08

Структурные и магнитные свойства систем $AI_2O_3/Ge-p/AI_2O_3/Co$

© А.В. Кобяков,^{1,2} И.А. Турпанов,² Г.С. Патрин,^{1,2} Р.Ю. Руденко,^{1,2} В.И. Юшков,^{1,2} Н.Н. Косырев^{2,3}

 ¹ Сибирский федеральный университет, 660041 Красноярск, Россия
 ² Институт физики им. Л.В. Киренского СО РАН, 660036 Красноярск, Россия
 ³ Ачинский филиал Красноярского государственного аграрного университета, 662150 Ачинск, Красноярский край, Россия e-mail: nanonauka@mail.ru

(Поступило в Редакцию 15 мая 2018 г.)

Представлены экспериментальные результаты для системы Al₂O₃/Ge-*p*/Al₂O₃/Co с буферным слоем из Al₂O₃, полученные методом ионно-плазменного распыления. Выявлена зависимость магнитных свойств кобальта от скорости его напыления ионно-плазменным методом распыления и скорости напыления ему предшествующих слоев. Показано, что метод получения буферных слоев позволяет значительно снизить шероховатость поверхности последующих слоев. Полученные буферные слои могут быть использованы в качестве искусственных подложек для выращивания гетероструктур с туннельными переходами.

DOI: 10.21883/JTF.2019.02.47082.198-18

Введение

В последнее время актуальной проблемой остается исследование механизмов, ответственных за формирование физических свойств тонкопленочных структур в системах ферромагнитный металл/диэлектрик/полупроводник (ФММ/Д/ПП). В структурах ФММ/ПП появляется возможность управлять транспортными свойствами, манипулируя спиновыми состояниями электронов [1–3]. Например, появляется возможность хранить, обрабатывать и передавать информацию в одном электронном чипе. Весьма перспективным направлением исследования является эффект гигантского магнетосопротивления.

Так, в двуслойной структуре ФММ/ПП Со/Ge обнаружено, что наличие переходного слоя влияет на магнитное поведение и магниторезистивный эффект системы [4]. Такой интерфейс между слоями в зависимости от скорости осаждения и температуры подложки может быть довольно размытым, так как большое влияние имеют условия получения, шероховатость в структуре и, как следствие, многофазность в магнитном отношении. Переходный слой может уменьшать магнитную анизотропию, т.е. имеет место конкуренция вкладов от переходного и кобальтового слоев.

Добавление тонких диэлектрических прослоек (окислов и др.), также является перспективным направлением. Использование окисла алюминия является перспективным в качестве диэлектрического затвора для использования в полевых транзисторах [5,6], в качестве просветляющего слоя для оптических зеркал полупроводниковых лазеров [7] и др. [8,9]. При введении диэлектрических прослоек в структуру ФММ/ПП могут возникать туннельные структуры. В системе типа ферромагнитный металл/SiO₂/Si с использованием в качестве ФММ CoSi или FeSi в очень тонком слое металла на границе между пленкой и кремниевой подложкой при 250–270 К обнаружено, что сопротивление испытывает резкий переход [10]. Определенную роль здесь играет ферромагнитное состояние слоя металла, что очень необычно для спинзависимого туннелирования электронов через интерфейс SiO₂/*p*-Si-структуры. Такие особенности обусловлены существованием барьера Шоттки в системе металл/диэлектрик/полупроводник.

Поэтому не удивительно, что магнитные туннельные структуры и тонкопленочные структуры с туннельными переходами, когда ток течет вдоль интерфейсов, привлекают внимание исследований [11–15].

Но получение качественных границ раздела (интерфейсов) между слоями структуры с требуемыми свойствами является довольно сложной задачей.

Получение тонких пленок оксида алюминия ионноплазменным распылением является слабо изученным направлением. Наиболее отработаны методы получения Al_2O_3 с использованием электронно-лучевого испарения [8] и магнетронное распыление [16] Конденсация оксида алюминия сопровождается фазовыми превращениями, степень завершенности которых, а следовательно, и эксплуатационные свойства зависят от способа конденсации, температуры подложки, толщины сформированной пленки, чистоты оксида алюминия и ряда других факторов.

