### 07

# Диэлектрические потери в MPCVD-алмазах в полосах частот 25—30 и 250—350 GHz в зависимости от параметров процесса роста

# © Б.М. Гарин<sup>1</sup>, В.В. Паршин<sup>2</sup>, Е.А. Серов<sup>2</sup>, А.С. Николенко<sup>2</sup>, Я.Ц. Лю<sup>3</sup>, М.Х. Дин<sup>3</sup>, В.Чж. Тан<sup>3</sup>

 Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН,
 Фрязино, Московская обл., Россия
 Институт прикладной физики РАН,
 Нижний Новгород, Россия
 Университет науки и технологии Пекина,
 Пекин, Китай
 E-mail: bormigar@yandex.ru

#### Поступило в Редакцию 23 марта 2018 г.

Проведено комплексное систематическое исследование влияния различных параметров процесса роста CVD-алмазов в микроволновой плазме (MPCVD-алмазов), таких как температура подложки, химический состав газовой смеси и др., на диэлектрические потери в двух частотных полосах (25–30 и 250–350 GHz) более чем для десяти образцов различных серий. Выявлена корреляция между величинами потерь в этих двух полосах частот.

DOI: 10.21883/PJTF.2018.21.46850.17307

Исследование диэлектрических свойств, в том числе диэлектрических потерь, в новых малопоглощающих материалах в миллиметровом и субмиллиметровом диапазонах электромагнитных волн является важной фундаментальной и прикладной задачей. Это относится, в частности, к материалам, из которых изготавливаются выходные окна мощных вакуумных генераторов, входные/выходные окна линий передач в электронике больших мощностей, включая входные окна термоядер-

10

ных реакторов [1,2]. Во всех этих примерах диэлектрические свойства материалов играют ключевую роль.

Наиболее перспективными материалами в данной области являются MPCVD-алмазы, выращенные методом осаждения из газовой фазы (chemical vapor deposition, CVD) в микроволновой плазме (microwave plasma, MP) [2–7].

Важной задачей является исследование влияния параметров процесса роста алмазов на их диэлектрические потери для оптимизации технологии производства. До сих пор этот вопрос не был изучен достаточно комплексно и систематически. Не хватает данных, полученных на основе систематических исследований диэлектрических потерь в большом числе образцов, выращенных при разных параметрах процесса роста, и в широком диапазоне частот.

Для этой цели была произведена большая партия (более десяти) образцов MPCVD-алмазов [7]. При производстве варьировались параметры процесса выращивания, в частности температура подложки, химический состав газовой смеси, включая концентрацию метана  $CH_4$  в потоке в реактор и концентрацию азота  $N_2$ , а также скорость роста. Были измерены диэлектрические потери в образцах в двух резонаторах на частотах  $\sim 25$  и 30 GHz.

В настоящей работе частотный диапазон исследования образцов расширен до частот 250-350 GHz.

Более десяти образцов алмазных пленок было произведено с использованием MPCVD-реактора с резонатором куполообразной формы в Университете науки и технологии Пекина (УНТП) [7]. При производстве этих образцов систематически варьировались три наиболее важных параметра процесса роста: температура подложки, химический состав газовой смеси, включая концентрацию метана CH<sub>4</sub> в потоке в реактор и концентрацию азота N<sub>2</sub>, а также скорость роста (табл. 1). Образцы алмазных пленок были разбиты на серии с условными обозначениями T, C и N, каждая из которых отвечает изменению одного из параметров (температуры подложки, концентрации метана и азота соответственно).

Геометрические параметры этих образцов (диаметр и толщина) оказались подходящими для того, чтобы можно было исследовать диэлектрические потери в образцах не только на частотах 25 и 30 GHz, но и на частотах на порядок выше (250–350 GHz).

