07

Морфология и электронные свойства наноразмерных структур Si, созданных на поверхности CaF₂

© Б.Е. Умирзаков, Р.Х. Ашуров, С.Б. Донаев

Ташкентский государственный технический университет им. И.А. Каримова, 100095 Ташкент, Узбекистан e-mail: sardor.donaev@gmail.com

(Поступило в Редакцию 13 мая 2018 г.)

Получены нанопленки и регулярно расположенные наноразмерные фазы Si с толщиной 1-2 nm и изучены их морфологии поверхности, кристаллические структуры и зонно-энергетические параметры. Показано, что ширина запрещенной зоны нанокристаллических фаз Si, полученных при толщине $\theta = 2-3$ монослоев, составляет ~ 1.4 eV.

DOI: 10.21883/JTF.2019.02.47081.185-18

Введение

В настоящее время наноразмерные структуры, созданные на поверхности полупроводниковых и диэлектрических пленок, имеют большие перспективы при разработке уникальных приборов микро-, опто- и наноэлектроники. При этом особый интерес представляют нанопленки типа Si/CaF2, Si/CoSi2, Si/Si, LiF2/Si, которые могут использоваться в приборных структурах для формирования омических и барьерных контактов, в оптоэлектронных устройствах, схемах памяти, транзисторах с проницаемой и металлической базами [1-4]. Расчеты показывают, что такие транзисторы могут иметь граничную частоту усиления $f_a \ge 100 \text{ GHz}$ [2]. Нанопленочные структуры в основном выращиваются методами молекулярно-лучевой и твердофазной эпитаксии. При этом сплошные однородные пленки Si на поверхности CoSi2 и CaF2 формируются начиная с толщины $d \ge 5.0-6.0$ nm [4]. Известно [5-7], что при уменьшении размеров наноструктур до величины, соизмеримой с длиной свободного пробега электронов или де-Бройлевской длиной волны, происходит резкое изменение их физических (электрических, оптических и др.) свойств, т.е. начинают проявляться квантоворазмерные эффекты. Следовательно, современное развитие наноэлектроники во многих случаях требует получения отдельных нанокристаллических фаз и нанопленок с толщиной $d \le 4.0-5.0$ nm. В работах [8–10] для получения подобных структур использовался метод низкоэнергетической ионной бомбардировки. Однако при этом нанофазы состояли из атомов подложки и легирующего элемента, т.е. невозможно было получить однокомпонентных фаз и пленок. Кроме того, эти структуры не растут на поверхности, а формируется в поверхностных слоях подложки.

Поэтому проведение экспериментов по созданию и исследованию физических свойств наноразмерных структур, созданных на поверхности с различными размерами, природой и составом, является актуальной задачей современной электроники. Особое место занимает самоорганизованное формирование наноструктур (островков) — т.е. спонтанное образование большого количества наноструктур благодаря стремлению самой системы "матрица–адсорбированный атом". Такие структуры можно получить методом осаждения атомов различных элементов на поверхность специальных подложек. Однако при этом размеры этих островков и расстояние между ними имеют случайный характер. Создавая определенные условия, можно получить регулярно расположенные одинаковые по размерам и составу наноструктуры с высокой устойчивостью. В частности, такие магические кластеры получены в [11] на реконструированной (7 × 7) поверхности атомарно чистого Si (111) напылением ~ 0.3 монослоя алюминия при T = 550°C в условиях сверхвысокого вакуума.

Во многих случаях в качестве упорядоченных зародышей могут использоваться специально созданные дефекты или реконструированная поверхность монокристалла. Наши предварительные исследования показали [12], что такие дефекты можно создавать методом низкоэнергетической и низкодозной ионной бомбардировки в сочетании с отжигом.

В настоящей работе впервые изучены состав, структура и физические свойства наноразмерных фаз Si с толщиной $\leq 1\!-\!2\,nm$, созданные на поверхности CaF_2 методом сверхвысоковакуумного осаждения.