Таким образом, в таких системах на первый план выходит изучение влияния границ раздела слоев на формирование структуры и ее физических свойств, в частности, магнитных свойств и на спин-зависимый транспорт. Для исследования выбраны образцы Al₂O₃/Ge*p*/Al₂O₃/Co. В качестве полупроводника выступал слой

Тип пленки	Скорость Al ₂ O ₃ /толщина	Скорость Ge- <i>p</i> /толщина	Скорость Al ₂ O ₃ /толщина	Скорость Со/толщина
1	0.05 nm/min/33 nm	2.4 nm/min/54 nm	0.05 nm/min/4.7 nm	1.2 nm/min/104.7 nm
2	0.55 nm/min/220 nm	14.4 nm/min/31 nm	0.55 nm/min/16 nm	7.2 nm/min/106 nm

Таблица 1. Скорости и толщины слоев структуры Al₂O₃/Ge-p/Al₂O₃/Co

германия, легированный бором и, следовательно, обладающий проводимостью p-типа. В качестве изолирующего слоя между подложкой и Ge-p был выбран Al₂O₃, так как данный материал имеет уникальные электрофизические и оптические свойства, высокую твердость, термостойкость, химическую инертность и теплозащитные характеристики.

Методика эксперимента

Структуры Al₂O₃/Ge-*p*/Al₂O₃/Со были получены методом ионно-плазменного напыления при базовом давлении P = 0.1 Ра в атмосфере аргона. В качестве материала подложки использовался кремний (001), предварительно очищенный методом ионно-плазменного травления в рабочей камере, непосредственно перед процессом напылением. Напыление проводилось на вращающуюся подложку при ее температуре $T \approx 373$ К.

Было получено два типа образцов с отличием скоростей осаждения для Al_2O_3 в 10 раз, а для Ge-*p* и Co в 5 раз. В табл. 1 представлены средние скорости и толщины полученных структур.

Кроме того, для анализа параметров, полученных для многослойных пленок Al₂O₃/Ge-*p*/Al₂O₃/Co, были получены пленки чистого кобальта на аналогичную подложку, предварительно очищенную методом ионноплазменного травления:

1-й тип: скорость 1.2 nm/min/толщина ~ 100 nm;

2-й тип: скорость 7.2 nm/min/толщина ~ 100 nm.

ТЕМ-изображение поперечного сечения структуры получено на просвечивающем электронном микроскопе Hitachi HT7700. Усредненные толщины определялись из полученных ТЕМ-изображений. Структура поверхности пленок исследовалась на атомном силовом микроскопе Veeco Multi Mode (разрешение 1 nm). Магнитные данные были получены на СКВИД-магнетометре (MPMS_XL фирмы "Quantum Design"), действующем в диапазоне температур T = 4.2-300 К и в магнитных полях $H \leq 800$ Ое в геометрии, когда магнитное поле лежало в плоскости пленки. Перед каждым измерением пленка сначала помещалась в демагнетизатор и затем охлаждалась в нулевом магнитном поле (режим ZFC). Также для магнитных измерений был использован метод магнитооптического эффекта Керра (NanoMOKE-2).

Экспериментальные результаты и обсуждение

ТЕМ-изображения поперечного сечения структуры проиллюстрированы на рис. 1, *a* и 2, *a*. Видно, что после обработки подложки ионно-плазменным травлением сформировались сплошные и гладкие межслоевые границы между подложкой и слоем Ai_2O_3 для пленок обоих типов (рис. 1, *b* и 2, *b*), с шероховатостью около 1–2 nm. На подложке виден слой оксида кремния толщиной 4–5 nm. Далее для пленок 1-го типа (рис. 1, *a*) шероховатость на границах между последующими слоями изменяется слабо, а для пленок 2-го типа увеличивается очень резко (рис. 2, *b*).

