Магнитооптика квантовых ям на основе HgTe/CdTe с гигантским расщеплением Рашбы в магнитных полях до 34 Тл

© Л.С. Бовкун^{1,2}, К.В. Маремьянин^{1,3}, А.В. Иконников⁴, К.Е. Спирин¹, В.Я. Алешкин^{1,3}, *М.* Potemski², В. Piot², М. Orlita², Н.Н. Михайлов^{5,6}, С.А. Дворецкий^{5,7}, В.И. Гавриленко^{1,3}

¹ Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

² Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA,

38042 Grenoble, France

³ Нижегородский государственный университет им. Н.И. Лобачевского,

603950 Нижний Новгород, Россия

⁴ Московский государственный университет им. М.В. Ломоносова (физический факультет),

119991 Москва,Россия

⁵ Институт физики полупроводников Сибирского отделения Российской академии наук,

630090 Новосибирск, Россия

⁶ Новосибирский государственный университет,

630090 Новосибирск, Россия

⁷ Томский государственный университет,

634050 Томск, Россия

E-mail: bovkun@ipmras.ru

(Получена 25 апреля 2018 г. Принята к печати 7 мая 2018 г.)

Исследованы спектры циклотронного резонанса электронов в классических и квантующих магнитных полях в асимметричных гетероструктурах с квантовыми ямами HgCdTe/CdHgTe с селективным легированием барьеров. Выполнены самосогласованные расчеты энергетических спектров (при B = 0) и уровней Ландау в рамках 8-зонной модели Кейна в приближении Хартри. В слабых полях обнаружено сильное расщепление линии циклотронного резонанса (~ 10%), связанное с эффектом Рашбы в образцах как с инвертированной, так и с нормальной зонной структурой. Эволюция линий поглощения с магнитным полем прослежена вплоть до 34 Тл, когда магнитное квантование уже превалирует над расщеплением Рашбы.

DOI: 10.21883/FTP.2018.11.46582.04

1. Введение

В последние годы наблюдается повышенный интерес к квантовым ямам (КЯ) HgTe/CdHgTe [1] с инвертированной зонной структурой — двумерным топологическим изоляторам [2,3], в которых волновые функции состояний в зоне проводимости сформированы преимущественно блоховскими функциями *p*-типа. Инверсия зон имеет место в достаточно широких КЯ HgTe вследствие сильного спин-орбитального взаимодействия в этом материале. В асимметричных структурах с инвертированным зонным спектром это приводит к гигантскому спиновому расщеплению Рашбы во встроенном электрическом поле [4–8], (см. также обзор [9]).

Одним из эффективных методов исследования зонной структуры полупроводников является метод циклотронного резонанса (ЦР). До настоящего времени ЦР в асимметричных КЯ с инвертированным зонным спектром исследовался лишь в работах [4,8], где наряду с биениями осцилляций Шубникова-де Гааза (ср. с [5–8]) было обнаружено расщепление линии ЦР. В работе [4] исследования проводились на образце с КЯ HgTe/CdTe шириной 11.5 нм с полупрозрачным затвором при концентрации электронов до 10^{12} см⁻² в магнитных полях до 8 Тл. Было обнаружено заметное, до 6–7%, расщепление линии ЦР, связываемое с расщеплением нижней

подзоны зоны проводимости при B = 0, однако интерпретация результатов давалась исходя из ошибочного представления о линейном по k расщеплении Рашбы в этой системе. В работе [8] исследовалась гетероструктура с КЯ шириной 15 нм с односторонним селективным легированием барьера в магнитных полях до 5 Тл. Было обнаружено сильное (до 12%) расщепление линии ЦР и на основе аналитических оценок сделан вывод о гигантском (до 30 мэВ) спиновом расщеплении Рашбы (ср. с [6]). В настоящей работе исследовано магнитопоглощение в асимметричных КЯ HgCdTe/CdHgTe c односторонним селективным легированием барьеров как с инвертированной, так впервые и с нормальной зонной структурой в магнитных полях до 34 Тл, что позволило проследить переход от классических магнитных полей к квантующим. Для интерпретации результатов эксперимента выполнены самосогласованные расчеты энергетических спектров и уровней Ландау в приближении Хартри.

