03

Взаимодействие газовой струи с неподвижной и вращающейся преградой из высокопроницаемого пористого материала

© В.К. Баев, А.Н. Бажайкин¶

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, 630090 Новосибирск, Россия ¶ e-mail: bazhan@itam.nsc.ru

(Поступило в Редакцию 15 декабря 2017 г.)

Экспериментально исследовано взаимодействие осесимметричной струи углекислого газа с неподвижной и вращающейся проницаемой для газов преградой. Описаны картины течений и пространственные распределения концентраций CO₂ в зависимости от условий экспериментов. Рассмотрена возможность использования полученных результатов для организации различных физико-химических процессов.

DOI: 10.21883/JTF.2018.11.46624.2598

Введение

Исследование характеристик течений при взаимодействии струи с преградой необходимо для развития ресурсосберегающих технологий, связанных с энергетикой, теплообменными процессами, нанесением различных покрытий и другими применениями. Относительно небольшие затраты на струйную обдувку преград, значительная интенсификация тепломассообмена и полезные эффекты, связанные с перестройкой и турбулизацией течений вблизи преграды, стимулировали множество исследований. В работе [1] дана схема течений при взаимодействии струи с непроницаемой преградой, состоящая из зоны свободной струи, зоны разворота и течения, стелющегося по преграде. Приведены экспериментальные данные и расчеты параметров течений в этих зонах, а также проанализированы условия отрыва потока от преграды и обратного течения струи. В [2] описаны экспериментальные исследования локальных характеристик турбулентности, касательных напряжений и давлений на преграде в зависимости от условий взаимодействия струи с преградой. В [3] проведено численное моделирование вихревой структуры течения и теплообмена в области взаимодействия с преградой и разворота потока.

К настоящему времени разработаны технологии получения новых проницаемых пористых материалов с высокими значениями пористости, удельной поверхности, проницаемости, теплообменных характеристик [4]. Данные свойства существенно расширяют области применения струйных технологий, что требует изучения течений, возникающих при взаимодействии струй с проницаемыми преградами. При натекании струи на проницаемую преграду газ растекается как по поверхности (как на непроницаемой преграде), так и внутри преграды, и часть газа проходит через преграду. Структура таких сложных течений остается малоизученной. В [5] описаны результаты экспериментов и численных расчетов взаимодействия сверхзвуковой воздушной струи и проницаемой преграды, на основании которых представлены схемы течений. Согласно схемам, в приосевой зоне перед преградой образуется отрывная зона, имеющая форму вихря, которая огибается основным потоком с формированием зоны разворота на 90°, после которой поток растекается по преграде. Другая часть потока растекается внутри преграды с последующим выходом либо на лицевую ее сторону в растекающийся по ней поток, либо выходит на обратную сторону преграды, образуя течение за преградой. Особенности взаимодействия дозвуковой струи CO₂ с высокопроницаемой пористой преградой из никеля (пористость 95%) кратко изложены в [6], где дана схема течений по поверхности, внутри и позади преграды, а также циркуляционного течения между соплом и преградой. Представляет практический интерес взаимодействие струи с вращающейся проницаемой преградой — диском, обладающим способностью всасывать торцевыми поверхностями газообразные среды, которые внутри диска перемещаются в радиальном направлении и выбрасываются через цилиндрическую поверхность диска [7], т.е. диск может использоваться в качестве элемента вентилятора. Если одновременно подавать к вращающемуся диску среды, имеющие различные свойства, внутри диска могут осуществляться такие процессы, как смешение, теплообмен, массообмен и химические реакции, т.е. проницаемый диск может быть использован в качестве реактора и вентилятора, перемещающего продукты реакций для дальнейшего применения.

В настоящей работе представлены результаты экспериментальных исследований распространения струи углекислого газа (CO₂) в воздухе и взаимодействия ее с неподвижной и вращающейся преградой (диском) из высокопроницаемого ячеисто-пористого материала (ВПЯМ).

