Неизотермическое течение газа в эллиптическом канале с внутренним круговым цилиндрическим элементом в свободномолекулярном режиме

© О.В. Гермидер, В.Н. Попов

Северный (Арктический) федеральный университет им. М.В. Ломоносова, 163002 Архангельск, Россия e-mail: v.popov@narfu.ru

(Поступило в Редакцию 2 марта 2018 г.)

В рамках кинетического подхода в свободномолекулярном режиме найдено решение линеаризованной задачи о вычислении потока массы разреженного газа в длинном эллиптическом канале с внутренним круговым цилиндрическим элементом. Течение газа в канале обусловлено перепадами температуры и давления на концах канала. В качестве основного уравнения используется кинетическое уравнение Больцмана для бесстолкновительного газа, а в качестве граничного условия — модель диффузного отражения. Получено распределение массовой скорости газа по поперечному сечению канала. Вычислена величина приведенного потока массы газа в канале в зависимости от перепадов давления и температуры на его концах. Проведенный анализ результатов показал существенную зависимость потока массы от радиуса кругового цилиндра.

DOI: 10.21883/JTF.2019.01.46957.96-18

Введение

03

В последнее время значительно возрос интерес к неизотермическим течениям разреженного газа в каналах [1-19]. Интерес обусловлен фундаментальным и прикладным значениями наноразмерных систем и вакуумных технологий в различных областях химии и физики, в частности возможностью создания высокоскоростных молекулярных пучков импульсного типа [1], травлением кремневых пластин [2], оценкой утечки газа через компрессорные клапаны [3], моделированием потока газа в наноподшипниках [3] и т.д. Для разработки и практического применения описанных выше технологий необходимо подробное описание потоков массы газа и тепла через каналы различного поперечного сечения. С учетом этого рядом авторов рассматривались каналы с различной конфигурацией: прямоугольный [3-7], эллиптический [8–11], цилиндрический [12–14], треугольный [2], в форме трапеции [15]. В работах [8-10] для получения макропараметров внутренних течений в эллиптическом цилиндре была использована S-модель кинетического уравнения, в [11] — уравнение Вильямса. В большинстве упомянутых выше работ для решения задач были использованы численные методы. Аналитически для каналов со сложной геометрией сечения в свободномолекулярном режиме решение линеаризованной задачи было получено для эллиптического цилиндра [8] и [16], двух коаксиальных цилиндров [17], прямоугольного канала с внутренним цилиндрическим элементом [18]. В качестве граничного условия на стенках канала в [1-4,6-13,15-18] была использована модель диффузного отражения, в [14] — модель зеркально-диффузного отражения. В связи с актуальностью исследований по неизотермическим течениям возникает необходимость

получения аналитических решений в каналах со сложной геометрией сечения. В представленной работе в свободномолекулярном режиме задача массопереноса рассматривается в длинном эллиптическом канале с внутренним круговым цилиндрическим элементом. Течение газа в канале обусловлено перепадами температуры и давления на концах канала. Предполагается, что отражение молекул от стенок канала носит диффузный характер. Распределение массовой скорости газа по поперечному сечению канала находится в зависимости от отношения полуосей эллипса и радиуса внутреннего цилиндра. Величина приведенного потока массы газа в канале рассчитывается в зависимости от перепадов давления и температуры на его концах.

1. Постановка задачи. Кинетическое уравнение

Рассмотрим течение разреженного газа между двумя резервуарами, соединяющимися эллиптическим каналом

с внутренним круговым цилиндрическим элементом радиусом R'. Давление и температура в первом и во втором резервуарах остаются постоянными и равными соответственно p_1, T_1 и p_2, T_2 , причем $p_2 > p_1$ и *T*₂ > *T*₁. Начало декартовой системы координат выбрано в сечении, расположенном в середине канала. Будем рассматривать течение газа в средней части канала, в окрестности точки z' = 0. Введем обозначения для границ сечения канала: Ω — окружность радиусом R'; Ω_e — эллипс с полуосями a' и b' $(a' \ge b'); \ \Omega \cup \Omega_e$ (см. рисунок). Предположим, что длина канала L' > a'. В этом случае давление и температура газа релаксируют значительно быстрее в поперечном сечении, чем по всей длине канала [19]. Таким образом, можно предположить, что давление и температура зависят только от продольной координаты z'. Будем полагать, что их безразмерные градиенты являются малыми по абсолютной величине, т.е.

