04

Заселенность метастабильного состояния $A^3\Sigma_u$ молекулярного азота в условиях плазмохимического синтеза нитридов металлов

© В.И. Струнин, Н.Н. Струнина, Б.Т. Байсова

Омский государственный университет им. Ф.М. Достоевского, 644077 Омск, Россия e-mail: baysova@yandex.ru

(Поступило в Редакцию 2 марта 2018 г.)

По интенсивности электронно-колебательных полос первой положительной системы проведен расчет абсолютной заселенности состояния $B^3\Pi_g$ молекулярного азота. На основе решения уравнения баланса проведен расчет абсолютной заселенности метастабильного состояния $A^3\Sigma_u$ молекул азота. Установлено, что заселенность метастабильного состояния молекулярного азота увеличивается с уменьшением давления и ростом силы тока тлеющего разряда. Представлены результаты определения заселенности состояния $A^3\Sigma_u$ молекул азота в условиях одновременного возбуждения тлеющего и вакуумно-дугового разрядов.

DOI: 10.21883/JTF.2019.02.47067.97-18

В последнее время проявляется повышенный интерес к исследованию физических процессов в плазме стационарного и импульсного вакуумно-дугового разряда [1], что обусловлено интенсивным развитием технических направлений, использующих вакуумно-дуговой разряд в ионно-плазменных напылительных устройствах [2] и в источниках ионных пучков [3].

Покрытия из нитридов и карбидов металлов получаются при осаждении на обрабатываемых поверхностях потоков металлической плазмы в присутствии реактивного газа. Генерация металлической плазмы осуществляется при горении вакуумно-дугового разряда между расходуемым электродом (катодом) и нерасходуемым анодом.

В процессе исследований стационарного вакуумного дугового разряда [4,5] выяснилось, что эффективность синтеза неорганических соединений в плазме вакуумной дуги во многом определяется состоянием плазмообразующего газа.

Молекулы в возбужденных состояниях с малыми временами жизни из-за большой скорости их дезактивации не накапливаются в плазме и, следовательно, не играют существенной роли в процессах синтеза нитридов. Однако молекулы в метастабильном $A^3\Sigma_{\mu}$ -состоянии, время жизни которого велико по отношению к времени спонтанного распада [6], могут играть существенную роль в повышении эффективности этих процессов. Связано это, прежде всего, со значительно меньшей по сравнению с состоянием $X^1\Sigma_g$ энергией диссоциации метастабильного состояния $A^{3}\Sigma_{u}$, равной 3.5 eV [7]. Учитывая существенную неравновесность плазмы вакуумно-дугового разряда, для оптимизации плазмохимических процессов необходимо детально исследовать заселенность метастабильного $A^3\Sigma_{\mu}$ -состояния молекулы азота. Непосредственное измерение концентраций метастабильных частиц сопряжено со значительными трудностями вследствие малости вероятностей радиационных переходов с них. Для их регистрации используются спектральные

методы поглощения излучения [8], а также косвенные методы — передача возбуждения на излучающие состояния малой примеси, например, ртути [9], использование которых в разрядах затруднительно, поскольку возможно влияние на сигнал других возбужденных частиц, ионов и электронов.

Исследования заселенности метастабильного состояния $A^3 \Sigma_u$ молекулярного азота проводились в положительном столбе тлеющего разряда при одновременном возбуждении дугового разряда.

Заселенность метастабильного состояния $A^3 \Sigma_u$ молекулярного азота определялась, исходя из измерений заселенности возбужденного электронного состояния $B^3 \Pi_g$.

Тлеющий разряд возбуждался между алюминиевыми электродами в ионно-вакуумной камере ННВ 6.6—И 1.1 в атмосфере чистого азота при давлении от 0.006 до 0.06 Тогг. Ток тлеющего разряда менялся в диапазоне от 100 до 400 mA. Ток дугового разряда был постоянным и составлял 25 А.