Условия и методика проведения экспериментов

Схема экспериментов представлена на рис. 1, а. Струя впрыскивалась из цилиндрического сопла *1* диамет-

Рис. 1. а — схема постановки экспериментов. b — изображение высокопроницаемой преграды — диска из никелевого ВПЯМ.

ром 0.5 mm под давлением 0.1–1 atm на преграду 2 на расстоянии $l_c = 50-100$ mm. Углекислый газ подавался на сопло из баллона 3 через редуктор 4, счетчик расхода газа (ГСБ–4) 5 с контролем давления впрыска образцовым манометром 6.

В качестве преграды использовался диск из никелевого ВПЯМ, показанный на рис. 1, *b*, толщиной 20 mm, диаметром 150 mm, имеющий пористость 95%, размер пор-ячеек 2-4 mm и проницаемость $3 \cdot 10^{-8}$ m² [4].

Диагностика процесса включала теневую видеосъемку, визуализацию течений с помощью дыма и газовый анализ среды с помощью капиллярной трубки δ , соединенной с газоанализатором "Тест" $^{\circ}9$.

Видеосъемка процесса проводилась через теневой прибор ИАБ-451, установленный перпендикулярно оси струи так, чтобы в поле зрения прибора (240 mm) попадало сопло, диск и пространство за диском. Четкость изображения струи и течений достигалась за счет разницы плотностей впрыскиваемого CO₂ и окружающего воздуха при положении ножа Фуко, параллельном оптической щели прибора. При этом кромка ножа регулировалась совпадающей с осью струи так, что половина изображения (относительно оси струи) получалась светлой, а другая половина — темной. Съемка производилась со скоростью 24 кадра в секунду.

Визуализация течений с помощью дыма осуществлялась с помощью нихромовой проволоки 7, смоченной машинным маслом и установленной над соплом, струей и преградой. При нагреве проволоки током масло собиралось на ней в капли, которые испарялись в виде струек дыма, реагирующих на перепады давлений, создаваемые течениями.

Газовый анализ среды производился при отборе газов капиллярной трубкой δ с наружным и внутренним диаметрами 1.0 и 0.6 mm, соединенной с газоанализатором 9 марки "Тест". При измерениях в трубку поступала смесь газов, образовавшаяся непосредственно у среза трубки, независимо от соотношения диаметров сопла и трубки. Газоанализатор позволял определять объемные концентрации CO₂ с временным интервалом 5 s и погрешностью 5%. Отбор проб смеси CO₂ с воздухом производился в сечениях, перпендикулярных оси струи

на разных расстояниях от сопла, в том числе на поверхностях диска.

Взаимодействие струи CO₂ с неподвижной проницаемой преградой (диском)

Свободная осесимметричная струя CO₂, распространяющаяся в неподвижной воздушной среде, перед взаимодействием с преградой пространственно неоднородна по скоростям и концентрациям газа струи. В каждом сечении струи скорости и концентрации CO₂ монотонно убывают в радиальном направлении от максимума на оси струи до нуля на периферии. Кроме того, эти характеристики убывают обратно пропорционально длине струи при ее распространении до преграды [1]. Поэтому параметры струи при контакте с преградой определяются скоростью впрыска U_0 , расстоянием от сопла до преграды l_c и локальными характеристиками струи.

На рис. 2 представлены теневые изображения натекания струи СО2 на преграду из никелевого ВПЯМ на расстоянии $l_c = 50 \,\mathrm{mm}$ при разных скоростях впрыска $U_0 = 124$, 175 и 248 m/s. При относительно малых скоростях (рис.2, a) видно четкое изображение струи до преграды, перед которой образуется течение от центра к периферии. На некотором расстоянии от оси струи течение отрывается от поверхности преграды и распространяется за пределы преграды. На рис. 2, а также видно, что часть струи проходит через преграду и образует за ней поток, параллельный оси струи. При увеличении скорости струи (рис. 2, b) перед преградой наблюдается неоднородная картина, на фоне которой просматриваются образования в виде колец вокруг струи, изображение которой частично экранируется течениями в пространстве между соплом и преградой. Анализ видеофильма процесса показал, что от преграды постоянно отходят волны возвратных течений (в сторону сопла), в совокупности образующих кольцевой вихрь тороидальной формы с центром в приосевой зоне струи. Течение за преградой, наоборот, спокойное, однородное, "просеянное" через поры и ячейки, и по форме представляет конус, переходящий в цилиндр. При