Морфология пленок Al₂O₃/Ge-*p*/Al₂O₃/Co исследовалась методом атомно-силовой микроскопии. На рис. 3

Рис. 1. ТЕМ-изображения пленок $Al_2O_3/Ge-p/Al_2O_3/Co$ (*a*) и интерфейса: подложка/ Al_2O_3 (*b*) 1-й тип образцов.

Рис. 2. ТЕМ-изображения пленок $Al_2O_3/Ge-p/Al_2O_3/Co$ (*a*) и интерфейса: подложка/ Al_2O_3 (*b*) 2-й тип образцов.

Рис. 3. Атомно-силовая микроскопия пленок Al₂O₃/Ge-*p*/Al₂O₃/Co: *a* — малая скорость осаждения (1-й тип образцов); *b* — высокая скорость осаждения (2-й тип образцов).

Рис. 4. Магнитная шероховатость образцов Со и Al₂O₃/Ge-*p*/Al₂O₃/Co 1-го типа.

Таблица 2. Параметры шероховатости для пленок 1-го и 2-го типа структуры Al₂O₃/Ge-*p*/Al₂O₃/Co и Co

Vapauluuuu ii uapavata	1-й тип		2-й тип	
усредненный параметр	Al ₂ O ₃ /Ge- <i>p</i> /Al ₂ O ₃ /Co	Со	Al ₂ O ₃ /Ge- <i>p</i> /Al ₂ O ₃ /Co	Со
Rms (Rq) Mean rougness (Ra) Max height (Rmax) 10 pt mean (Rz)	0.415 nm 0.329 nm 3.296 nm 3.025 nm	2.850 nm 2.000 nm 27.115 nm 15.970 nm	1.226 nm 0.957 nm 17.168 nm 12.864 nm	4.589 nm 2.835 nm 30.616 nm 20.453 nm

Vспациани и попомата	1-й тип		2-й тип	
эередненный параметр	Al ₂ O ₃ /Ge- <i>p</i> /Al ₂ O ₃ /Co	Со	Al ₂ O ₃ /Ge-p/Al ₂ O ₃ /Co	Co
Rms (Rq)	0.328 nm	0.816 nm	0.988 nm	1.072 nm
Mean rougness (Ra)	0.262 nm	0.599 nm	0.672 nm	0.816 nm
Max height (Rmax)	2.913 nm	12.813 nm	36.106 nm	14.383 nm
10 pt mean (Rz)	2.519 nm	11.583 nm	21.480 nm	12.508 nm

Таблица 3. Параметры магнитной шероховатости для пленок 1-го и 2-го типа структуры Al₂O₃/Ge-*p*/Al₂O₃/Co и Co

Рис. 5. Петли гистерезиса для чистого слоя кобальта при T = 300 и 4 К: a - 1-й тип образцов (медленные); b - 2-й тип образцов (быстрые).

представлены результаты для 1-го и 2-го типа сразу после напыления.

Также были получены параметры шероховатости верхнего слоя кобальта для всех образцов чистого кобальта и многослойных пленок Al₂O₃/Ge-*p*/Al₂O₃/Co. В табл. 2 представлены параметры шероховатости для пленок 1-го и 2-го типа для некоторых образцов. Из анализа шероховатостей определено, что для пленки чистого кобальта при уменьшении его скорости напыления шероховатость уменьшается в 2 раза. Но для многослойной пленки $Al_2O_3/Ge-p/Al_2O_3/Co$ при снижении скорости осаждения каждого слоя шероховатость верхнего слоя кобальта уменьшается в 3–5 раз. Таким образом, существует влияние скорости осаждения промежуточных слоев на шероховатость верхнего слоя.

Также на атомно-силовом микроскопе с использованием магнитных кантилеверов были получены изображения, характеризующие распределение намагниченности в данных пленках. На рис. 4 представлены изображения магнитного контраста пленок чистого кобальта и Al_2O_3/Ge - $p/Al_2O_3/Co$ образцов 1-го типа. Используя метод определения шероховатости поверхности для магнитного контраста, можно оценить степень неоднородности магнитного момента образца.