Излучение разряда регистрировалось кварцевым спектрографом ИСП-30. Для получения абсолютных интенсивностей молекулярных полос была проведена калибровка системы по эталонной лампе Си-8-200V.

Заселенность колебательных уровней состояния $B^{3}\Pi_{g}$ молекулярного азота определялась по интенсивно-

Таблица 1. Канты полос первой положительной системы молекулы азота [11]

λ, Å	ν'	ν"
6875.0	3	0
6788.6	4	1
6704.8	5	2
6623.6	6	3
6544.8	7	4
6468.5	8	5

Рис. 1. Зависимость заселенности колебательного уровня $\nu = 3$ состояния $B^3 \Pi_g$ от давления газа: a — в тлеющем разряде с одновременным возбуждением дугового разряда, b — в плазме тлеющего разряда.

Рис. 2. Зависимость заселенности колебательного уровня $\nu = 3$ состояния $B^3 \Pi_g$ от тока тлеющего разряда: *а* — в тлеющем разряде с одновременным возбуждением дугового разряда, *b* — в плазме тлеющего разряда.

сти электронно-колебательных полос секвенции $\Delta v = 3$ (табл. 1) первой положительной системы азота (переход $B^3\Pi_g \to A^3\Sigma_u$) по методике, изложенной в [10].

Зависимости заселенности колебательного уровня $\nu = 3$ состояния $B^3 \Pi_g$ от давления газа и тока тлеющего разряда представлены на рис. 1 и 2. Зависимость от тока и давления для всех колебательных уровней носит одинаковый характер.

Заселенность состояния $B_3\Pi_g$ растет с ростом тока разряда и уменьшением давления азота. Как видно из результатов, уровень заселенности колебательных уровней состояния $B^3\Pi)g$ в тлеющем разряде с одновременным возбуждением дугового разряда значительно выше (рис. 1, *a*, 2, *a*), чем в плазме тлеющего разряда (рис. 1, *b*, 2, *b*).

На основе возможных процессов заселения и девозбуждения состояния $A^3\Sigma_u$ молекулы азота (табл. 2) для каждого колебательного уровня метастабильного состояния было составлено уравнение баланса, которое имеет вид

$$\begin{aligned} &k_1[N_2(X)]N_e + A_2[N_2(B)] + [N_2(B)][N_2(X)](k_3 + k_9) \\ &- [N_2(A)][N_2(X)](k_4 + k_7 + k_{16}) - [N_2(A)]^2(k_5 + k_6) \\ &- [N_2(A)]N_e(k_8 + k_{11} + k_{18}) + k_{10}N_e[N_2(B)] \\ &- \frac{D_A}{\Lambda^2} [N_2(A)] - k_{13}(N_2(A))[N(^4S)] + k_{14}[N_2(X)][N(^2P)] \\ &- k_{15}[N_2(A)][N_2(B)] + k_{17}[N_2(C)][N_2(X)] \\ &+ k_{19}[N_2(C)]N_e = 0, \end{aligned}$$

где k_i — коэффициенты скоростей процессов, приведенных в табл. 1; $[N_2(X)]$ — концентрация молекул азота в основном состоянии; $[N_2(A)]$ — заселенность колебательного уровня ν'' метастабильного состояния $A^3\Sigma_u$ молекулы азота; $[N_2(B)]$ — заселенность колебательного уровня ν' возбужденного состояния $B^3\Pi_g$ молекулы азота; $[N(^2P)]$ — заселенность метастабильного состояния азота; $[N(^4S)]$ — концентрация атомов азота в основном состоянии; N_e — концентрация электронов.

Коэффициент диффузии молекул $N_2(A^3\Sigma_u)$ к стенкам $D_A = 153/P \text{ cm}^2 \cdot \text{s}^{-1}$ [12], где P — давление газа, Тогг. Значение коэффициента k_9 рассчитывалось из соотношения детального баланса [12].