a b c

Рис. 2. Теневые изображения взаимодействия струи CO₂ с преградой U₀, m/s: *a* — 124, *b* — 175, *c* — 248.

Рис. 3. Визуализация течений с помощью дыма при $U_0 = 240$ m/s. $a - l_c = 50, b - l_c = 60, c - l_c = 75$ mm.

еще больших скоростях впрыска возвратные течения интенсифицируются и могут состоять из нескольких кольцевых вихрей, "вложенных" друг в друга. Поток за преградой также интенсифицируется и становится менее однородным (рис. 2, c). Измерения изображений показали, что диаметр потока за преградой на 10-20% меньше диаметра растекающегося по лицевой поверхности преграды потока.

Таким образом, с увеличением скорости струи картина течений перед преградой существенно меняется от растекания по поверхности и отрыва от нее до образования вокруг струи течения, которое циркулирует от преграды в сторону сопла, затем после разворота — в обратном направлении попутно движению струи.

Визуализация течений с помощью дыма производилась при тех же условиях, что и теневая съемка. На рис. 3 показаны изображения, полученные при впрыске CO_2 из сопла диаметром 0.5 mm со скоростью 240 m/s на разных расстояниях $l_c = 50, 60$ и 75 mm соответственно (сопло расположено слева внизу). Струйки дыма между соплом и преградой визуализируют ламинарные линии тока эжектируемого струей СО2 окружающего воздуха и направлены к оси струи. При относительно малых расстояниях $l_c = 50 \text{ mm}$ (рис. 3, *a*) струйки не доходят до оси и резко обрываются при взаимодействии с пространственным течением, которым, вероятно, является кольцевой вихрь. Совокупность точек обрыва струек обнаруживает внешние контуры вихря овальной формы. За 5-10 mm до преграды траектории струек резко разворачиваются радиально от оси струи и сливаются в общий поток, стелющийся по преграде, за пределами которой поток расширяется и "притягивает" струйки дыма, образовавшиеся позади преграды. При $l_c = 60 \,\mathrm{mm}$

(рис. 3, b) струйки обрываются при взаимодействии с вихрем большего диаметра и также разворачиваются перед преградой в общий поток. Дальнейшее увеличение l_c (рис. 3, c) качественно меняет картину: струйки дыма почти достигают оси струи и кольцевой вихрь не образуется. Таким образом, увеличение расстояния между соплом и преградой меняет картину течений аналогично рассмотренному выше уменьшению скорости струи CO₂, поскольку скорость контакта струи с преградой обратно пропорциональна l_c .

Распространение струи СО2, образование течений впереди, внутри и позади проницаемой преграды сопровождаются интенсивным перемешиванием газа с окружающим воздухом. Количественную информацию о составе образующейся смеси СО2 с воздухом позволил получить газовый анализ. На рис. 4 показана трехмерная картина распределения концентрации СО2 (C_{CO2}) по длине струи в сечениях радиуса 60 mm, полученная при впрыске с $U_0 = 250 \text{ m/s}$ на преграду из ВПЯМ, установленную на расстоянии 60 mm от сопла. У среза сопла (кривая 1) наблюдается резкий пик СО₂ на оси струи (в ее ядре), переходящий в плато с концентрациями в 2-2.5%. В сечении через 20 mm от сопла (кривая 2) максимум концентрации СО2 на оси значительно уменьшается, а значения C_{CO_2} на плато практически не изменяются. Вблизи преграды (кривая 3) концентрации СО2 в приосевой зоне уменьшается, а в периферийных участках увеличивается до 4-5%. Полученные результаты показывают, что углекислый газ имеется не только в ядре и в зоне смешения струи, но и в области, значительно превышающий радиус струи в данных сечениях. Поэтому можно предположить наличие CO₂ в этой области в результате циркуляции

Рис. 4. Распределение концентраций CO₂ при натекании струи на преграду.