Тангенс угла диэлектрических потерь tan  $\delta$  алмазных образцов был измерен в УНТП [7] на частотах от 25 до 30 GHz с использованием

| Эксперимен-<br>тальная серия               | Образец                                                                                     | Скорость<br>потока<br>CH <sub>4</sub> /H <sub>2</sub> ,<br>sccm | Темпе-<br>ратура<br>подложки,<br>°С                                                              | Концент-<br>рация<br>N <sub>2</sub> ,<br>ppm | Ско-<br>рость<br>роста,<br>µm/h   | Толщина<br>образца,<br>µm                                                                    |
|--------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|
| Т (температура подложки)                   | $     \begin{array}{c}       T-1 \\       T-2 & (C-2, N-1)^* \\       T-3     \end{array} $ | 15/300<br>15/300<br>15/300                                      | $\begin{array}{c} 885 \pm 10 \\ 975 \pm 10 \\ 1040 \pm 10 \end{array}$                           |                                              | 2.9<br>4.0<br>7.0                 | $188 \pm 2 \\ 237 \pm 2 \\ 243 \pm 2$                                                        |
| С (концентрация метана в потоке в реактор) | $\begin{array}{c} C-1 \\ C-2 \ (T-2, N-1)^* \\ C-3 \end{array}$                             | 9/300<br>15/300<br>24/300                                       | $\begin{array}{c} 975 \pm 10 \\ 975 \pm 10 \\ 975 \pm 10 \end{array}$                            |                                              | 1.8<br>4.0<br>8.4                 | $\begin{array}{c} 202 \pm 2 \\ 237 \pm 2 \\ 231 \pm 2 \end{array}$                           |
| N (концентрация<br>азота)                  | N-1 (T-2, C-2)*<br>N-2<br>N-3<br>N-4<br>N-5                                                 | 15/300<br>15/300<br>15/300<br>15/300<br>15/300                  | $\begin{array}{c} 975\pm10\\ 975\pm10\\ 975\pm10\\ 975\pm10\\ 975\pm10\\ 975\pm10\\ \end{array}$ | 0<br>0.1<br>1<br>10<br>40                    | 4.0<br>4.0<br>4.9<br>10.2<br>18.3 | $\begin{array}{c} 237 \pm 2 \\ 207 \pm 2 \\ 185 \pm 2 \\ 253 \pm 2 \\ 245 \pm 2 \end{array}$ |

**Таблица 1.** Параметры процесса роста образцов алмазных пленок и их толщина

\* Этот образец присутствует во всех трех экспериментальных сериях.

двух металлических цилиндрических резонаторов. Соответствующая измерительная техника подробно описана в работе [8].

Диэлектрические потери образцов, представленных в табл. 1, были измерены в Институте прикладной физики РАН на частотах 250–350 GHz резонансным методом с помощью высокодобротного открытого резонатора Фабри-Перо [9]. Значения тангенса угла потерь в полосах частот 25–30 и 250–350 GHz приведены в табл. 2.

Диэлектрические потери на частотах  $f < 100 \,\text{GHz}$  обусловлены главным образом наличием электрической проводимости на границах кристаллитов [5]. Частотная зависимость таких потерь может быть описана выражением

$$\tan \delta = a/f,\tag{1}$$

где  $a = \sigma/2\pi\varepsilon\varepsilon_0$ ,  $\varepsilon$  — относительная диэлектрическая проницаемость,  $\varepsilon_0$  — электрическая постоянная,  $\sigma$  — удельная проводимость.

На частотах  $f > 100 \,\mathrm{GHz}$  проявляются два других механизма, при которых потери возрастают с частотой. Оба эти механизма связаны с

