О размерном эффекте при дифракции нейтронов на двухфазных структурах и применимости композитных эталонов для анализа остаточного аустенита в сталях

© А.А. Зисман,¹ Д.И. Николаев,² Т.А. Лычагина,² Е.А. Яшина¹

¹ Национальный исследовательский центр "Курчатовский институт"–Центральный научно-исследовательский институт конструкционных материалов "Прометей",

191015 Санкт-Петербург, Россия

² Объединенный институт ядерных исследований, 141980 Дубна, Россия

e-mail: crism ru@yahoo.co.uk, mail@crism.ru

(Поступило в Редакцию 1 марта 2018 г.)

Исследована возможность применения дифракции нейтронов для количественного анализа остаточного аустенита в сталях. Согласно полученным результатам, определенные свойства дифракции нейтронов на двухфазных структурах остаются размерно-независимыми, что позволяет применять крупные композитные эталоны. Показано, что этот подход обеспечивает приемлемую точность без использования априорных коэффициентов.

DOI: 10.21883/JTF.2018.11.46640.94-18

Введение

Остаточный аустенит (ОА) существенно влияет на механические свойства мартенситных сталей [1-3], однако при малых количествах этой дисперсной фазы ее анализ остается серьезной проблемой. Пороги определимости объемной доли ОА равны примерно 2 и 1% соответственно для дифракции рентгеновского излучения и нейтронов [4-6], причем оба метода отвергают какоелибо сравнение результатов с независимыми данными, так как виртуальные интенсивности дифракции от однофазных α- и γ-кристаллов априорно вычисляются из теоретических соображений. Используемые при этом упрощенные модели нуждаются в обосновании, поскольку они не учитывают такие важные факторы, как кристаллографическая текстура и легирование стали. Проблема верификации особенно актуальна для времяпролетного метода измерений [7], где возможны вариации распределения нейтронов в конечном интервале длины волны (энергии), содержащем анализируемые рефлексы. Настоящая работа, целью которой является определение содержания ОА в стали с использованием экспериментальной калибровки, вовсе не призывает отказаться от применения "первопринципов". В то же время помимо упрощения обработки дифракционных данных предлагаемый подход позволяет проверить и уточнить априорные расчетные параметры.

Образцы с заданным количеством известного вещества давно применяются в фазовом анализе порошковых композиций методом относительных интенсивностей [8]. В отличие от изотропных порошков плотные металлы, как правило, обладают кристаллографической текстурой, но современные нейтронные дифрактометры позволяют учесть ее влияние путем усреднения измерений по ориентационному пространству [5–7]. Кроме того, проникающая способность нейтронов обеспечивает дифракцию на объемах α - и γ -фаз, достаточно больших для создания искусственных эталонов.

Калибровка на композитных образцах с заданными объемными долями аустенитной стали и α-железа уже применялась для оценки содержания ОА в среднеуглеродистой мартенситной стали [7]. Однако в отличие от ее микроструктуры макроскопическое строение подобных образцов нарушает пропорциональность между интенсивностями дифракционных пиков и объемами соответствующих фаз. По всей видимости, данный эффект связан с поглощением падающих и отраженных нейтронов в толстых слоях аустенита и α-железа. Для коррекции соответствующих ошибок, которые игнорировались в предыдущей работе [7], в настоящей работе по тем же экспериментальным данным выявляются характеристики дифракции, независимые от структурного масштаба двухфазных композиций. Эти параметры, измеримые на искусственных эталонах, позволяют определить объемные доли ОА в исследуемой стали после ее различных термообработок. Как принято в традиционных методах [4-6], точность предлагаемого подхода оценивается по относительной вариации результатов, получаемых для разных комбинаций α- и γ-рефлексов.