$$G_T = rac{z'}{T_0} rac{dT}{dz^l}, \ |G_T| \ll 1, \ G_p = rac{z^l}{p_0} rac{dp}{dz^l}, \ |G_p| \ll 1.$$

Выберем в качестве размерного масштаба малую полуось эллипса b'. При этом безразмерные величины будем обозначать без штриха: x = x'/b', y = y'/b', z = z'/b'. В линейном приближении давление и температура газа имеют вид

$$T(z) = T_0(1 + G_T z), \quad p(z) = p_0(1 + G_p z), \quad (1)$$

где p_0, T_0 — давление и температура газа в начале координат. Состояние разреженного газа в точке, радиусвектор которой *r* имеет координаты *x*, *y* и *z*, определяем функцией распределения $f_{\Gamma}(r, v)$, где v — скорость молекул газа. Сделанное предположение о длине канала позволяет пренебречь концевыми эффектами и рассмотреть только продольную составляющую массовой скорости $u_z(r)$ [9], которую находим согласно [20] как

$$u(r) = \frac{1}{n(z)} \int v f(r, v) d^3 v, \qquad (2)$$

где n(z) — концентрация молекул газа. Введем безразмерную компоненту вектора массовой скорости газа, следуя [19]

$$U = \beta^{1/2} u, \tag{3}$$

где $\beta = m/(2k_{\rm B}T_0)$, m — масса молекул газа, $k_{\rm B}$ — постоянная Больцмана. Приведенный поток массы газа через поперечное сечение определяем согласно [19] как

$$J_M = \frac{J'_M}{\pi(a'b' - R'^2)p(z)} \sqrt{\frac{2k_{\rm B}T(z)}{m}} = \frac{8(I_1 + I_2)}{\pi(a - R^2)}, \quad (4)$$

$$I_{1} = \int_{0}^{R} \int_{\sqrt{R^{2} - y^{2}}}^{a\sqrt{1 - y^{2}}} U_{z}(r) dx dy, \ I_{2} = \int_{R}^{1} \int_{0}^{a\sqrt{1 - y^{2}}} U_{z}(r) dx dy,$$

где J'_{M} — размерный поток массы газа в канале. Для нахождения функции распределения молекул газа f(r, v) воспользуемся кинетическим уравнением Больцмана, которое в декартовой прямоугольной системе координат в отсутствии межмолекулярных столкновений имеет вид [20]

$$C_x \frac{\partial f}{\partial x} + C_y \frac{\partial f}{\partial y} + C_z \frac{\partial f}{\partial z} = 0, \qquad (5)$$

где $C = \beta^{1/2}v$ — безразмерная скорость молекул газа. В качестве граничного условия на обтекаемых газом стенках канала будем использовать модель диффузного отражения. В этом случае [20]

$$f^+(r_{\Gamma}, C) = f_{\Gamma}(r_{\Gamma}, C), \quad C_n > 0.$$
(6)

Здесь $f^+(r_{\Gamma}, C)$ — функция распределения молекул газа, отраженных от стенок канала, r_{Γ} — безразмерный радиус-вектор точек стенок канала, n — вектор нормали к обтекаемой газом поверхности, направленный в сторону газа; $f_{\Gamma}(r_{\Gamma}, C)$ — локально равновесная функция распределения:

$$f_{\Gamma}(r_{\Gamma}, C) = n_{\Gamma}(z) \left(\frac{m}{2\pi k_{\rm B} T_{\Gamma}(z)}\right)^{3/2} \exp\left(-\frac{T_0}{T_{\Gamma}(z)} C^2\right),\tag{7}$$

где $T_{\Gamma}(z)$, $n_{\Gamma}(z)$ — температура и концентрация молекул газа на поверхности канала. Линеаризуя (7) относительно абсолютного максвеллиана $f_0(C) = n_0 (\beta/\pi)^{3/2} \exp(-C^2)$ и учитывая, что $p(z) = n(z)k_{\rm B}T$, приходим к следующему выражению для локально равновесной функции распределения:

$$f_{\Gamma}(z,C) = f_0(C) \left(1 + G_T \left(C^2 - \frac{5}{2} \right) z + G_p z \right).$$
(8)

Функцию распределения f(r, v) линеаризуем относительно $f_{\Gamma}(z, C)$. Принимая во внимание (8), получим

$$f(r, C) = f_0(C) \left(1 + G_T \left(C^2 - \frac{5}{2} \right) z + G_p z + C_z h(x, y, C) \right).$$
(9)