2. Методика эксперимента

Исследовались две гетероструктуры с КЯ $Hg_{1-x}Cd_xTe/Cd_{1-y}Hg_yTe$ с односторонним селективным легированием барьеров индием, выращенные методом

Образец	A(0707040)		B(070704-1)			
Параметры слоя	Толщина (d), нм	Доля (x) Cd	Толщина (d), нм	Доля (x) Cd		
Покрывающий слой CdTe	40	1	37	1		
Барьерный слой Cd_xHg_{1-x} Te	31.5	31.5 0.53		0.85		
Квантовая яма Cd_xHg_{1-x} Те	15	0.05	13	0.15		
Барьерный слой $Cd_x Hg_{1-x}$ Te	11.5	0.6	9.5	0.89		
Легированный In слой $n = 3 \cdot 10^{18}$	13.5 нм		10 нм			
Барьерный слой Cd_xHg_{1-x} Te	5.5	0.6	5	0.89		
Релаксирующий слой CdTe	5—6 мкм					
Релаксирующий слой ZnTe	30 нм					
Подложка GaAs (013)	400 мкм					

Таблица 1. Ростовые параметры гетероструктур с КЯ, представленных в работе

молекулярно-лучевой эпитаксии с эллипсометрическим контролем состава и толщины на релаксированных буферных слоях СdTe на полуизолирующей подложке GaAs (013) [10,11]. "Активная"часть структуры 070704 (далее образец А), исследовавшаяся ранее в работе [8], состояла из КЯ Hg_{0 95}Cd_{0.05}Te шириной 15 нм, внутри слоя с повышенным содержанием кадмия, причем нижний барьерный слой Cd_{0.6}Hg_{0.4}Te содержал легированную с концентрацией 3 · 10¹⁸ см⁻³ индием область. В образце 070704-1 (далее образец В) основным отличием является изменение ширины и состава КЯ, приводящей к перестройке зонного спектра от инвертированного к нормальному (по аналогии с объемным материалом [12]). Полные сведение о ростовых параметрах образцов представлены в табл 1.

Магнитооптические исследования методом фурьеспектроскопии проводились в Национальной лаборатории сильных магнитных полей в Гренобле (Франция) в конфигурации Фарадея на образцах размером 5 × 5 мм в магнитных полях до 11 Тл при $T = 4.2 \,\mathrm{K}$ (с использованием сверхпроводящего соленоида) и в полях до 34 Тл при $T = 1.6 \,\mathrm{K}$ (с использованием резистивного соленоида). Представленные в работе спектры записаны с разрешением в 0.5 мэВ и нормированы на измерения в нулевом магнитном поле с учетом изменения чувствительности болометра. Магнитотранспортные измерения проводились одновременно с оптическими в геометрии Ван-дер-Пау до 11 Тл при T = 4.2 К. На токовые контакты подавался модулированный сигнал с синхродетектора на частоте ~ 17 Гц. Величина тока подбиралась так, чтобы не приводить к разогреву носителей заряда. Проводилось измерение в нескольких конфигурациях контактов: как продольного, так и поперечного сопротивления.

Для интерпретации результатов экспериментов были выполнены расчеты зонной структуры $E(k_x, k_y)$ в нулевом магнитном поле в рамках 8-зонной модели Кейна с учетом отсутствия симметрии инверсии в кристаллической решетке (Bulk Inversion Asymmetry, BIA) [13,14] и анизотропии химических связей на интерфейсах КЯ (Interface Inversion Asymmetry, IIA) [15,16]. Структурная асимметрия, обусловленная односторонним селективным легированием (Structure Inversion Asymmetry, SIA), учитывалась в приближении Хартри [17]. Найденный таким образом профиль потенциала в КЯ использовался в дальнейшем при расчете уровней Ландау в рамках аксиальной 8-зонной модели (без учета BIA и IIA).

3. Результаты и обсуждение

Исследования магнитотранспорта показали наличие выраженных биений осцилляций Шубникова-де Гааза (ШдГ) в обоих образцах, свидетельствующих о наличии нескольких групп носителей заряда в КЯ. Фурье-анализ осцилляций ШдГ позволил выявить 3 группы носителей заряда, соответствующих подзонам размерного квантования E_2 , H_1^+ и H_1^- для образца A (рис. 1, *a*) или E_2 , E_1^+ и E_1^- для образца В (рис. 1, b), причем биение осцилляций обусловлено спиновым расщеплением подзоны $H_1(E_1)$, в то время как зоне Е2 соответствует единичный пик (ср. с [5,8]). Суммарные двумерные концентрации электронного газа $n_s = n_2 + n_{1+} + n_{1-}$ составили 1.7 и 2.8 · 10¹² см⁻², детальные результаты фурье-анализа осцилляций представлены в табл. 2. Отметим, что соотношения концентраций в зонах $H_1^+(E_1^+)/H_1^-(E_1^-)$ составили 1.34 и 1.25 для образцов А и В соответственно, а доля носителей во второй подзоне — 23 и 18%, что иллюстрирует различия как в спиновом расщеплении, так и в положении уровней Ферми. Незначительные отличия результатов, представленных для образца А, по сравнению с аналогичным анализом, выполненным