1. Исследуемые материалы и метод измерений

Среднеуглеродистая мартенситная сталь, содержащая (массовые проценты) 0.4С, 1.3(Cr + Mo), 0.7Ni и 1.2Mn, исследовалась на образцах объемом $20 \times 20 \times 25$ mm. Для проведения калибровки параллелепипеды ($20 \times 20 \times 10$ mm) из аустенитной стали X18H10T

располагались на основаниях из "Армко" железа, обеспечивая заданные объемные доли у-фазы (3.54, 7.10, 10.58 и 14.15%) в сборках объемом $60 \times 60 \times 33$ mm. В частности, 14.15% у-фазы отвечает четырем таким элементам. Дифракция от столь больших объемов металла гарантируется поперечным сечением нейтроновода $(50 \times 95 \text{ mm})$ на дифрактометре SKAT и высокой интенсивностью нейтронного потока от импульсного реактора ИБР-2 (ОИЯИ, Дубна, Россия). При этом, как показано в [7], влияние текстуры учитывалось с помощью эффективного ориентационного усреднения, которое обеспечено системой детекторов на кольце дифрактометра и вращением образца. Для варьирования фазового состава исследуемая сталь предварительно подвергалась отпуску длительностью 8 h при температурах 150, 250 и 300°C, а соответствующие объемные доли ОА определялись по нескольким парам рефлексов $(hkl)_{\gamma}/(hkl)_{\alpha}$ с учетом результатов калибровки на эталонах.

Определение доли остаточного аустенита по дифракционным данным

2.1. Основные соотношения

Стандартный способ определения объемной доли ОА по дифракционным данным [4] основан на уравнениях

$$I_{\gamma}^{hkl} = K_{\gamma} R_{\gamma}^{hkl} V_{\gamma}, \quad I_{\alpha}^{hkl} = K_{\alpha} R_{\alpha}^{hkl} (V - V_{\gamma}), \qquad (1)$$

где V — объем образца, а I_{γ}^{hkl} и I_{α}^{hkl} — интегральные интенсивности пиков для рефлексов $(hkl)_{\gamma}$ и $(hkl)_{\alpha}$, соответственно; они отвечают ОА и матричной α -фазе, занимающим объемы V_{γ} и V – V_{γ} . Коэффициенты R_{γ}^{hkl} и R_{α}^{hkl} для анализируемых рефлексов априорно вычисляются из теоретических соображений в пренебрежении влиянием легирующих элементов и кристаллографической текстуры. Для наиболее часто используемых монохроматических источников излучения $K_{\gamma} = K_{\alpha}$ и, согласно (1), в выражении для искомой объемной доли $p = V_{\gamma}/V$ эти коэффициенты, зависящие от устройства дифрактометра, сокращаются:

$$p = \frac{I_{\gamma}}{I_{\gamma} + I_{\alpha}(R_{\gamma}/R_{\alpha})},$$
 (2)

где для упрощения записи пропущены кристаллографические индексы. В то же время при дифракции нейтронов, регистрируемой времяпролетным методом как в настоящей работе, коэффициентам c_{γ}^{hkl} и c_{α}^{hkl} в линейных зависимостях

$$I_{\gamma}^{hkl} = c_{\gamma}^{hkl} V_{\gamma}, \quad I_{\alpha}^{hkl} = c_{\alpha}^{hkl} (V - V_{\gamma})$$
(3)

соответствуют различные длины волны (энергии нейтронов) [9], что несколько осложняет априорное вычисление отношений

$$c_{\gamma\alpha} = c_{\gamma}/c_{\alpha} \tag{4}$$

.10, $(hkl)_{\gamma}/(hkl)_{\alpha}$: nm. I_{γ}

$$p = \frac{I_{\gamma}}{I_{\gamma} + c_{\gamma\alpha}I_{\alpha}}.$$
 (5)

Как и в уравнении (2), в (4) и (5) для краткости пропущены кристаллографические индексы. Помимо чисто вычислительных трудностей при использовании времяпролетного метода теоретические значения c_{γ} , c_{α} и, следовательно, $c_{\gamma\alpha}$ могут привести к неточному определению *p*, поскольку они игнорируют возможные вариации энергетического спектра нейтронов при облучении образца.