Для решения уравнения необходимо оценить концентрацию атомов $[N({}^{4}S)]$ и $[N({}^{2}P)]$. Основные процессы

Таблица 2. Основные процессы заселения и девозбуждения состояния $A^3 \Sigma_u^+$ в разряде [12]

N⁰	Процесс	$k_i, \ \mathrm{cm}^3 \cdot \mathrm{s}^{-1}$
1	$N_2(X) + e ightarrow N_2(A) + e$	$1.654 \cdot 10^{-10}$
2	$N_2(B) o N_2(A) + h u$	$(1{-}2)\cdot 10^5c^{-1}$
3	$N_2(B) + N_2(X) \rightarrow N_2(A) + N_2(X)$	$(1.3 - 7.5) \cdot 10^{-11}$
4	$N_2(A) + N_2(X) \rightarrow N_2(B) + N_2(X)$	$3\cdot 10^{-10}$
5	$2N_2(A) \to N_2(B) + N_2(X)$	$1.2 \cdot 10^{-9}$
6	$2N_2(A) \to N_2(C) + N_2(X)$	$2\cdot 10^{-11}$
7	$N_2(A) + N_2(X) \rightarrow 2N_2(X)$	$1.5\cdot 10^{-16}$
8	$N_2(A) + e ightarrow N_2(X) + e$	10^{-8}
9	$N_2(B) + N_2(X) \rightarrow 2N_2(A)$	$2.8\cdot 10^{-10}$
10	$N_2(B) + e ightarrow N_2(A) + e$	$3 \cdot 10^{-9}$
11	$N_2(A) + e ightarrow N_2(B) + e$	$4 \cdot 10^{-9}$
12	$N_2(A) \xrightarrow{ ext{wall}} N_2(X)$	$\left(\frac{815}{P(\text{Torr})}\right) \left(\frac{T_{\Gamma}}{300}\right)^{3/2}, \text{s}^{-1}$
13	$N_2(A) + N(^4S) \to N_2(X) + N(^2P)$	$5 \cdot 10^{-11}$
14	$N_2(X) + N(^2P) \to N_2(A) + N(^4S)$	$5 \cdot 10^{-11}$
15	$N_2(A) + N_2(B) \rightarrow N_2(C) + N_2(X)$	$4.6\cdot 10^{-10}$

		2 1
N₂	Процесс	$k_i, \text{ cm}^3 \cdot \text{s}^{-1}$
13	$N_2(A) + N(^4S) \to N(^2P) + N_2(X)$	$5 \cdot 10^{-11}$
14	$N_2(X) + N(^2P) \to N(^4S) + N_2(A)$	$5 \cdot 10^{-11}$
20	$N(^4S) + e \rightarrow N(^2P) + e$	$(2{-}6) \cdot 10^{-10}$
21	$N(^{2}P) + N(^{4}S) \rightarrow 2N(^{4}S)$	$1.8 \cdot 10^{-12}$
22	$N(^2P) \xrightarrow{\text{wall}} N(^4S)$	$\left(\frac{200}{P(\text{Torr})}\right) \left(\frac{T_{\Gamma}}{300}\right)^{3/2}, \text{s}^{-1}$
23	$N(^{2}P) + e \rightarrow N(^{4}S) + e$	$2 \cdot 10^{-9}$
24	$N_2(X) + e \rightarrow 2N(^4S) + e$	$5.732 \cdot 10^{-12}$
25	$2N(^4S) + N_2(X) \to 2N_2(X)$	$(0.2 - 3.0) \cdot 10^{-33}$

Таблица 3. Основные процессы образования и гибели атомов $N(^2P)$ и $N(^4S)$ в разряде в азоте [12]

Таблица 4. Возможные процессы заселения и дезактивации состояния $C^3 \Pi_u$ молекулы азота [12]