Подставляя функцию распределения (9) в (5), для определения h(x, y, C) приходим к уравнению

$$C_x \frac{\partial h}{\partial x} + C_y \frac{\partial h}{\partial y} + G_p + G_T \left(C^2 - \frac{5}{2} \right) = 0.$$
(10)

Осуществим переход к сферическим координатам в пространстве скоростей: $C_x = C \cos \varphi \sin \theta$, $C_y = C \sin \varphi \sin \theta$, $C_z = C \cos \theta$, где углы φ и θ отсчитываются от положительных направлений осей C_x и C_z в пространстве скоростей соответственно. Представим функцию h(x, y, C) в виде разложения по ортогональным в смысле равенства нулю скалярного произведения функций $e_1 = 1$, $e_2 = 1/C - 3\sqrt{\pi}/8$ и $e_3 = C - 5/(2C)$:

$$h(x, y, C) = G_p \left(Z_1(x, y, \varphi, \theta) + \left(\frac{1}{C} - \frac{3\sqrt{\pi}}{8}\right) \times Z_2(x, y, \varphi, \theta) \right) + G_T \left(C - \frac{5}{2C}\right) Z_3(x, y, \varphi, \theta).$$
(11)

Журнал технической физики, 2019, том 89, вып. 1

Здесь скалярное произведение функций $f_1(C)$ и $f_2(C)$ определяется следующим образом [21]:

$$(f_1, f_2) = \int_{0}^{+\infty} f_1(C) f_2(C) C^5 \exp(-C^2) dC.$$

Подставляя (11) в (10), в силу ортогональности функций e_1 , e_2 и e_3 получаем три независимых уравнения для определения неизвестных функций $Z_i(x, y, \varphi, \theta)$:

$$\left(\cos\varphi\,\frac{\partial Z_1}{\partial x} + \sin\varphi\,\frac{\partial Z_1}{\partial y}\right)\sin\theta + \frac{3\sqrt{\pi}}{8} = 0,\qquad(12)$$

$$\left(\cos\varphi\,\frac{\partial Z_j}{\partial x} + \sin\varphi\,\frac{\partial Z_j}{\partial y}\right)\sin\theta + 1 = 0, \ j = 2, 3, \quad (13)$$

с граничными условиями

$$Z_i(x_{\Gamma}, y_{\Gamma}, \varphi, \theta) = 0, \ Cn > 0, \ i = 1 - 3.$$
 (14)

Учитывая, что уравнения (13) и граничные условия (14) имеют одинаковую структуру для каждой функции $Z_j(x, y, \varphi, \theta)$, для краткости обозначим $Z(x, y, \varphi, \theta) = Z_j(x, y, \varphi, \theta), j = 2, 3$. Замечая при этом, что $Z_1 = 3\sqrt{\pi}Z/8$, получаем для ненулевой компоненты U_z вектора U, определяемого равенствами (2), (3), (9) и (11), следующее выражение

$$U_{z}(x, y) = \pi^{-3/2} \int \exp(-C^{2})C_{z}^{2}h(x, y, C)d^{3}C$$
$$= G_{T}U_{z}^{(1)}(x, y) + G_{p}U_{z}^{(2)}(x, y),$$
(15)

$$U_{z}^{(1)}(x, y) = -\frac{1}{4\pi^{3/2}} \int_{0}^{\pi} \cos^{2}\theta \sin\theta \int_{0}^{2\pi} Z(x, y, \varphi, \theta) d\varphi d\theta$$
$$= -\frac{U_{z}^{(2)}(x, y)}{2}.$$
(16)

Из (15) следует, что приведенный поток массы, определяемый по формуле (4), также можно представить в виде суммы двух линейных по градиентам температуры и давления функций:

$$J_{M} = G_{T}J_{M}^{(1)} + G_{p}J_{M}^{(2)}, \quad J_{M}^{(i)} = \frac{8(I_{1}^{(i)} + I_{2}^{(i)})}{\pi(a - R^{2})}, \quad (17)$$
$$I_{1}^{(i)} = \int_{0}^{R} \int_{\sqrt{R^{2} - y^{2}}}^{a\sqrt{1 - y^{2}}} U_{z}^{(i)}(x, y) dx dy,$$
$$I_{2}^{(i)} = \int_{R}^{1} \int_{0}^{a\sqrt{1 - y^{2}}} U_{z}^{(i)}(x, y) dx dy, \quad i = 1, 2.$$