при определении доли ОА на разных парах рефлексов

Принципиальная возможность экспериментального определения $c_{\gamma\alpha}$ на однофазных эталонах следует из (3), так как I_{γ} и I_{α} сохраняют линейную зависимость от p во всем диапазоне $0 \le p \le 1$ (рис. 1), где I_{α}^* и I_{γ}^* отвечают p = 0 и p = 1 соответственно. Таким образом,

$$c_{\gamma\alpha} = I_{\gamma}^* / I_{\alpha}^* \tag{6}$$

и уравнение (5) можно представить в следующем виде:

$$p = \frac{I_{\gamma}}{I_{\gamma} + I_{\alpha}(I_{\gamma}^*/I_{\alpha}^*)}.$$
(7)

Хотя стандартные относительные интенсивности [8], измеряемые при заданных объемах или массах двух фаз, широко применяются в количественном анализе многофазных порошковых смесей, I_{γ}^* и I_{α}^* вряд ли определимы на мартенситных сталях. С одной стороны, $I_{\gamma} < I_{\gamma}^*$, так как доля γ -фазы в них относительно мала; с другой стороны, $I_{\alpha} = I_{\alpha}^*$, т.е. p = 0, также недостижимо, поскольку в стали всегда сохраняется некоторое количество ОА [10].

Исследование дифракции нейтронов на двухфазных композитных образцах должно верифицировать приведенные выше определяющие соотношения, а также обосновать процедуру экспериментальной калибровки (определения $c_{\gamma\alpha} = I_{\gamma}^{*}/I_{\alpha}^{*}$) для количественного анализа ОА в сталях. Эта задача не является тривиальной, так как макроскопические размеры фазовых элементов в эталонных образцах могут привести к нарушению линейных зависимостей, показанных на рис. 1, а, согласно уравнению (3). В таких случаях по нелинейным функциям, схематически изображенным на рис. 1, b, необходимо определить размерно-независимые характеристики дифракции. Учитывая, как это принято, возможные вариации условий облучения и размеров образцов, интегральные интенсивности дифракционных пиков здесь и в дальнейшем выражаются в условных единицах а.и. (arbitrary units).

2.2. Влияние объема образца и масштаба двухфазной структуры

В настоящем разделе анализируется влияние размеров композитных эталонов и их структурных (фазовых)

Журнал технической физики, 2018, том 88, вып. 11

Рис. 1. Схематические зависимости интегральных интенсивностей дифракции на *α*- и *γ*-фазах от объемной доли *γ*-фазы для (*a*) микроструктуры стали и (*b*) искусственной структуры с макроскопическими элементами обеих фаз.

Рис. 2. Схема для определения dI_{γ}/dI_{α} при малом виртуальном приращении доли аустенита в двухфазном эталоне: a — целый образец и b — локальный участок межфазной границы.

элементов на дифракцию нейтронов. Для начала рассмотрим объем стали dV, достаточно малый для того, чтобы считать нейтронный поток в нем однородным, но достаточно большой, чтобы соответствующая доля ОА была представительной для целого образца. Если ориентационное усреднение позволяет с приемлемой точностью исключить влияние текстуры, то вклады рассматриваемого объема в I_{γ} и I_{α} выражаются в соответствии с (3):

$$\delta I_{\gamma} = k(\mathbf{r})c_{\gamma}pdV, \quad \delta I_{\alpha} = k(\mathbf{r})c_{\alpha}(1-p)dV, \quad (8)$$

где коэффициент k, зависящий лишь от локального вектора положения **r**, учитывает ослабление падающего и отраженного потоков нейтронов в окружающем материале. Таким образом, поскольку p не зависит от **r**,

$$I_{\gamma} = \int_{V} k(\mathbf{r}) c_{\gamma} p dV = \langle k \rangle_{V} c_{\gamma} p V,$$

$$I_{\alpha} = \int_{V} k(\mathbf{r}) c_{\alpha}(1-p) dV = \langle k \rangle_{V} c_{\alpha}(1-p) V, \qquad (9)$$

где $\langle k \rangle_V$ — среднее значение k в объеме образца. Эти уравнения, пропорциональные (3), согласуются с рис. 1, a и обосновывают применение выражения (5) к стальным образцам произвольного размера; единственным ограничением является требование совместимости образцов с конструкцией дифрактометра.