В табл. 3 приведены параметры "магнитной шероховатости" для тех же образцов, что и в табл. 2.

Из рис. 4 видно, что магнитная поверхность многослойной пленки 1-го типа в отличие от пленки чистого кобальта более мелкодисперсная независимо от скорости напыления. По данным таблицы можно заключить, что значения "магнитных шероховатостей" при более медленной скорости осаждения в многослойных структурах Al₂O₃/Ge-*p*/Al₂O₃/Co снижаются в 3–5 раз. Это можно объяснить изменением фазового состава в магнитном отношении и более однородным распределением материалов при осаждении. Для структур Al₂O₃/Ge*p*/Al₂O₃/Co средний размер зерна равен $d \approx 0.84$ nm.

При магнитных измерениях на СКВИД-магнетометре, получены петли гистерезиса для слоев Al_2O_3/Ge *p*/ Al_2O_3/Co 1-го и 2-го типа (рис. 5, *a*), а также петли гистерезиса для чистого слоя кобальта без подслоев, 1-го и 2-го типа (рис. 6).

Из анализа петель следует, что для чистого слоя кобальта (рис. 5) при малых скоростях осаждения (1-й тип) коэрцитивная сила при комнатной температуре порядка 50 Ое, а при понижении температуры до 4 К, увеличивается до 200 Ое. Для больших скоростей (2-й тип) коэрцитивная сила при комнатной температуре порядка 70 Ое, и при понижении температуры до 4 К, увеличивается до 250 Ое.

Для системы Al₂O₃/Ge- $p/Al_2O_3/Co$ (рис, 6, *a*) при малых скоростях (1-й тип) коэрцитивная сила при комнатной температуре порядка 100 Ое, а при понижении температуры до 4 К, увеличивается до 160 Ое. Для больших скоростей (2-й тип, рис. 6, *b*) коэрцитивная сила

Рис. 6. a — петли гистерезиса при T = 300 К; b — зависимость коэрцитивной силы от температуры, образцы 1-го и 2-го типа Al₂O₃/Ge-p/Al₂O₃/Co.

при комнатной температуре порядка 160 Ое, и при понижении температуры до 4 К, увеличивается до 280 Ое.

Как известно[17], с ростом скорости осаждения кобальта увеличивается средний размер зерна пленок Со и изменяется рельеф поверхности: он становится более неоднородным, что и видно здесь из результатов микроскопии и магнитных измерений. Но кроме этого, из температурных зависимостей коэрцитивной силы (рис. 6, *b*) для системы $Al_2O_3/Ge-p/Al_2O_3/Co$ видно, что различна скорость изменения коэрцитивной силы при изменении температуры (крутизна кривой).

Видно, что при одной и той же скорости напыления кобальта чистого и в системе $Al_2O_3/Ge-p/Al_2O_3/Co$ коэрцитивные силы отличаются в два и более раз (рис. 6, *b*). Известно, что при уменьшении скорости осаждения кобальта доля гексагональной фазы уменьшается, и появляются дополнительные фазы. Таким образом, отличие коэрцитивных сил образцов и крутизна температурных зависимостей коэрцитивных сил может быть связана со скоростью осаждения подслоев кобальта в системе, так как рельеф поверхности зависит от скорости осаждения предыдущего слоя и соответственно влияет на структуру

последующих слоев. А именно изменение коэрцитивной силы в системах Al₂O₃/Ge-*p*/Al₂O₃/Co связано с анизотропией на интерфейсе.

