Azerbaijan

² Azerbaijan National Academy of Sciences,

Institute of Physics,

Az-1143 Baku, Azerbaijan

³ Lomonosov Moscow State University Campus in Baku,

Az-1143 Baku, Azerbaijan

Abstract The results of electro-conductivity in high electric fields (up to $5 \cdot 10^5$ V/cm) in temperature range of (77-300) K are presented for layered (GaSe, GaTe and their solid solutions) and cubic Ga₂Se₃ crystals. Obtained results were compared with the phenomenological theory of concentration instability in semiconductors. Role of Frenkel's effect, connected with thermo-electronic ionization of traps leading to instability processes in semiconductors with *S*-type CV characteristics are considered. Based on the results of electro-conductivity measurements of layered and cubic crystals with Frenkel's effect and theory of current instability in semiconductors the free currier concentrations are estimated for mentioned semiconductors: $n = (3 \cdot 10^{13} - 4 \cdot 10^{15})$ cm⁻³.