Рис. 5. Схема течений при натекании струи CO₂ на преграду: *1* — сопло, *2* — преграда, *3* — течение за преградой, *4* — растекание перед преградой, *5* — течение внутри преграды, *6* — циркуляционное течение, *7* — эжекция воздуха.

течения газа между соплом и преградой. На преграде (кривая 4 заштрихована) наблюдается неоднородная картина с четко выраженными минимумами-максимумами и резкими колебаниями $C_{\rm CO_2}$ в точках измерений (на кривых приведены усредненные значения $C_{\rm CO_2}$), свидетельствующими о существенной турбулизации течений. На тыльной стороне преграды (кривая 5, заштрихована) все неоднородности сглаживаются, и $C_{\rm CO_2}$ с постоянного максимального значения (5%) в приосевой зоне струи плавно снижается к периферии. В сечениях, удаленных от преграды (кривые 6, 7) $C_{\rm CO_2}$ также плавно снижается от оси к краю сечения, и размеры струи за преградой сокращаются.

Полученные результаты комплексной диагностики, а также литературные данные позволяют представить картину течений, изображенную на рис. 5. При впрыске газовой струи из сопла 1 на проницаемую преграду 2 образуются следующие течения. Течение 3 проходит преграду насквозь с последующим движением в осевом

Журнал технической физики, 2018, том 88, вып. 11

направлении. Течение 4, образующееся при развороте струи перед преградой, распространяется параллельно лицевой поверхности преграды и выходит за ее пределы. Часть струи 5 растекается внутри преграды с последующим выходом либо на ее лицевую поверхность и сливается с растекающимся потоком, либо на заднюю поверхность, соединяясь с течением за преградой. Часть растекающегося перед преградой потока отрывается от последнего и образует возвратное течение, циркулирующее между соплом и преградой и обратно в виде тороидального вихря 6. При этом в зону циркуляции 6 и в течение 4 эжектируется окружающий воздух 7 с образованием смеси воздуха с газом струи. Представленная схема течений является характерной в исследованном диапазоне изменения условий экспериментов. При относительно малых скоростях контакта струи с преградой струя растекается по преграде и частично проходит ее насквозь; зоны циркуляции 6 при этом не образуется. Поэтому структурой течений и распределением газа струи по течениям можно управлять путем изменения условий натекания струи на преграду.

Взаимодействие струи CO₂ с вращающимся высокопроницаемым диском

Эксперименты проводились при аналогичных условиях и с теми же средствами диагностики, что и с неподвижной преградой — диском. Диск устанавливался на валу электродвигателя (на рис. 1, *a* не показан), обеспечивающий вращение со скоростью N = 0-750 грт. Для того чтобы втулка крепления диска не вносила возмущений в процесс, струя CO₂ направлялась на диск с условием, чтобы ее ось пересекала диск на половине его радиуса.

Теневые изображения струи, диска и возникающих в результате их взаимодействия течений, полученные при $U_0 = 250 \text{ m/s}, l_c = 60 \text{ mm}$ и различных значениях N, показаны на рис. 6. При натекании струи на неподвижный диск (рис. 6, а) образуются течения по поверхности и позади диска, а также циркуляционное течение между соплом (расположено слева) и диском, частично экранирующее струю. При вращении диска (рис. 6, b) картина течений меняется: изображение струи просматривается до диска за счет исчезновения циркуляционного течения, течение за диском ограничивается по длине, течение перед диском утончается и появляется течение из цилиндрической поверхности диска. С увеличением N до 500 грт (рис. 6, c) сохраняется растекание по диску, течение позади диска укорачивается, а течение из цилиндрической поверхности интенсифицируется.