В отличие от предыдущего случая (p = const) в составных двухфазных эталонах не только k, но и локальная доля аустенита (q) зависят от координат, т.е.

$$I_{\gamma} = \int_{V} k(\mathbf{r}) c_{\gamma} q(\mathbf{r}) dV = \langle kq \rangle_{V} c_{\gamma} V,$$

$$I_{\gamma} = \int_{V} k(\mathbf{r}) c_{\alpha} (1 - q(r)) dV = \langle k(1 - q) \rangle_{V} c_{\alpha} V.$$
(10)

При этом зависимости I_{γ} и I_{α} от $p = \langle q \rangle_V$ оказываются нелинейными, как показано на рис. 1, *b*, по-

1755

скольку в рассматриваемом случае $\langle kq \rangle_V \neq \langle k \rangle_V \langle q \rangle_V$ и $\langle k(1-q) \rangle_V \neq \langle k \rangle_V \langle 1-q \rangle_V$. Однако согласно (10), I_γ при p = q = 1 и I_α при p = q = 0 не отличаются от соответствующих величин, следующих из (9). Иначе говоря, несмотря на нелинейность $I_\gamma(p)$ и $I_\alpha(p)$, для определения I_γ^* и I_α^* можно использовать однофазные эталоны. Кроме того, при достаточно малых $\langle q \rangle_V = p$ вариациями величины $k(\mathbf{r})$ в (10) можно пренебречь и рассматривать $I_\gamma(p)$ и $I_\alpha(p)$ как локально линейные (рис. 1, b). Как будет показано ниже, при этом удается использовать больше экспериментальных данных (образцов с различными значениями p), т.е. получить более надежную оценку $c_{\gamma\alpha} = I_\gamma^*/I_\alpha^*$.

Рассмотрим локальный участок dS межфазной границы, который испытывает малое смещение Δ в нормальном направлении, как иллюстрируется на рис. 2. При этом в добавленном объеме γ -фазы величина pскачком возрастает от нуля до единицы, что изменяет интегральные интенсивности согласно уравнению (8):

$$\delta I_{\gamma} = k(\mathbf{r})\Delta(\mathbf{r})c_{\gamma}dS, \quad \delta I_{\alpha} = -k(\mathbf{r})\Delta(\mathbf{r})c_{\alpha}dS.$$
 (11)

Соответствующие приращения этих интенсивностей для целого образца определяются интегрированием (11):

$$dI_{\gamma} = c_{\gamma} \int_{S} k(\mathbf{r}) \Delta(\mathbf{r}) dS = c_{\gamma} S \langle k \Delta \rangle_{S},$$

$$dI_{\alpha} = -c_{\alpha} \int_{S} k(\mathbf{r}) \Delta(\mathbf{r}) dS = -c_{\alpha} S \langle k \Delta \rangle_{S}, \qquad (12)$$

где $\langle \ldots \rangle_S$, означает усреднение по всей площади межфазных границ. Из (12) с учетом (4) и (6) следует, что для любой пары рефлексов $(hkl)_{\gamma}/(hkl)_{\alpha}$ величина

$$-dI_{\alpha}/dI_{\gamma} = c_{\gamma\alpha}^{-1} = I_{\alpha}^*/I_{\gamma}^*, \qquad (13)$$

и соответственно отношение $(I_{\alpha}(0) - I_{\alpha}(p))/I_{\gamma}(p)$ не зависят ни от р, ни от размеров образца. Несмотря на нелинейность, изображенную на рис. 1, b, данная инвариантность позволяет с помощью нескольких эталонов определять $c_{\gamma\alpha}$ для уравнения (5). При этом, согласно рис. 1, b, более благоприятны малые p, так как dI_{α}/dI_{ν} точнее измеряется при максимальных углах наклона графиков $I_{\alpha}(p)$ и $I_{\gamma}(p)$. Необходимо отметить, что такая процедура предполагает одинаковые условия облучения (поток нейтронов и время экспозиции) при различном содержании аустенита в образцах, а точность выполнения этого требования оценивается по близости полученной зависимости $I_{\alpha}(I_{\nu})$ к линейной. Стоит также подчеркнуть, что макроскопические образцы с заданными величинами р пригодны лишь для дифракции нейтронов; для рентгеновской дифракции, охватывающей поверхностные слои толщиной не более десятка микрон, калибровка возможна лишь на микроскопических эталонных структурах.