Таблица 2. Суммарная концентрация и распределение носителей по подзонам, определенное из фурье-анализа осцилляций ШдГ в исследуемых образцах

Образец	Суммарная концентрация n_s , 10^{12} см ⁻²	$n_2,$ $10^{11} \mathrm{cm}^{-2}$	$n_{1+}, 10^{11} \mathrm{cm}^{-2}$	$n_{1-},$ $10^{11} \mathrm{cm}^{-2}$
A	1.7	3.9	5.6	7.5
B	2.8	4.7	10.7	13.0

Рис. 1. Рассчитанный закон дисперсии E(k) с учетом эффектов понижения симметрии для образца А при концентрации $n_s = 1.7 \cdot 10^{12} \text{ см}^{-2}$ (слева) и образца В при концентрации $n_s = 2.8 \cdot 10^{12} \text{ см}^{-2}$ (справа). Для каждого из образцов толстой точечной горизонтальной линией показано положение уровня Ферми. На вставках приведены распределения по координате квантовой ямы суммы квадратов модулей волновых функций состояний *s*-типа (Γ_6) и *p*-типа (Γ_8) для нижней спинрасщепленной подзоны проводимости при $k_{\parallel} = 4 \cdot 10^6 \text{ см}^{-1}$.

ранее в работе [8], связаны с тем, что исследовались физически разные участки одной и той же гетероструктуры.

Полученные значения суммарных концентраций были использованы для самосогласованных (в приближении Хартри) расчетов зонной структуры исследованных образцов (см. рис. 1). Расчет показал, что зонная структура в образце А является инвертированной и нижняя подзона H_1 в зоне проводимости сформирована преимущественно состояниями тяжелых дырок Γ_8 в противоположность образцу В, который имеет нормальную зонную структуру, где нижняя подзона в зоне проводимости E_1 сформирована преимущественно электронными состояниями Γ_6 (см. вставки на рис. 1, *a*, *b*).

Как видно из рис. 1, для обоих образцов расчет предсказывает значительное спиновое расщепление нижней подзоны в зоне проводимости, достигающее 21 мэВ для образца A и 17 мэВ для образца В. Такое "гигантское" спиновое расщепление в случае инвертированной зонной структуры в работе [5,6] связывалось с "дырочным" характером состояний подзоны H_1 , приводящей к большей величине спин-орбитального взаимодействия по сравнению, скажем, с электроноподобной подзоной E_2 , состояния которой сформированы преимущественно волновыми функциями *s*-типа. Действительно, как видно из вставки на рис. 1 *a*, "вклад" состояний *p*-типа в 8-компонетной волновой функции в подзоне H_1 достигает 50%. В то же время оказывается, что и в образце с нормальной зонной структурой и сравнительно большой шириной запрещенной зоны ~ 65 мэВ (рис. 1, b) состояния подзоны E_1 содержат заметную долю волновых функций *p*-типа (см. вставку на рис. 1, b), что и проводит к ее заметному спиновому расщеплению, кратно превышающему расщепление второй подзоны E_2 . Отметим, что учет эффектов ВІА и ІІА дает дополнительную поправку к величине спинового расщепления. Например, в зоне H_1 спиновое расщепление увеличивается на 1-2 мэВ, что теряется на фоне расщепление вследствие ВІА и ІІА достигает 2-3 мэВ и превышает незначительное расщепление Рашбы $\propto k_{\parallel}$.

На рис. 2 представлены измеренные спектры пропускания в магнитных полях до 9.8 Тл, ввиду большой концентрации носителей величина нормированного поглощения магнитным полем на ЦР составляет десятки процентов (в работе [4] достигает 30%, но при меньшей концентрации). В настоящей работе мы обнаружили, что величина расщепления осциллирует с магнитным полем, что указывает на важность эффектов магнитного квантования. В первую очередь это относится к подзоне E_2 с меньшей концентрацией электронов, в которой уже в поле 4 Тл оказывается заполненными всего 4—5 уровней

Рис. 2. Характерные спектры пропускания в магнитных полях от 2.4 до 9.8 Тл с шагом в 0.2 Тл для образца А (слева) и образца В (справа). Спектры, соответствующие магнитным полям 6, 7 и 8 Тл, подписаны на графике. Величина нормированного пропускания достигает 50%; характерный масштаб отмечен на левой оси. На вставках символами показаны положения максимумов поглощения.