Методика эксперимента

В качестве объектов исследования использованы эпитаксиальные пленки $CaF_2/Si(111)$ с толщиной 60.0-80.0 nm, полученных в условиях сверхвысокого вакуума (~ 10^{-8} Pa) методом молекулярно-лучевой эпитаксии. Для сравнения использовались также монокристаллические образцы $CaF_2(111)$ с размерами $10 \times 10 \times 0.5$ mm. Для получения регулярно расположенных нанофаз Si на поверхности этих подложек перед напылением созданы упорядоченные зародыши бомбардировкой ионами Ar^+ с $E_0 = 3$ keV при дозе

Рис. 1. РЭМ-изображения поверхности CaF₂ с пленкой Si разной толщины = θ : a - 1 монослой, b - 8 монослоев, c - 10 монослоев (на вставке ДБЭ картинки Si с $\theta = 10$ монослой).

 $D \approx 5 \cdot 10^{13} \, {\rm cm}^{-3}$ [12]. При такой дозе не наблюдалась заметная зарядка поверхности монокристаллического образца CaF₂, который во время бомбардировки нагревался при $T \approx 550 \, {\rm K}.$

Напыление Si осуществлялось co скоростью 0.1-0.2 nm/min в условиях высокого вакуума $(P = 10^{-5} \, \text{Pa})$ при комнатной температуре подложки. Испарение Si проводилось электронным лучом, скорость роста задавалась микропроцессорным контроллером с кварцевыми датчиками. Элементный и химический составы поверхности исследуемых образцов определялись методом оже-электронной спектроскопии (ОЭС). Степень аморфности пленки Si на поверхности CaF2 при напылении и его кристаллизации при отжиге, тип и параметров решетки изучались методом дифракции быстрых электронов (ДБЭ). Для определения параметров энергетических зон и ширины запрещенной зоны Eg использовались методы ультрафиолетовой фотоэлектронной спектроскопии (УФЭС), спектроскопия упруго отраженных медленных электронов (СУОЭ), а также измерения интенсивности І проходящего через образец света. Все измерения проводились после остывания

мишени до комнатной температуры, при вакууме не хуже 10^{-7} Ра. Топографию поверхности пленок изучали с использованием стандартных установок растровой электронной и атомно-силовой микроскопии (РЭМ и ACM). Выбор грани (111) обусловлен тем, что поверхность CaF₂(111) имеет наименьшую свободную энергию ($E_{\text{CaF}_2} \approx 5 \cdot 10^{-7} \text{ J} \cdot \text{cm}^{-2}$, $E_{\text{Si}} \approx 1.350 \cdot 10^{-4} \text{ J} \cdot \text{cm}^{-2}$, поэтому является атомарно гладкой.

Экспериментальные результаты и их обсуждения

Толщина пленок Si на поверхности подложек варьировала в пределах $\theta \approx 1-10$ монослоев. Для получения эпитаксиальных структур после каждого цикла напыления проводился прогрев до определенной температуры в течение 30 min. В качестве примера на рис. 1 приведены РЭМ-изображение и ДБЭ-картина (вставка) поверхности CaF₂(111) с пленкой Si толщиной $\theta \sim 1$, 8 и 10 монослоев, полученные после прогрева при $T \approx 800 \text{ K}$ (*a*) и 850 K (*b* и *c*). Из рис. 1, *a* видно, что при $\theta = 1$ формируются нанокристаллические фазы Si

<i>θ</i> моно- слоев	<i>T</i> ,K	Размеры фаз, nm		Степень		
		d	h	покрытия	Рост	$E_g \mathrm{eV}$
1	800	10-15	_	5-10	epitaxy	_
3	800	20 - 25	1.0 - 1.2	35 - 40	e^*	1.4
5	850	25 - 30	1.0 - 1.5	60 - 70	e^*	1.2
8	850	30-50	1.5 - 2.0	80-90	e^*	1.1
10	850	сплош-	1.5 - 2.0	100	e^*	1.1
		ная				
		пленка				

Размеры фаз, степень покрытия поверхности и ширина запрещенной зоны наноструктур Si/CaF_2(III)

Примечание. * — эпитаксиальный рост.

с диаметрами $d \approx 10-15$ nm, а расстояния между их центрами составляют 50-70 nm [12]. При $\theta = 8$ поверхностные размеры фаз увеличиваются до 30-50 nm, а их высота *h* составляет 1.5-2 nm (рис. 1, *b*). При $\theta = 10$ формируется сплошная пленка (рис. 1, *c*). При $\theta = 10$ на ДБЭ-картине (вставка рис. 1, *c*) появляются рефлексы 7 × 7, характерные для монокристаллических образцов Si(111) [12]. Можно полагать, что рост Si происходит эпитаксиально. В таблице приведены основные параметры фаз и ширина запрещенной зоны E_g кремния различной толщины, полученные напылением Si на поверхности пленки CaF₂/Si(111) в сочетании с отжигом.