3. Результаты

3.1. Калибровка на двухфазных эталонах

Для верификации результатов предыдущего анализа используются данные, полученные в работе [7] на двухслойных эталонных образцах. Времяпролетные спектры дифракции нейтронов в ограниченном диапазоне d (межплоскостное расстояние), показанные на рис. 3, иллюстрируют ожидаемое усиление и ослабление γ -Fe (111) и α -Fe (110) рефлексов соответственно при каждом увеличении доли аустенита. Аналогичная закономерность наблюдается и для любой другой пары рефлексов $(hkl)_{\gamma}/(hkl)_{\alpha}$. Чтобы исключить ошибки, связанные с их перекрытием, целесообразно сравнивать изолированные пики, даже если они менее интенсивны. В частности, в настоящей работе попарно рассматриваются рефлексы $(211)_{\alpha}/(220)_{\gamma}$, $(211)_{\alpha}/(200)_{\gamma}$, $(200)_{\alpha}/(220)_{\gamma}$ и $(200)_{\alpha}/(200)_{\gamma}$.

В качестве примера на рис. 4, времяпролетные спектры в широком диапазоне d показаны для одного из эталонов и одного образца исследуемой стали соответственно. На последнем спектре некоторые пики α -фазы представлены в усеченном виде, так как масштаб вертикальной оси выбран для отображения относительно слабых пиков γ -фазы.

На рис. 5 показаны зависимости интегральных интенсивностей от доли аустенита в исследуемых эталонах для пар рефлексов $(211)_{\alpha}/(220)_{\gamma}$ и $(200)_{\alpha}/(200)_{\gamma}$ при p < 0.15. Эти графики, а также подобные данные для $(211)_{\alpha}/(200)_{\gamma}$ и $(200)_{\alpha}/(220)_{\gamma}$ демонстрируют, как и ожидалось, хорошую линейную аппроксимацию. Соответствующие модели статистически значимы (уровень значимости 5%) при коэффициенте детерминации r^2 не менее 0.96. Кроме того, подтверждается и предсказанное в предыдущем разделе отклонение от линейности

Рис. 3. Смежные пики дифракции нейтронов (времяпролетный метод) на *α*- и *γ*-фазах двухслойных эталонов фиксированного объема с указанными во вставке количествами аустенитных элементов.

Рис. 4. Времяпролетные спектры дифракции нейтронов: *a* — эталон с объемной долей аустенита 14.15%, *b* — образец среднеуглеродистой мартенситной стали после отпуска при 150°С.

Рис. 5. Зависимости интегральных интенсивностей дифракционных пиков от объемной доли аустенита в композитных эталонах для пар рефлексов: $a - (211)_{\alpha}/(220)_{\gamma}$ и $b - (200)_{\alpha}/(200)_{\gamma}$.

(рис. 1, *b*) при увеличении *p*. Действительно, линейные экстраполяции I_{α} на рис. 5, *a*, *b* пересекают горизонтальную ось при $p \approx 0.4$, а не p = 1, при котором фактически исчезает α -фаза. Результаты калибровки на двухфазных эталонах показаны в табл. 1.

3.2. Определение объемной доли ОА в мартенситной стали

С учетом результатов калибровки (табл. 1) и относительных интенсивностей для четырех пар рефлексов (табл. 2) объемные доли ОА в исследуемой стали после ее отпуска при различных температурах вычислены с помощью уравнения (5) и представлены в табл. 3. Согласно этим результатам, каждая пара рассматриваемых рефлексов демонстрирует постепенный распад метастабильной γ -фазы с ростом температуры. Кроме того, в табл. 3 приведены значения $\langle p \rangle$, усредненные по нескольким (N) парам рефлексов, а также стандартные ошибки среднего

$$\sigma = \left(N^{-1} (N-1)^{-1} \sum_{i=1}^{N} (p_i - \langle p \rangle)^2 \right)^{1/2}.$$
 (14)

Согласно этим результатам, все относительные ошибки $\sigma/\langle p \rangle$ оказались почти на порядок меньше, чем соответствующие характеристики, получаемые традиционным методом [5]. Стоит также отметить, что измеренные величины $\langle p \rangle$, вполне характерные для среднеуглеродистых мартенситных сталей, примерно в 2.5 раза выше, чем в работе [7], где игнорировалась нелинейность функций $I_{\alpha}(p)$ и $I_{\gamma}(p)$ при калибровке на макроскопических эталонах. В то же время, несмотря на эту