Ландау. Расчетное значение классической циклотронной массы в подзоне E_2 на уровне Ферми в обоих образцах оказывается чуть меньше, чем эффективные массы в нижней расщепленной подзоне. С ростом магнитного поля меняется заселенность уровней Ферми, между которыми происходят циклотронные переходы, что в условиях непараболической дисперсии E(k) [18] и приводит, повидимому, к наблюдаемым осцилляциям расщепления линии ЦР, являющейся суперпозицией поглощения на циклотронных переходах в обеих подзонах размерного квантования. В более ранних работах с экспериментами в наклонных полях [4,5] показано, что поправка Зеемана незначительна, кроме того исключается механизм межподзонного рассеяния [19].

На вставках к рис. 2 показаны положения максимумов поглощения для спектров, где наблюдается выраженное расщепление линии ЦР ($\Delta E/E_{\rm res} \approx 8-10\%$) и проведены прямые линии, соответствующие эффективным массам 0.0376 и 0.0417m₀ (разница 9.9%) для образца А и 0.0459 и 0.498m₀ (разница 7.8%) для образца В (m_0 — масса свободного электрона). В работе [4] это расщепление связывалось с различием циклотронных масс электронов на уровне Ферми в двух ветвях расщепленной по спину подзоны H_1 . Выполненные в настоящей работе расчеты закона дисперсии в рамках приближения Хартри позволяют оценить эффективные массы по классической формуле

$$m^* = \hbar^2 k \ dE/dk,\tag{1}$$

где \hbar — постоянная Планка, $E(\mathbf{k})$ — рассчитанный закон дисперсии. Выполненные расчеты закона дисперсии для различных направлений вектора \mathbf{k} в плоскости xy (плоскость КЯ) показали, что на уровне Ферми закон дисперсии с хорошей точностью является аксиальносимметричным. Поэтому с учетом спинового расщепления значения k на уровне Ферми для каждой из подзон можно вычислить по формуле

$$k_F = \sqrt{4\pi n},\tag{2}$$

где *n* — концентрация носителей в подзоне, определенная из анализа осцилляций ШдГ. Полученные результаты вместе с приведенными выше экспериментальными значениями представлены в табл. 3. Видно, что абсолютные значения рассчитанных эффективных масс удовлетворительно согласуются с экспериментом, однако рассчитанная разница масс в расщепленной по спину нижней подзоне зоны проводимости в обоих исследованных образцах оказалась значительно меньше наблюдаемой в эксперименте. Причина этого расхождения в классических магнитных полях неясна, оно не укладывается в рамки одноэлектронного рассмотрения и возможно связано с коллективными эффектами. Отметим, что значительное расщепление линии ЦР в асимметричных КЯ с инвертированным зонным спектром наблюдалось также в работе [8], где оно составляло $\sim 10\%$ в поле 1 Тл при концентрации электронов $2 \cdot 10^{12} \, \mathrm{cm}^{-2}$, и в

Таблица 3. Экспериментально определенные и рассчитанные
значения циклотронных масс в расщепленной по спину нижней
подзоне

	Образец	m_1^*	m_2^*	$1 - m_1^* / m_2^*$
А	Эксперимент	0.0376	0.0417	9.9%
	Расчет	0.0397	0.0414	4.1%
В	Эксперимент	0.0459	0.0498	7.8%
	Расчет	0.0448	0.0463	3.2%

работе [4], где оно составляло $\sim 7\%$ в поле 3 Тл при концентрации электронов 10^{12} см $^{-2}$.

В магнитных полях свыше 6 Тл зависимость положения линии ЦР от поля становится сублинейной (см. рис. 2). В этой области квантующих магнитных полей обсуждение результатов на языке эффективной массы теряет смысл. Действительно, в образце А магнитное поле 7 Тл соответствует фактору заполнения уровней Ландау $\nu \approx 10$ (при этом во второй подзоне E_2 заполнено лишь два уровня), а в образце В $\nu \approx 16$. В дальнейшем тексте статьи обсуждаются переходы между уровнями Ландау только для образца А, исследование которого проводилось в магнитных полях до 34 Тл (рис. 3).