Здесь коэффициенты $J_M^{(1)}$ и $J_M^{(2)} = -2J_M^{(1)}$ не зависят от G_T и G_p , а слагаемые в (17) для J_M определяют соотвественно приведенные потоки массы разреженного

газа, вызываемые градиентом температуры в задаче о тепловом крипе и градиентом давления в задаче о течении Пуазейля. Получим значения этих коэффициентов для заданной конфигурации сечения канала. Для этого найдем явный вид функции $Z(x, y, \varphi, \theta)$. В силу симметрии сечения канала относительно координатных осей в конфигурационном пространстве рассмотрим точки из первого квадранта, для которых можно выделить две области изменения угла φ :

1. $\varphi_0 - \xi \le \varphi \le \varphi_0 + \xi$ — для молекул, которые отразились от внутренней поверхности, где углы φ_0 и ξ определяются выражениями $\varphi_0 = \operatorname{arctg}(y/x), \xi = \operatorname{arcsin}(R/\sqrt{x^2 + y^2});$

2. $\varphi_0 + \xi \le \varphi \le 2\pi + \varphi_0 - \xi$ — для молекул, которые отразились от внешней поверхности.

В первом случае решение уравнения (13) с граничным условием (14) имеет вид [18]

$$Z(x, y, \varphi, \theta) = -\frac{w_1(x, y, \varphi)}{\sin \theta},$$
 (18)

$$w_1(x, y, \varphi) = x \cos \varphi + y \sin \varphi$$

$$+\sqrt{R^2-(y\cos\varphi-x\sin\varphi)^2}.$$
 (19)

Во втором случае получаем [16]

$$Z(x, y, \varphi, \theta) = -\frac{w_2(x, y, \varphi)}{\sin \theta}, \qquad (20)$$

$$w_{2}(x, y, \varphi) = \frac{x \cos \varphi + a^{2} y \sin \varphi}{a^{2} \sin^{2} \varphi + \cos^{2} \varphi} + \frac{a \sqrt{a^{2} \sin^{2} \varphi + \cos^{2} \varphi} - (y \cos \varphi - x \sin \varphi)^{2}}{a^{2} \sin^{2} \varphi + \cos^{2} \varphi}.$$
 (21)

Подставляя (18)-(21) в (16), получаем

$$U_{z}^{(2)}(x, y) = -\frac{1}{4\sqrt{\pi}} \left(2 \int_{\varphi_{0}}^{\varphi_{0}+\xi} w_{1}(x, y, \varphi) d\varphi + \int_{\varphi_{0}+\xi}^{2\pi+\varphi_{0}-\xi} w_{2}(x, y, \varphi) d\varphi \right).$$
(22)

Результаты вычислений $-J_M^{(2)}$ по формуле (17) с учетом полученного выражения (22) для компоненты $U_z^{(2)}(x, y)$ представлены в таблице в сравнении с результатами, полученными в [8,9] для эллиптического канала. Для канала, образованного двумя коаксиальными цилиндрами (a = 1), значения $-J_M^{(2)}$ из таблицы при R = 0.01и R = 0.1 соответственно равны 1.4932 и 1.3890. Эти же значения были получены в [17] в пределе свободномолекулярного режима на основе *S*-модели кинетического уравнения. В работе [17] массовый поток был представлен в виде ряда по малому параметру *R*, в котором отброшены члены выше четвертого порядка малости. Как следует из приведенных в таблице значений поток массы существенно зависит от *R*.

Значения $-J_M^{(2)}$ в зависимости от a, R

	R					
а	0		0.01	0.1	0.5	0.9
	(17)	[8,9]	(17)	(17)	(17)	(17)
1	1.5045	1.5045	1.4932	1.3890	0.8701	0.2218
1.1	1.5770	1.5770	1.5657	1.4617	0.9468	0.3250
2	2.0655	2.0655	2.0542	1.9509	1.4684	1.0174
5	2.8888	2.8888	2.8775	2.7752	2.3312	2.0084
10	3.5397	3.5397	3.5284	3.4265	2.9993	2.7214
20	4.1991	4.1991	4.1878	4.0863	3.6689	3.4152
100	5.7387	5.7390	5.7274	5.6262	5.2183	4.9868