N₂	Процесс	$k_i, \ \mathrm{cm}^3 \cdot \mathrm{s}^{-1}$
6	$2N_2(A) \to N_2(C) + N_2(X)$	$2\cdot 10^{-11}$
15	$N_2(A) + N_2(B) \rightarrow N_2(C) + N_2(X)$	$4.6\cdot10^{-10}$
16	$N_2(A) + N_2(X) \to N_2(C) + N_2(X)$	$3\cdot 10^{-10}$
17	$N_2(C) + N_2(X) \rightarrow N_2(A) + N_2(X)$	$3\cdot 10^{-10}$
18	$N_2(A) + e ightarrow N_2(C) + e$	$2\cdot 10^{-13}$
19	$N_2(C) + e ightarrow N_2(A) + e$	10^{-10}
26	$N_2(X) + e ightarrow N_w(C) + e$	$1.205\cdot10^{-11}$
27	$N_2(B) + e ightarrow N_2(C) + e$	$<1.3\cdot10^{-10}$
28	$N_2(B) + N_2(X) \rightarrow N_2(C) + N_2(X)$	$< 10^{-13}$
29	$N_2(C) o N_2(B) + h u$	$2.2 \cdot 10^7$
30	$N_2(C) + N_2(X) \rightarrow N_2(B) + N_2(X)$	10^{-11}

возбуждения и девозбуждения состояний 4S и 2P атома азота приведены в табл. 3.

Уравнения баланса для этих состояний имеют вид

$$-k_{13}[N_{2}(A)][N(^{4}S)] + k_{14}[N_{2}(X)][N(^{2}P)] - k_{20}N_{e}[N(^{4}S)] + k_{23}N_{e}[N(^{2}P)] + k_{24}N_{e}[N_{2}(X)] - k_{25}[N(^{4}S)]^{2}[N_{2}(X)] = 0,$$
(2)
$$k_{13}[N(^{4}S)][N_{2}(A)] - k_{14}[N_{2}(X)][N(^{2}P)] + k_{20}[N(^{4}S)]N_{3} - k_{21}[N(^{2}P)][N(^{4}S)] - \frac{D_{P}}{\Lambda^{2}}[N(^{2}P)] - k_{23}N_{e}[N(^{2}P)] = 0.$$
(3)

Коэффициент диффузии атомов $N(^2P)$ к стенкам $D_P = 220/P \text{ cm}^2 \cdot \text{s}^{-1}$ [12].

Определение концентрации электронов проводилось по уравнению баланса для нулевого колебательного

уровня состояния $C^3 \Pi_u$ молекулы азота с учетом всех энергетически-возможных процессов заселения и девозбуждения этого состояния (табл. 4):

$$\begin{aligned} k_6[N_2(A)]^2 + k_{15}[N_2(A)][N_2(B)] + k_{16}[N_2(A)][N_2(X)] \\ &- k_{17}[N_2(C)][N_2(X)] + k_{18}N_e[N_2(A)] - k_{19}N_e[N_2(C)] \\ &+ k_{26}N_e[N_2(X)] + k_{27}N_e[N_2(B)] + k_{28}[N_2(B)][N_2(X)] \\ &- A_{29}[N_2(C)] - k_{30}[N_2(C)][N_2(X)] - k_{31}[N_2(C)][N_2(X)] \\ &- k_{32}N_e[N_2(C)] = 0. \end{aligned}$$

Заселенность нулевого колебательного уровня состояния $C^3 \Pi_u$ молекулы азота определялась по интен-

Таблица 5. Заселенность колебательных уровней метастабильного состояния молекулы азота в плазме тлеющего разряда