Дополнительной информацией к описываемому процессу является визуализация течений дымом. На рис. 7, *а* изображено расположение струек дыма при вращении диска без впрыска струи CO₂. Траектории струек показывают линии тока окружающего воздуха к лицевой

Рис. 6. Теневые изображения взаимодействия струи с вращающимся диском из ВПЯМ. $U_0 = 250$ m/s, $l_c = 60$ mm, a - N = 0 rpm; b - N = 300 rpm; c - N = 500 rpm.

Рис. 7. Визуализация течений дымом при вращении диска. N = 500 грм, a — без струи CO₂; b — при впрыске CO₂ с $U_0 = 250$ m/s.

поверхности диска, через которую воздух всасывается внутрь диска. При впрыске струи CO_2 (рис. 7, *b*) при тех же значениях *N* струйки обрываются; совокупность точек обрыва показывают контуры струи, которая растекается по диску и сливается с течением из цилиндрической поверхности. Причем циркуляционное течение, окружающее струю, взаимодействующую с неподвижной преградой (рис. 5), не образуется, поскольку оно уносится потоком всасываемого диском воздуха.

Количественную информацию о составе образующейся смеси СО2 с воздухом позволил получить газовый анализ, для которого отбор проб газа производился в сечениях, перпендикулярных оси струи с шагом 10 mm. На рис. 8 показана трехмерная картина распределения концентраций ($C_{\rm CO_2}$) в сечениях струи и на преграде, полученная при $U_0 = 250$ m/s, $l_c = 60$ mm и N = 500 rpm. У среза сопла (кривая 1) и в последующих сечениях (кривые 2, 3) наблюдаются резкие пики концентраций в ядре струи. Ниже по течению струи (кривые 4-6) пиковые значения ССО, значительно снижаются, и радиус струи увеличивается за счет расширения периферийных участков. На лицевой поверхности диска (кривая 7, заштрихована) концентрации в приосевой части струи относительно выравниваются, снижаясь с 5 до 3.5%, после чего резко падают и плавно уменьшаются до нуля. На тыльной стороне диска (кривая 8, заштрихована) концентрации СО2 еще более выравниваются, плавно снижаясь с 4 до 2.5% от центра к периферии. Сравнение представленных данных с результатами, полученными для неподвижного диска (рис. 4), показывает, что перед вращающимся диском поперечные размеры струи существенно сокращаются за счет исчезновения циркуляционного течения, а основная масса СО2 сосредоточена в приосевых участках струи и внутри диска. Внутри вращающегося диска происходит смешение воздуха и углекислого газа и перемещение смеси в радиальном направлении к периферии диска. Для определения состава смеси, выходящей из диска, срез трубки пробоотборника устанавливался в 1-2 mm от цилиндрической его поверхности и перемещался вдоль ее толщины (h = 20 mm) в осевом направлении. В результате такого сканирования определялся интегральный по сечениям диска состав выходящей смеси, представленный на рис. 9 при различных значениях *N*. Внутри неподвижного диска (кривая 1) газ распределяется относительно равномерно с падением концентрации на тыльной стороне. При вращении и с ростом N концентрации CO₂ у лицевой поверхности существенно уменьшаются (кривые 2-4), а максимумы CO_2 достигаются в середине диска, после чего наблюдается падение к тыльной стороне

Рис. 8. Распределение концентраций CO₂ при натекании струи на вращающийся диск.

Рис. 9. Распределение концентраций CO_2 в смеси, выходящей из диска, по его толщине (h) в зависимости от скорости вращения.