На рис. 4 представлены рассчитанные в образце А в аксиальном приближении уровни Ландау. Вертикальными стрелками показаны некоторые из разрешенных в электродипольном приближении переходов ($\Delta n = 1$ при сохранении спина), обозначенные греческими буквами в соответствии с общепринятым порядком, установленным впервые в работе [20]. Ломаной линией показано рассчитанное положение уровня Ферми $E_{\rm F} \approx 641$ мэВ. Как видно из рис. 2, а, в интервале магнитных полей 7.8-9.2 Тл отчетливо наблюдаются две линии поглощения, которые не разрешаются на рис. З ввиду их слабого контраста на фоне мощного поглощения. Более низкочастотная линия связана, по-видимому, с переходом у2 внутри подзоны E_2 , и ее затухание в полях свыше 9.2 Тл связывается с опустошением начального для этого перехода уровня Ландау $n = -1_{\downarrow}$. Более высокочастотная линия является "продолжением" классического ЦР в подзоне Н₁, на который накладывается близкий по энергии переход α_2 в подзоне E_2 .

Спектры магнитопоглощения в более сильных магнитных полях до 34 Тл, когда эффекты магнитного квантования доминируют над спиновым расщеплением Рашбы, иллюстрируют переход от классического к квантовому ЦР и в первой подзоне размерного квантования H_1 . Как видно из рис. 3, в полях свыше 15 Тл наблюдаются три интенсивные линии поглощения, связываемые с оптическими переходами с трех нижних уровней Ландау в зоне проводимости H_1 (см. рис. 4). Переходы γ и α являются "квантовым пределом" циклотронных переходов в классических магнитных полях в двух лестницах уровней Ландау в расщепленных по спину подзонах H_1^- и H_1^+ . Линия δ , которая является "продолжением" классического ЦР, соответствует переходу с уровня $n = 1_{\uparrow}$ на уровень $n = 2_{\uparrow}$ в зоне проводимости H_1^- . Магнитные поля, в которых возникают линии α и γ и затухает линия δ , соответствуют в первом случае депопуляции конечных для рассматриваемых переходов уровней Ландау $n = 1_{\uparrow}$ и n = 0, а во втором случае — депопуляции "начального" для перехода δ уровня Ландау $n = 1_{\uparrow}$. Таким образом, затухание линии δ обусловливает возникновение линии а. Необычный "загиб" линии у в интервале полей 15-20 Тл (рис. 3) отражает происходящее в этих полях антипересечение взаимодействующих уровней Ландау n = 0 из подзон H_1 и E_2 (рис. 4). Отметим, что согласно расчетам вероятности переходов с уровня $n = -1_{\perp}$ в поле 20 Тл на уровни $n = 0_{\perp}$ и $n = 0_{\uparrow}$ сравнимы по величине вследствие замешивания

Рис. 3. Зависимость пропускания в образце A от частоты и магнитного поля при T = 1.6 К. Темный цвет означает более сильное поглощение, согласно шкале справа. Представленные результаты получены в трех экспериментах в различных оптических конфигурациях: a — фильтр ZnSe и светоделитель KBr, b — фильтр Ge и светоделитель KBr, c — фильтр из черного полиэтилена и светоделитель T222 на основе майлара. На панели (b) символами показаны рассчитанные энергии переходов γ_2 , δ , γ и α между уровнями Ландау, обсуждаемые далее в тексте. В области энергий менее 50 мэВ используемый здесь светоделитель KBr является непрозрачным. На панели (c) также присутствуют две области "непрозрачности": в районе 20 мэВ, связанная с областью остаточных лучей в подложке GaAs.

Рис. 4. Рассчитанные уровни Ландау для образца А, ломаная линия указывает примерное положение уровня Ферми в магнитном поле. Вертикальными стрелками показаны разрешенные магнитооптические переходы γ_2 , α_2 , δ , γ , α (см. в тексте) с возрастанием номера уровня Ландау на единицу.

состояний на этих уровнях[21]. С последним переходом может быть связана слаборазличимая на уровне шума (что обусловлено близостью края поглощения в светоделителе KBr) "горизонтальная" линия поглощения с энергией 52 мэВ в интервале магнитных полей 15–20 Тл.