I, mA	P, Torr	$N_2\left(A^3\Sigma_u^+,\nu\right),\ 10^{10}{ m cm}^{-3}$					
		$\nu = 0$	$\nu = 1$	v = 2	$\nu = 3$	v = 4	v = 5
100	0.006	1.41	1.40	1.40	1.35	1.34	1.33
200	0.006	2.83	2.82	2.82	2.77	2.76	2.70
100	0.02	1.03	1.01	1.00	0.99	0.99	0.96
200	0.02	2.65	2.65	2.61	2.51	2.44	2.42
300	0.02	4.13	4.10	4.10	4.01	3.98	3.89
100	0.06	0.88	0.85	0.84	0.81	0.76	0.73
200	0.06	1.42	1.40	1.39	1.35	1.32	1.26
300	0.06	2.21	2.19	2.16	2.03	1.91	1.88
400	0.06	2.54	2.54	2.51	2.27	2.15	2.15

Таблица 6. Заселенность колебательных уровней метастабильного состояния молекулы азота в плазме тлеющего разряда при одновременном возбуждении дугового разряда

I, mA	P, Torr	$N_2\left(A^3\Sigma_u^+,\nu\right),10^{10}{ m cm}^{-3}$					
		$\nu = 0$	$\nu = 1$	$\nu = 2$	$\nu = 3$	v = 4	v = 5
100	0.006	1.79	1.75	1.75	1.69	1.68	1.66
200	0.006	3.51	3.49	3.49	3.43	3.42	3.34
100	0.02	1.28	1.25	1.24	1.23	1.23	1.20
200	0.02	3.31	3.31	3.26	3.13	3.04	3.02
300	0.02	5.15	5.12	5.11	5.00	4.97	4.85
100	0.06	1.10	1.07	1.05	1.02	0.96	0.91
200	0.06	1.78	1.75	1.73	1.69	1.66	1.58
300	0.06	2.76	2.74	2.70	2.53	2.38	2.35
400	0.06	3.17	3.17	3.14	2.84	2.69	2.68

сивности полосы $\lambda = 3804.9$ Å второй положительной системы азота (переход $C^3\Pi_u \rightarrow B^3\Pi_g$).

В табл. 5 и 6 приведены полученные значения заселенности колебательных уровней состояния $A^{3}\Sigma_{u}$ в зависимости от условий возбуждения тлеющего разряда.

Значения концентраций атомов азота в метастабильном и основном состояниях представлены в табл. 7 и 8.

Путем суммирования полученных значений заселенностей отдельных колебательных уровней определена полная заселенность состояния $A^3 \Sigma_{\mu}$ молекулы азота. На рис. 3 и 4 приведены графики зависимости полной заселенности метастабильного состояния от тока разряда и давления газа.

Основной поток заселения состояния $A^3 \Sigma_u$ в разряде обусловлен прямым возбуждением молекул электронным ударом (процесс № 1, табл. 2) и дезактивацией состояния $B^3 \Pi_g$ в результате радиационных переходов (процесс № 2, табл. 2) и тушения молекулами азота (процесс № 3, табл. 2). С увеличением тока разряда

Таблица 7. Значения $[N_2](A^3\Sigma_u)$, $[N(^2P)]$, $[N(^4S)]$ и N_e в тлеющем разряде при одновременном возбуждении дугового разряда

I, mA	P, Torr	$[N_2(A^3\Sigma_u), v], 10^{11}, \text{ cm}^{-3}$	$[N(^{2}P)],$ 10 ¹¹ cm ⁻³	$[N(^4S)],$ 10 ¹⁴ cm ⁻³	$N_e, 10^{10} { m cm}^{-3}$
100	0.006	1.03	1.03	0.27	3.52
200	0.006	2.07	1.86	0.28	10.11
100	0.02	0.74	0.65	2.08	2.19
200	0.02	1.91	1.74	2.07	3.71
300	0.02	3.02	2.86	2.08	6.12
100	0.06	0.61	0.48	6.68	0.76
200	0.06	1.02	0.89	6.72	1.72
300	0.06	1.55	1.26	6.73	2.40
400	0.06	1.77	1.44	6.75	2.75

Таблица 8. Значения $[N_2](A^3\Sigma_u), [N(^2P)], [N(^4S)]$ и N_e в плазме тлеющего разряда