2. Неизотермическое течение разреженного газа при произвольных перепадах давления и температуры

В эксперименте, как правило, измеряется величина массы газа в канале в зависимости от перепадов давлений и температур на его концах. В случае малых перепадов температуры и давления на концах канала, распределения температуры и давления вдоль канала можно считать линейными [19]. При этом градиенты температуры и давления могут быть определены по формулам [19]

$$G_T = \frac{T_2 - T_1}{LT_{av}}, \quad G_p = \frac{p_2 - p_1}{Lp_{av}},$$
 (23)

где L = L'/b', $T_{av} = (T_2 + T_1)/2$, $p_{av} = (p_2 + p_1)/2$ и перепады температуры и давления являются малыми: $(T_2-T_1) \ll T_1$ и $(p_2-p_1) \ll p_1$. В этом случае величина J_M остается постоянной. Если отношения T_2/T_1 и p_2/p_1 являются большими, то распределение давления перестает быть линейным и происходит изменение величины J_M вдоль канала. Так как теплопроводность стенок канала значительно больше, чем теплопроводность газа, распределение температуры, определяемое тепловыми свойствами канала, можно считать линейным [9]: $T(z_*) = (T_2-T_1)z_* + (T_1 + T_2)/2$, где $z_* = z'/L'$. Распределение давления при этом заранее неизвестно, а должно быть найдено в результате решения кинетического уравнения. Следуя [3,9,15, 19], определим безразмерный поток массы как

$$J_M^* = \frac{J_M' L}{\pi (a'b' - R'^2) p_1} \sqrt{\frac{2k_{\rm B} T_1}{m}},$$
 (24)

где величина J_M^* остается постоянной вдоль длины канала. Для определения давления газа в канале подставляем последовательно выражения (4) и (24) в (17). В результате с учетом того, что $J_M^{(2)} = -2J_M^{(1)}$, получаем дифференциальное уравнение относительно неизвестной

функции $p(z^*)$:

$$\frac{1}{p_1}\frac{dp}{dz_*} = \frac{p(z_*)}{2p_1T(z_*)}\frac{dT}{dz_*} + \sqrt{\frac{T(z_*)}{T_1}}\frac{J_M^*}{J_M^{(2)}},$$
(25)

где J_M^* является параметром, а значения $J_M^{(2)}$ определяются по формуле (17). С учетом линейного распределения температуры вдоль длины канала общее решение дифференциального уравнения (25) имеет вид

$$p(z_*) = \frac{p_1 T(z_*)^{3/2} J_M^*}{(T_2 - T_1) J_M^{(2)} \sqrt{T_1}} + C_1 \sqrt{T(z_*)}, \qquad (26)$$

где C_1 — константа интегрирования. Подставляя в (26) граничные условия $p(-1/2) = p_1$ и $p(1/2) = p_2$, приходим к системе уравнений для определения C_1 и J_M^* . Введя обозначение

$$J_M^* = \left(\frac{p_*}{\sqrt{T_*}} - 1\right) J_M^{(2)}, \quad C_1 = \frac{p_1(p_* - T_*^{3/2})}{(1 - T_*)\sqrt{T_2}}.$$
 (27)

Коэффициент перед $J_M^{(2)}$ в выражении (27) для J_M^* совпадает с аналогичным результатом [19] для цилиндрического канала. Подставляя выражения (27) в (26), находим $p(z_*)$:

$$p(z_{*}) =$$

$$=\frac{p_1(p_*+\sqrt{T_*}+2z_*(p_*-\sqrt{T_*}))\sqrt{2(T_*+1+2(T_*-1)z_*)}}{4\sqrt{T_*}}.$$
(28)

В случае изобарического течения $p_* = 1(p_1 = p_2)$ из (27) следует, что J_M^* принимает только положительные значения, равные $-(1-1/\sqrt{T_*})J_M^{(2)}$. При выполнении этого условия имеет место явление теплового крипа, т.е. газ течет от холодного резервуара к горячему, что соответствует выводам, приведенным в [19].

Для неизобарического течения $(p_* > 1)$ величина $J_M^* < 0$, если $p_* > \sqrt{T_*}$. В этом случае имеет место течение Пуазейля и газ течет от горячего резервуара, где давление выше, к холодному, где давление ниже. При $p_* \le \sqrt{T_*}$ величина $J_M^* \ge 0$ и имеет место явление теплового крипа.