| 25 GHz-резонатор |                                                                                                            | 30 GHz                                                                                                                                                                                                                                                                                                                                                                                         | -резонатор                                                                                                                                                                                                                                                                                                                                 | Субмиллиметровый<br>резонатор                          |                                                        |
|------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Частота,<br>GHz  | $\tan \delta$ , $10^{-4}$                                                                                  | Частота,<br>GHz                                                                                                                                                                                                                                                                                                                                                                                | $\tan \delta$ , $10^{-4}$                                                                                                                                                                                                                                                                                                                  | Частота,<br>GHz                                        | $\tan \delta$ , $10^{-4}$                              |
| 24.38            | $1.74\pm0.12$                                                                                              | 30.70                                                                                                                                                                                                                                                                                                                                                                                          | $1.55\pm0.12$                                                                                                                                                                                                                                                                                                                              | 348.01                                                 | $0.47\pm0.05$                                          |
| 24.08            | $1.09\pm0.08$                                                                                              | 29.75                                                                                                                                                                                                                                                                                                                                                                                          | $0.96\pm0.07$                                                                                                                                                                                                                                                                                                                              | 271.65                                                 | $0.6\pm0.5$                                            |
| 24.04            | $8.15\pm0.57$                                                                                              | 29.65                                                                                                                                                                                                                                                                                                                                                                                          | $8.04\pm0.56$                                                                                                                                                                                                                                                                                                                              | 266.16                                                 | $2.9\pm0.5$                                            |
| 24.31            | $0.37\pm0.02$                                                                                              | 30.43                                                                                                                                                                                                                                                                                                                                                                                          | $0.30\pm0.02$                                                                                                                                                                                                                                                                                                                              | 321.85                                                 | $0.6\pm0.05$                                           |
| 24.11            | $3.40\pm0.24$                                                                                              | 29.81                                                                                                                                                                                                                                                                                                                                                                                          | $3.21\pm0.22$                                                                                                                                                                                                                                                                                                                              | 275.67                                                 | $1.0\pm0.5$                                            |
| 24.31            | $2.21\pm0.15$                                                                                              | 30.32                                                                                                                                                                                                                                                                                                                                                                                          | $2.32\pm0.16$                                                                                                                                                                                                                                                                                                                              | 309.72                                                 | $1.3\pm0.5$                                            |
| 24.41            | $2.60\pm0.18$                                                                                              | 30.80                                                                                                                                                                                                                                                                                                                                                                                          | $3.07 \pm 0.21$                                                                                                                                                                                                                                                                                                                            | 349.5                                                  | $1.8\pm0.5$                                            |
| 23.97            | $1.53\pm0.11$                                                                                              | 29.41                                                                                                                                                                                                                                                                                                                                                                                          | $1.70\pm0.12$                                                                                                                                                                                                                                                                                                                              | 253.57                                                 | $1.2\pm0.5$                                            |
| 24.03            | $1.00\pm0.07$                                                                                              | 29.60                                                                                                                                                                                                                                                                                                                                                                                          | $1.14\pm0.08$                                                                                                                                                                                                                                                                                                                              | 264.03                                                 | $1.1\pm0.5$                                            |
|                  | 25 GHz<br>4acrora,<br>GHz<br>24.38<br>24.08<br>24.04<br>24.31<br>24.11<br>24.31<br>24.41<br>23.97<br>24.03 | $\begin{array}{c c} 25{\rm GHz}\mbox{-pe3ohatop} \\ \hline \mbox{Hactora,} & \tan\delta, \\ \mbox{GHz} & 10^{-4} \\ \hline \mbox{24.38} & 1.74\pm0.12 \\ \mbox{24.08} & 1.09\pm0.08 \\ \mbox{24.04} & 8.15\pm0.57 \\ \mbox{24.31} & 0.37\pm0.02 \\ \mbox{24.31} & 2.21\pm0.15 \\ \mbox{24.41} & 2.60\pm0.18 \\ \mbox{23.97} & 1.53\pm0.11 \\ \mbox{24.03} & 1.00\pm0.07 \\ \hline \end{array}$ | 25 GHz-резонатор30 GHzЧастота,<br>GHztan $\delta$ ,<br>10 <sup>-4</sup> Частота,<br>GHz24.38 $1.74 \pm 0.12$ 30.7024.08 $1.09 \pm 0.08$ 29.7524.04 $8.15 \pm 0.57$ 29.6524.31 $0.37 \pm 0.02$ 30.4324.11 $3.40 \pm 0.24$ 29.8124.31 $2.21 \pm 0.15$ 30.3224.41 $2.60 \pm 0.18$ 30.8023.97 $1.53 \pm 0.11$ 29.4124.03 $1.00 \pm 0.07$ 29.60 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Таблица 2. Диэлектрические потери в алмазных образцах

нарушениями упорядоченности в кристаллической решетке, включая различные дефекты кристаллической решетки, в частности границы между кристаллитами в поликристаллах, таких как MPCVD-алмазы, а также различные микрокаверны, точечные дефекты, примесные атомы и т.д. [10,11].