Из таблицы видно, что с ростом θ от 1–5 монослоев, размеры фаз и степень покрытия поверхности CaF₂ атомами Si монотонно увеличиваются, в частности, при $\theta \approx 3$ поверхностные диаметры нанофаз составляют 20–25 nm, а их высота h = 1-1.2 nm. По видимому, начиная с $\theta \approx 5$ наряду с некоторым увеличением размеров имеющихся фаз, начинают появляться новые фазы. Следовательно, *d*-фаз изменяется в широком пределе: от ~ 30 до 50 nm (рис. 1, *b*). При $\theta \approx 8$ монослоев края соседних фаз (островков) Si начинают перекрываться друг с другом, и формируется пленка с неравномерной толщиной. При $\theta \approx 10$ монослоев формируется однородная сплошная эпитаксиальная пленка с толщиной 1.5-2.0 nm.

На рис. 2 приведены спектры ХПЭЭ поверхности CaF₂ с пленкой Si разной толщиной $\theta = 0$ (чистый CaF₂), 3 и 10 монослоев. В спектре чистой пленки CaF₂ имеются пики потерь при энергиях 4, 7, 10, 14, 18 и 20.5 eV. Пики при энергиях 14 и 20.5 eV соответственно обусловлены возбуждением поверхностного (hw_s) и объемного (hw_v) плазмонов. Пики с $\Delta E = 4$ и 7 eV, по-видимому, связаны с переходами электронов из поверхностного состояний и примесных уровней в вакуум. Слабые пики при энергиях 11 и 18 eV, вероятно, возникают вследствие межзонных переходов с участием валентных электронов. При напылении Si с $\theta = 3$ монослоев образуется островковая пленка и степень покрытия поверхности кремния составляет ~ 35–40% (см. таблицу). При этом все основные пики, характерные для CaF₂, сохраняются и их интенсивность существенно уменьшается (рис. 2, кривая 2). По-видимому, при напылении Si и последующего отжига не происходит заметной взаимодиффузии Si в CaF₂. При $\theta = 3$ монослоев в спектре практически отсутствуют пики плазменных колебаний, характерные для пленок Si. Некоторое уширение и увеличение интенсивности пиков в области $\Delta E \approx 4$ и 10 eV может быть обусловлено участием крем-

Рис. 2. Спектры ХПЭЭ для пленки Si/CaF₂(111) с толщиной θ , монослоев: 1 - 0 (чистый CaF₂), 2 - 3, 3 - 10.

Рис. 3. Зависимости интенсивности проходящего света от энергии фотонов для пленки Si/CaF₂(111) разной толщины θ , монослоев: I - 3, 2 - 5, 3 - 10.

ниевых фаз в межзонных переходах. Все пики ХПЭЭ Si, обусловленные возбуждением плазмонов ($hw_s = 11.2$ и $hw_v = 11.7 \text{ eV}$) и межзонных переходов ($\Delta E = 6$ и 8 eV), появляются при $\theta = 10$ (рис. 3, кривая 3). Формирование широкого пика в области $\Delta E = 20-25$ eV, по-видимому, обусловлено возбуждением hw_v подложки и $2hw_s$ пленки Si.

Для сравнения определено значение E_g нанопленок Si разной толщины, полученных на поверхности массивного образца CaF₂(111). При этом E_g измерялась методом снятия зависимости интенсивности I проходящего света через образец от энергии фотонов hv (рис. 3). Из рис. 3 видно, что во всех случаях сначала с ростом hv значение I практически не меняется, а затем I резко уменьшается до нуля. Резкое уменьшение *I* для $\theta \approx 3$ происходит, начиная с $h\nu \approx 1.3 \,\text{eV}$, для 5 монослоев $h\nu \approx 1.1 \,\text{eV}$, а для $\theta \approx 10$ с hv = 0.9-1 eV. Экстраполяция этих кривых к оси hv (который дает приблизительное значение E_{e}) показывает, что значения Е_g для нанофаз и нанопленки Si соответственно составляют ~ 1.4; 1.2 и 1.1 eV. На кривых 1 и 2 интенсивность света, проходящего через участок CaF2, не покрытых атомами Si не учитывалась. По отношению интенсивностей проходящего света нанофаза и нанопленки можно оценить степень покрытия поверхности по формуле [4]: степень покрытия $= 1 - (I_{\theta \approx 3} \cdot I_{\theta \approx 10}^{-1}).$

Видно, что в данном случае $\theta \approx 3$ степень покрытия составляет $s \sim 0.35-0.4$ (35–40%), а в случае $\theta \approx 5$ монослоев 0.65–0.7. Эти данные хорошо согласуются с данными, полученными для систем CaF₂/Si(111) с использованием методов РЭМ, УФЭС, СУОЭ (см. таблицу).