I, mA	P, Torr	$[N_2(A^3\Sigma_u), v], 10^{11}, \text{ cm}^{-3}$	$[N(^{2}P)],$ 10 ¹¹ cm ⁻³	$[N(^{4}S)],$ 10 ¹⁴ cm ⁻³	$N_e,$ 10 ¹⁰ cm ⁻³
100	0.006	0.82	0.82	0.27	2.81
200	0.006	1.67	1.49	0.28	8.08
100	0.02	0.60	0.52	2.08	1.75
200	0.02	1.53	1.39	2.07	2.97
300	0.02	2.42	2.29	2.08	4.89
200	0.06	0.81	0.72	6.72	1.38
300	0.06	1.24	1.01	6.73	1.92
400	0.06	1.41	1.15	6.75	2.20
100	0.06	0.49	0.38	6.67	0.73

Рис. 3. Зависимость полной заселенности метастабильного состояния $A^{3}\Sigma_{u}$ от давления газа: *a* — в тлеющем разряде с одновременным возбуждением дугового разряда, b — в плазме тлеющего разряда.

Рис. 4. Зависимость полной заселенности метастабильного состояния $A^{3}\Sigma_{u}$ от тока разряда: *а* — в тлеющем разряде с одновременным возбуждением дугового разряда, b — в плазме тлеющего разряда.

заселенность состояния $A^3\Sigma_u$ растет, что обусловлено увеличением концентрации электронов N_e (табл. 7, 8).

Наблюдается рост заселенности $A^3 \Sigma_u$ с уменьшением давления (рис. 3). Уменьшение заселенности этого состояния с ростом давления можно объяснить преимущественно тушением атомами (процесс № 13, табл. 2) и молекулами азота (процесс № 7, табл. 2).

Заселенность метастабильного состояния атома азота растет с ростом силы тока (табл. 7 и 8), что объясняется увеличением эффективности заселения прямым электронным ударом из основного состояния

$$N(^4S) + e \to N(^2P) + e.$$

С увеличением давления заселенность состояния 2P атома азота падает (табл. 7, 8) из-за тушения атомами азота 4S .

Список литературы

- Вакуумные дуги / Под ред. Дж. Лафферти. М.: Мир, 1982. 432 с.
- [2] Brown I.G. // Rev. Sci. Instrum. 1994. Vol. 65. P. 3061-3081.
- [3] *Аксенов И.И.* // Химия высоких энергий. 1986. Т. 20. № 1. С. 82–88.
- [4] Avtaeva S.V., Otorbaev D.K. Proc. VII ESCAMPIG. Bari. Italy. 1984. P. 81–84.
- [5] Кузнецова Л.А. Вероятности оптических переходов двухатомных молекул. М.: Наука, 1980. 350 с.
- [6] Gilmore F.R. // J. Quant. Spectr. Radiat. Trans. 1965. Vol. 5. N 2. P. 369.
- [7] Голубовский Ю.Б., Тележко В.М., Стоянов Д.Г. // Опт. и спектр. 1990. Т. 69. № 2. С. 321–327.
- [8] Гуревич Д.Б., Канатенко М.А., Подмошенский И.В. // Опт. и спектр. 1983. Т. 54. № 5. С. 781–786.
- [9] Тихомиров И.А., Струнин В.И., Струнина Н.Н., Долганева С.Л., Байсова Б.Т. // ЖТФ. 2001. Т. 71. Вып. 5. С. 25–27.
- [10] Пирс Р., Гейдон А. Отождествление молекулярных спектров / Под ред. С.Л. Мандельштама, М.Н. Аленцева. М.: ИИЛ, 1949. 238 с.
- [11] Словецкий Д.И. Механизмы химических реакций в неравновесной плазме. М.: Наука, 1980. 310 с.
- [12] Lin C.-L., Kaufman F. // J. Chem. Phys. 1971. Vol. 55. P. 3760.