Первый механизм — однофононные диэлектрические потери, связанные с возбуждением акустических фононов, индуцированные неупорядоченностями кристаллической решетки [10]. Для этого механизма tan  $\delta \sim f$ .

На частотах f > 300 GHz в MPCVD-алмазах потери могут быть обусловлены также рэлеевским рассеянием на дефектах и микрокавернах [11]. Они резко возрастают с частотой.

Наблюдается корреляция между величинами потерь в частотных полосах 25–30 и 250–350 GHz практически для всех образцов. Она видна из рисунка, *a*, *b*.

Эта корреляция может быть объяснена следующим: в обеих частотных полосах основной вклад в диэлектрические потери вносят потери в областях вблизи границ кристаллитов. Это может быть связано с тем фактом, что в MPCVD-алмазах относительно большая объемная доля решеточных дефектов относится к областям, расположенным между кристаллитами (зернами).



Корреляция между величинами потерь в частотных полосах 25–30 и 250–350 GHz для различных серий образцов. *а* — серии *T* и *C*, *b* — серия *N*.

Таким образом, впервые проведено комплексное систематическое исследование диэлектрических потерь в частотных полосах 25–30 и 250–350 GHz более чем для десяти образцов MPCVD-алмазов, полученных при различных параметрах процесса роста, включая тем-

пературу подложки, концентрации метана и азота в газовой среде, а также скорость роста.

Обнаружена корреляция между значениями потерь в обеих частотных полосах для всех серий образцов. Такая корреляция может объясняться следующим образом: в обеих частотных полосах основной вклад в диэлектрические потери образцов вносят области, расположенные между кристаллитами (зернами).

Работа частично поддержана РФФИ (проект № 16-52-53140).

## Список литературы

- [1] Thumm M. // Plasma Phys. Control. Fusion. 2003. V. 45. N 12A. P. A143-A161.
- [2] Schreck S., Aiello G., Meier A., Strauss D., Gagliardi M., Saibene G., Scherer T. // Fusion Eng. Design. 2016. V. 109–111. Pt B. P. 1232–1236.
- [3] Delgado D., Vila R. // J. Nucl. Mater. 2014. V. 452. N 1-3. P. 218-222.
- [4] Antipov S.P., Baryshev S.V., Butler J.E., Jing C., Kanareykin A.D., Schoessow P., Conde M., Gai W., Power J.G., Stoupin S. // Diamond Relat. Mater. 2015. V. 54. N 1. P. 15–18.
- [5] Паршин В.В., Гарин Б.М., Мясникова С.Е., Орленеков А.В. // Изв. вузов. Радиофизика. 2004. Т. XLVII. № 12. С. 1087–1095.
- [6] Chernov V.V., Gorbachev A.M., Vikharev A.L., Lobaev M.A. // Phys. Status Solidi A. 2016. V. 213. N 10. P. 2564–2569.
- [7] Liu Y.Q., Ding M.H., Su J.J., Ren H., Lu X.R., Tang W.Z. // Diamond Relat. Mater. 2017. V. 73. P. 114–120.
- [8] Janezic M.D., Kuester E.F., Jarvis J.B. Broadband complex permittivity measurements of dielectric substrates using a split-cylinder resonator // 2004 IEEE MTT-S Int. Microwave Symp. Digest. IEEE, 2004. P. 1817–1820.
- [9] Parshin V.V., Tretyakov M.Yu., Koshelev M.A., Serov E.A. // IEEE Sensors J. 2013. V. 13. N 1. P. 18–23. DOI: 10.1109/JSEN.2012.2215315
   [10] E. E.M. (J. E.M. 1000 T. 20 P. 11 00 011 0001
- [10] Гарин Б.М. // ФТТ. 1990. Т. 32. В. 11. С. 3314-3321.
- [11] Моченева О.С., Паршин В.В. // Изв. вузов. Радиофизика. 2007. Т. L. № 12. С. 1084–1057.