α-рефлекс	200	200	211	211
γ-рефлекс	200	220	200	220
$c_{\gammalpha}=-dI_{\gamma}/dI_{lpha}$	1.281	0.868	0.875	0.593

Таблица 1. Результаты калибровки на двухфазных эталонах

Таблица 2. Относительная интенсивность I_{γ}/I_{α} для разных пар рефлексов при дифракции нейтронов на образцах исследуемой стали

Рефлексы	Температура отпуска, $^{\circ}C$			
	150	250	300	
$(200)_{\gamma}/(200)_{\alpha}$ $(220)_{\gamma}/(200)_{\alpha}$	0.1012	0.0354	0.0043	
$(200)_{\gamma}/(211)_{\alpha}$ $(220)_{\gamma}/(211)_{\alpha}$	0.0643 0.0394	0.0223 0.0165	0.0027	

Таблица 3. Объемные доли (%) остаточного аустенита, определенные в образцах среднеуглеродистой мартенситной стали после отпуска при разных температурах

Температура отпуска, °С				
Рефлексы		150	250	300
α-Fe	γ-Fe			
200 200 211 211	200 220 200 220	7.56 6.87 6.85 6.22	2.69 2.93 2.48 2.71	 0.49 0.45
Среднее Стандарти	значение ная ошибка	6.88 0.27	2.70 0.09	0.47 0.02

систематическую ошибку, приблизительные оценки [7] позволили сделать правильные качественные выводы о влиянии температуры отпуска на содержание ОА в исследуемой стали.

В отличие от традиционного усреднения нормированных интенсивностей по нескольким рефлексам каждой фазы [4-6], мы отдельно вычисляем объемные доли ОА для каждой пары $(hkl)_{\nu}/(hkl)_{\alpha}$, чтобы оценить значимость этих величин и учесть лишь приемлемо точные измерения. Разумеется, увеличение числа рассматриваемых рефлексов ослабляет влияние текстуры на результат; однако подобный подход теряет смысл, если соответствующие ошибки устраняются самой процедурой измерений как в настоящей работе или [5]. При выполнении этого условия расширение выборки за счет менее точных данных (слабых рефлексов) отнюдь не приближает усредненную оценку к реальности. С учетом подобных соображений в анализе порошков методом относительных интенсивностей [8] учитывается лишь самый сильный рефлекс каждой фазы.

4.

нофазных элементах. Используя эту инвариантность, содержание ОА в сталях можно определять с помощью калибровки на эталонах, т.е. без априорных расчетных параметров. При этом, разумеется, необходимо ориентационное усреднение, позволяющее пренебречь влиянием кристаллографической текстуры. Объемные доли ОА, определенные таким образом в среднеуглеродистой мартенситной стали после различных термообработок, согласуются с естественным влиянием температуры на превращение метастабильной у-фазы. Более того, по сравнению с традиционным методом [5,6] предлагаемый подход многократно уменьшает относительную вариацию результатов, полученных на разных парах рефлек-COB.

Как показано в настоящей работе, при нейтронной дифракции на структурах с различным соотношением α - и γ -фаз производная dI_{γ}/dI_{α} остается постоянной,

несмотря на возможную нелинейность функций $I_{\alpha}(p)$ и $I_{\nu}(p)$ из-за поглощения нейтронов в крупных од-