Ширина запрещенной зоны для фазы с $d \approx 25-30$ nm составляет ~ 1.4 eV, что значительно больше, чем E_g нанопленки Si. Можно полагать, что в случае Si квантоворазмерные эффекты проявляются при малых размерах нанофаз (d = 25-30 nm и $h \le 1.0-1.5$ nm).

Заключение

Таким образом, на поверхности CaF₂(111) получены однородные эпитаксиальные нанофазы и нанопленки Si, определены их размеры и ширина запрещенной зоны. Установлено, что при $\theta \le 8$ монослоев формируются регулярно расположенные нанофазы, а при $\theta = 8-10$ монослоев — нанопленки с толщиной ~ 1.5–2 nm. Во всех случаях не наблюдается заметная взаимодиффузия атомов на границе Si/CaF₂. Показано, что в нанофазах Si с поверхностными размерами d = 20-25 nm и толщиной h = 1-1.2 nm начинают проявляться квантоворазмерные эффекты.

Список литературы

[1] Гомоюнова М.В., Пронин И.И., Галль Н.Р., Молодцов С.Л., Вялых Д.В. // ФТТ. 2003. Т. 45. Вып. 8. С. 1519–1522.

- [2] Bei Li, Jiandin Liu // J. Appl. Phys. 2009. Vol. 105. P. 084905.
- [3] Рудаков В.И., Денисенко Ю.И., Наумов В.В., Симакин С.Г. // Письма в ЖТФ. 2011. Т. 37. Вып. 3. С. 36–44.
- [4] Sharopov U.B., Atabaev B.G., Djabbarganov R., Kurbanov M.K. // J. Surf. Investigat. 2013. Vol. 7. N 1. P. 195–199.
- [5] Демиховская В.Я. // Соросовский образовательный журнал. 1997. № 5. С. 80.
- [6] Сдобняков Н.Ю., Репчак С.В., Самсонов В.М., Базулев А.Н., Кульпин Д.А., Соколов Д.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2011. № 5. С. 109.
- [7] Исаханов З.А., Мухтаров З.Э., Умирзаков Б.Е., Рузибаева М.К. // ЖТФ. 2011. Т. 81. Вып. 4. С. 117– 120. [Isakhanov Z.A., Mukhtorov Z.E., Umirzakov B.E., Ruzibaeva M.K. // Techn. Phys. 2011. Vol. 56. N 4. P. 546– 549.]
- [8] Muradkabilov D.M., Tashmukhamedova D.A., Umirzakov B.E. // J. Surf. Investigat. 2013. Vol. 7. N 5. P. 967–971.
- [9] Умирзаков Б.Е., Ташмухамедова Д.А., Рузибаева М.К., Ташатов А.К., Донаев С.Б., Мавлянов Б.Б. // ЖТФ. 2013. Т. 83. Вып. 9. С. 146–149. [Umirzakov B.E., Tashmukhamedova D.A., Ruzibaeva M.K., Tashatov A.K., Donaev S.B., Mavlyanov B.B. // Techn. Phys. 2013. Vol. 58. N 9. P. 1383–1386.]
- [10] Рысбаев А.С., Хужаниязов Ж.Б., Рахимов А.М., Бекпулатов И.Р. // ЖТФ. 2014. Т. 84. Вып. 10. С. 107– 111. [Rysbaev A.S., Khuzhaniyazov Zh.B., Rakhimov A.M., Bekpulatov I.R. // Techn. Phys. 2014. Vol. 59. N 10. P. 1526– 1530.]
- [11] Зотов А.В., Саранин А.А. // Природа. 2006. № 4. С. 11.
- [12] Umirzakov B.E., Donaev S.B. // J. Surf. Investigat. 2017. Vol. 11. N 4. P. 746–748.