Заключение

В результате исследований системы Al_2O_3/Ge $p/Al_2O_3/Co$ выявлена зависимость магнитных свойств кобальта от скорости его распыления ионно-плазменным методом и скорости напыления ему предшествующих слоев. Снижение скорости осаждения слоев в многослойной структуре позволяет уменьшить шероховатость границ соседних слоев, средний размер зерна; снизить и стабилизировать коэрцитивную силу. Это может иметь большое значение при создании устройств спинтроники, например магнитных датчиков. Более детальное описание требует учета структуры интерфейса [18], поскольку толщина интерфейса составляет единицы нанометров и в нем формируются новые фазы.

Настоящие исследования ведутся при финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-02-00161-а).

Список литературы

- [1] *Ферт А.* // УФН. 2008. Т. 178. № 12. С. 1336.
- [2] Dushenko S., Koike M., Ando Y., Shinjo T., Myronov M., Shiraishi M. // Phys. Rev. Lett. 2015. Vol. 114. P. 196602.
- [3] Song Y., Chalaev O., Hanan Dery // Phys. Rev. Lett. 2014. Vol. 113. P. 167201.
- [4] Патрин Г.С., Турпанов И.А., Патрин К.Г., Алексейчик Е., Юшков В.И., Кобяков А.В. // Известия РАН. Серия физическая. 2014. Т. 78. № 1. С. 44.
- [5] Lin H.C., Ye P.D., Wilk G.D. // Appl. Phys. Lett. 2005. Vol. 87.
 P. 182904.
- [6] Xuan Y., Wu Y.Q., Lin H.C., Shen T., Peide D.Ye. // IEEE Electron. Dev. Lett. 2007. Vol. 28. P. 935.
- [7] Середин П.В., Голощапов Д.Л., Лукин А.Н., Леньшин А.С., Бондарев А.Д., Арсентьев И.Н., Вавилова Л.С., Тарасов И.С. // ФТП. 2014. Т. 48. Вып. 11. С. 1564.
- [8] Борисова А.Л., Адеева Д.И., Сладкова В.Н. // Автомат. сварка. 1997. № 9. С. 26.
- [9] Крушинская Л.А., Стельмах Я.А. // Вопросы атомной науки и техники. Сер.: Вакуум, чистые материалы, сверхпроводники. 2011. № 19. С. 92.
- [10] Dai J., Spinu L., Wang K.-Y., Malkinski L., Tang J. // J. Phys. D: Appl. Phys. 2000. Vol. 33. L65. 12S.
- [11] Volkov N.V., Tarasov A.S., Gustajcev A.O., Volkova O.N., Varnakov S.N., Ovchinnikov S.G. // Trans. Nonferrous Met. Soc. China. 2014. Vol. 24. N 10. P. 3158.
- [12] Volkov N.V., Tarasov A.S., Eremin E.V., Varnakov S.N., Ovchinnikov S.G., Zharkov S.M. // J. Appl. Phys. 2011. Vol. 109. P. 123924.
- [13] Song Y., Dery H. // Phys. Rev. Lett. 2014. Vol. 113. P. 047205.
- [14] Txoperena O., Song Y., Qing L., Gobbi M., Hueso L.E., Dery H., Casanova F. // Phys. Rev. Lett. 2014. Vol. 113. P. 146601.

- [15] Ando K., Takahashi S., Ieda J., Kajiwara Y., Nakayama H., Yoshino T., Harii K., Fujikawa Y., Matsuo M., Maekawa S. // J. Appl. Phys. 2011. Vol. 109. P. 103913.
- [16] Тесленко-Пономаренко В.В. // Вопросы атомной науки и техники. Сер.: Вакуум, чистые материалы, сверхпроводники. 2003. № 13. Р. 175.
- [17] Патрин Г.С., Турпанов И.А., Кобяков А.В., Великанов Д.А.,. Патрин К.Г., Ли Л.А., Мальцев В.К., Жарков С.М., Юшков В.И. // ФТТ. 2014. Т. 56. Вып. 2. С. 301.
- [18] Патрин Г.С., Кобяков А.В., Турпанов И.А., Патрин К.Г., Раутский М. // ФТТ. 2017. Т. 58. Вып. 5. С. 1034.