Обсуждение результатов

Главной проблемой нашего подхода, заслуживающей специального рассмотрения, остается влияние химического состава аустенита, по которому эталонные образцы заметно отличаются от исследуемых мартенситных сталей. Эта разница неизбежна, так как у-фаза не могла бы оставаться стабильной в макроскопических объемах при относительно малом содержании легирующих элементов, характерном для микроскопических островков ОА. Такое различие может повлиять на определение параметра $c_{\gamma\alpha} = I_{\gamma}^* / I_{\alpha}^*$ и, следовательно, на точность калибровки независимо от явлений, учитываемых локальным фактором ослабления $k(\mathbf{r})$. Одним из способов решения проблемы является использование стальных эталонов с достаточно большими объемными долями ОА $(\sim 10\%)$, что вполне реалистично для широкого класса TRIP сталей [11]. На них удовлетворительно точные результаты могут быть получены такими независимыми методами, как измерение магнитных свойств, оптическая микроскопия, а также растровая и просвечивающая электронная микроскопия. В качестве альтернативного подхода также можно применять специальные термические обработки, обеспечивающие вариацию содержания ОА, даже если его количество остается неизвестным. Согласно уравнению (13), соответствующие вариации интенсивностей I_{γ} и I_{α} позволяют найти $c_{\gamma\alpha} = -dI_{\gamma}/dI_{\alpha}$, а затем с помощью уравнения (5) определить объемные доли ОА в рассматриваемых состояниях.

Калибровка на искусственных эталонах, использованная в настоящей работе для количественного анализа ОА методом дифракции нейтронов, в принципе применима к любым дисперсным фазам, в частности к карбидам, хотя это связано с рядом проблем. Во-первых, в отличие от данной работы, где мы пренебрегали относительно малым суммарным объемом карбидов в стали, необходимо будет учитывать более чем две фазы. Во-вторых, помимо незначительной объемной доли некоторые карбиды обладают и низкой удельной интенсивностью дифракции dI_c/dV_c , что затрудняет регистрацию соответствующих пиков. Несмотря на указанные проблемы, перспективы предлагаемого метода заслуживают отдельного рассмотрения, так как он исключает трудоемкую и не всегда аккуратную процедуру выделения анализируемых частиц путем химического растворения стальной матрицы [12].

Заключение

Согласно полученным результатам, определенные свойства дифракции нейтронов на двухфазных структурах остаются размерно-независимыми, что позволяет применять крупные композитные эталоны для количественного анализа ОА в сталях. Не используя априорных коэффициентов, этот подход обеспечивает приемлемую точность. В частности, так были измерены объемные доли ОА в среднеуглеродистой мартенситной стали после длительного отпуска при разных температурах. В каждом из исследованных состояний, включая состояние с минимальной величиной $p \approx 0.5\%$, относительная вариация результата на четырех парах рефлексов не превышает 1/20, а закономерное уменьшение p с ростом температуры отпуска соответствует метастабильному состоянию анализируемой γ -фазы.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках Соглашения 14.595.21.0004 (уникальный идентификатор RFMEFI59517X0004).

Список литературы

- [1] Lan L., Qui C., Zhao D., Gao X., Du. L. // Materials Science and Engineering A. 2011. Vol. 529. P. 192–200.
- [2] Herrera C., Ponge D., Raabe D. // Acta Materialia. 2011.
 Vol. 59. P. 4653–4664.
- [3] Sun J., Yu H. // Mater. Sci. Engineer. A. 2013. Vol. 586.
 P. 100–107.
- [4] ASTM E975-03: Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation / West Conshohocken, PA: ASTM International, 2003. 7 p.
- [5] Gnäupel-Herold T., Creuziger A. // Mater. Sci. Engineer. A. 2011. Vol. 528. P. 3594–3600.
- [6] Xu P.G., Tomota Y., Arakaki Y., Harjo S., Sueyoshi H. // Materials Characterization. 2017. Vol. 127. P. 104–110.
- [7] Lychagina T., Zisman A., Yashina E., Nikolaev D. // Advanced Engineering Materials. 2018. In print. doi 10.1002/adem.201700559
- [8] Chung F.H. // J. Appl. Crystallog. 1974. Vol. 7. P. 519-525.
- [9] Нозик Ю.З., Озеров Р.П., Хениг К. Нейтроны и твердое тело. Т. 1: Структурная нейтронография. М.: Атомиздат, 1979. 344 с.
- [10] Koistinen D.P., Marburger R.E. // Acta Metallurgica. 1959. Vol. 7. P. 59–60.

- [11] Zhao L., van Dijk N.H., Brück E., Sietsma J., van der Zwaag S. // Materials Science and Engineering. A. 2001. Vol. 313. P. 145–152.
- [12] Корнеев А.Е., Степанова И.А., Ярополова Е.И. // Металловедение и термическая обработка металлов. 2006. Вып. 7. С. 60-66.