диска. Неоднородность состава смеси, выходящей из диска по его толщине, является результатом влияния различных факторов. Движение струи внутри вращающегося диска определяется действием нескольких сил: инерции — в осевом направлении; гидравлического сопротивления, вызывающего торможение; радиально к периферии диска — под действием центробежных сил; за счет трения о внутренние перегородки ячеек — в тангенциальном направлении. Приосевые участки струи с максимальными скоростями и концентрациями СО2 проходят большую толщину диска, чем периферийные участки с меньшими скоростями и концентрациями. После торможения все участки струи под действием центробежных сил и трения движутся в радиальном направлении к цилиндрической поверхности диска, где регистрируется концентрационное расслоение по толщине диска, показанное на рис. 9. Отмеченные особенности могут быть использованы в создании устройств для получения и отбора с цилиндрической поверхности диска (при наличии улитки, разделенной на секции) смесей газов заданного состава.

Заключение

Исследования показали, что при натекании осесимметричной струи на неподвижную высокопроницаемую преграду образуется несколько течений. Часть струи проходит через преграду и за ее пределы в осевом направлении. Часть струи разворачивается перед преградой и разветвляется на течение по ее поверхности и на течение, циркулирующее между соплом и преградой. Часть струи растекается внутри преграды с последующим выходом либо на ее лицевую поверхность,

Журнал технической физики, 2018, том 88, вып. 11

либо на тыльную поверхность, соединяясь с потоком за преградой. При этом струя и течения эжектируют окружающий воздух, который активно перемешивается с газом струи, образуя смесь, состав которой зависит от условий эксперимента. Полученные схема течений и распределение концентраций CO₂ использовались при создании устройства для сжигания струи пропан-бутана (по плотности близок к CO₂) на диске из никелевого ВПЯМ. Испытания показали высокую устойчивость и эффективность процесса [8].

При вращении диска картина течений существенно меняется вследствие образования потоков окружающего воздуха к лицевой и тыльной поверхностям диска, а также влияния центробежных сил. Потоки воздуха увлекают за собой внутрь диска газ струи из циркуляционного течения и из течений впереди и позади диска. Это приводит к тому, что основная часть газа струи оказывается внутри диска и под действием центробежных сил движется, перемешиваясь с воздухом, в радиальном направлении к цилиндрической поверхности диска, откуда выбрасывается наружу. Описанные особенности показывают возможность использования вращающегося проницаемого пористого диска в качестве реактора, в котором при одновременной подаче сред с различными свойствами могут быть реализованы разнообразные физико-химические процессы: смешение, теплообмен, химические реакции, горение, абсорбция. Так, например, совместная подача на вращающийся проницаемый пористый диск загрязненного примесями воздуха и жидкого сорбента позволила провести эффективную сорбционную очистку воздуха от NH₃, SO₂ и CO₂ [9]. Особенности процесса смешения рассматривались в настоящей работе.

Список литературы

- [1] Абрамович Г.Н. Теория турбулентных струй. М.: Наука, 1984. С. 716.
- [2] Алексеенко С.В., Кулебякин В.В., Маркович Д.М. и др. // ИФЖ. 1996. Т. 69. № 4. С. 615–624.
- [3] Волков К.Н. // ПМТФ. 2007. Т. 48. № 1. С. 55-67.
- [4] Анциферов В.Н., Храмцов В.Д. // Перспективные материалы. 2000. № 5. С. 56–60.
- [5] Запрягаев В.И., Кавун И.Н., Солотчин А.В. // ПМТФ. 2015. Т. 56. № 3. С. 73–81.
- [6] Баев В.К., Бажайкин А.Н. // Письма в ЖТФ. 2017. Т. 43. Вып. 5. С. 68–75.
- [7] Баев В.К., Фомин В.М., Чусов Д.В. и др. Пат. RU № 2256861. 2005.
- [8] Баев В.К., Бажайкин А.Н. // ФГВ. 2016. Т. 52. № 5. С. 23– 32.
- [9] Баев В.К., Бажайкин А.Н. // ЖТФ. 2016. Т. 86. № 8. С. 76– 82.