Полученные по формуле (27) значения J_M^* хорошо согласуются с результатами из [9] для эллиптических каналов (R = 0) для режимов, близких к свободномолекулярному. В частности, при $p_* = 1$ и $T_* = 3.8$ для a = 1 и a = 10 по формуле (27) при подстановке в нее значений из таблицы, находим $J_M^* = 0.7327$ и $J_M^* = 1.7239$. Соответствующие значения этой величины из [9] равны 0.7144 и 1.5916. При $p_* = 100$ и $T_* = 3.8$ для a = 1 и a = 10 значения $J_M^* \cdot 10^{-2}$, вычисленные по формуле (27), становятся отрицательными: -0.757 и -1.780, а из [9] они равны -0.738 и -1.511.

Заключение

Итак, в представленной работе решена линеаризованная задача о вычислении потока массы газа в длинном эллиптическом канале с внутренним круговым цилиндрическим элементом в свободномолекулярном режиме. Приведены зависимости величины приведенного потока массы газа в канале от произвольных перепадов давления и температуры на его концах при условии, что полуоси канала много меньше его длины. Показано, что значения потока массы уменьшаются нелинейно в зависимости от радиуса внутреннего цилиндра.

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта 19-01-00506.

Список литературы

- [1] Конопелько Н.А., Титарев В.А., Шахов Е.М. // Журн. вычисл. матем. и матем. физ. 2016. Т. 56. Вып. 3. С. 476-489.
- [2] Naris S., Valougeorgis D. // European J. Mechanics. B: Fluids. 2008. Vol. 27. P. 810–822.
- [3] Graur I., Ho M.T. // Vacuum. 2014. Vol. 101. P. 328-332.
- [4] Sharipov F.M. // J. Vac. Sci. Technol. A. 1999. Vol. 17. N 5. P. 3062–3066.
- [5] Pantazis S., Varoutis S., Hauer V., Day C., Valougeorgis D. // Vacuum. 2011. Vol. 85. P. 1161–1164.
- [6] Титарев В.А., Шахов Е.М. // Журн. вычисл. матем. и матем. физ. 2010. Т. 50. Вып. 7. С. 1285–1302.
- [7] Гермидер О.В., Попов В.Н., Юшканов А.А. // ЖТФ. 2016. Т. 86. Вып. 6. С. 37–41.
- [8] Graur I., Sharipov F. // Europ. J. of Mechanics B: Fluids. 2008. Vol. 27. P. 335–345.
- [9] Graur I., Sharipov F. // Microfluid Nanofluid. 2009. Vol. 6. P. 267–275.
- [10] Rykov V.A., Titarev V.A., Shakhov E.M. // Fluid Dynamics. 2011. Vol. 46. № 3. P. 456–466.
- [11] Гермидер О.В., Попов В.Н. // ЖТФ. 2017. Т. 87. Вып. 3. С. 331–334
- [12] Kamphorst C.H., Rodrigues P., Barichello L.B. // Appl. Mathematics. 2014. Vol. 5. P. 1516–1527.
- [13] Siewert C.E., Valougeorgis D. // J. Quant. Spectrosc. Radiat. Transf. 2002. Vol. 72. P. 531–550.
- [14] Гермидер О.В., Попов В.Н. // ЖТФ. 2017. Т. 87. Вып. 11. С. 1603–1608.
- [15] Ritos K., Lihnaropoulos Y., Naris S., Valougeorgis D. 2nd Micro and Nano Flows Conference, Brunel University, West London, UK. 2009.
- [16] Гермидер О.В., Попов В.Н., Юшканов А.А. // Сибирский журнал индустриальной математики. 2017. Т. 20. Вып. 3. С. 24–30.
- [17] Шахов Е.М. // Журн. вычисл. матем. и матем. физ. 2003. Т. 43. Вып. 7. С. 1107–1116.
- [18] Гермидер О.В., Попов В.Н. // Сибирские электронные математические известия. 2017. Т. 14. С. 518–527.
- [19] Шарипов Ф.М., Селезнев В.Д. Движение разреженных газов в каналах и микроканалах. Екатеринбург: УрО РАН, 2008. 230 с.
- [20] Коган М.Н. Динамика разреженного газа. Кинетическая теория. М.: Наука, 1967. 440 с.
- [21] Латышев А.В., Юшканов А.А. Кинетические уравнения типа Вильямса и их точные решения: монография. М.: МГОУ, 2004. 271 с.