4. Заключение

В работе исследованы спектры поглощения и магнитотранспорт в асимметричных гетероструктурах с квантовыми ямами HgCdTe/CdHgTe (с селективным легированием барьеров) с большой концентрацией электронов $(\sim 2 \cdot 10^{12} \, {\rm cm}^{-2})$ в образцах как с инвертированным, так и, впервые, с нормальным зонным спектром. Из фурье-анализа осцилляций Шубникова-де Гааза определены концентрации электронов в двух заселенных подзонах размерного квантования в зоне проводимости. Для интерпретации результатов экспериментов выполнены самосогласованные расчеты энергетических спектров (при B = 0, с учетом отсутствия центра инверсии в кристаллической решетке и анизотропии химических связей на гетероинтерфейсах) и уровней Ландау в рамках 8-зонной модели Кейна в приближении Хартри. В слабых полях наблюдалось сильное расщепление линии циклотронного резонанса, связанное с эффектом Рашбы, достигавшее ~ 10% в образце с инвертированной и 8% в образце с нормальной зонной структурой. Показано, что в обоих случаях в состояниях нижней подзоны зоны проводимости присутствует большая доля (от 50% и более) "дырочных" волновых функций (р-типа), приводящее к гигантскому (свыше 20%) спиновому расщеплению нижней подзоны на уровне Ферми. Обнаружены осцилляции величины расщепления линии ЦР с полем, связываемые с магнитным квантованием в верхней подзоне с меньшим числом заполненных уровней Ландау. Эволюция линий поглощения с магнитным полем прослежена вплоть по 34 Тл, когда магнитное квантование уже превалирует над расщеплением Рашбы. В магнитных полях 15–50 Тл в спектрах поглощения обнаружено проявление антикроссинга уровней Ландау из первой и второй подзон размерного квантования.

Работа частично выполнена в рамках государственного задания ИФМ РАН, тема 0035-2014-0201 и при частичной поддержке РФФИ (гранты № 18-02-00309 и № 18-52-16004_НЦНИЛ, № 18-52-16007 и № 18-52-16008 НЦНИЛ_а).

В работе использовано оборудование ЦКП ИФМ РАН. Л.С. Бовкун благодарит правительство Франции за финансирование в рамках стипендии В.И. Вернадского для аспирантов.

Список литературы

- [1] C.R. Becker. Phys. Status Solidi B, 251, 1125 (2014).
- [2] B.A. Bernevig, T.L. Hughes, S.C. Zhang. Science, **314**, 1757 (2006).
- [3] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang. Science, 318, 766 (2007).
- [4] M. Schultz, F. Heinrichs, U. Merkt, T. Colin, T. Skauli, Løvold. Semicond. Sci. Technol., 11, 1168 (1996).
- [5] X.C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C.R. Becker, G. Landwehr. Phys. Rev. B, 63, 245305 (2001).
- [6] Y.S. Gui, C.R. Becker, N. Dai, J. Liu, Z.J. Qiu, E.G. Novik, M. Schäfer, X.Z. Shu, J.H. Chu, H. Buhmann, L.W. Molenkamp. Phys. Rev. B, 70, 115328 (2004).
- [7] J. Hinz, H. Buhmann, M. Schäfer, V. Hock, C.R. Becker, L.W. Molenkamp. Semicond. Sci. Technol., 21, 501 (2006).
- [8] K.E. Spirin, A.V. Ikonnikov, A.A. Lastovkin, V.I. Gavrilenko, S.A. Dvoretskii, N.N. Mikhailov. JETP Lett., 92, 63 (2010).
- [9] W. Zawadzki, P. Pfeffer. Semicond. Sci. Technol., 19, R1 (2004).
- [10] N.N. Mikhailov, R.N. Smirnov, S.A. Dvoretsky, Y.G. Sidorov, V.A. Shvets, E.V. Spesivtsev, S.V. Rykhlitski. Int. J. Nanotechnol., 3, 120 (2006).
- S. Dvoretsky, N. Mikhailov, Y. Sidorov, V. Shvets, S. Danilov, B. Wittman, S. Ganichev. Nanoscale Res. Lett., 39, 918 (2010).
- [12] A. Rogalski. Rep. Prog. Phys., 68, 2267 (2005).
- [13] R. Winkler. Inversion-Asymmetry-Induced Spin Splitting (Springer, Berlin Heidelberg, Berlin-Heidelberg, 2003) p. 69.
- [14] M.S. Zholudev, F. Teppe, S.V. Morozov, M. Orlita, C. Consejo, S. Ruffenach, W. Knap, V.I. Gavrilenko, S.A. Dvoretskii, N.N. Mikhailov. JETP Lett., **100**, 790 (2015).
- [15] G.M. Minkov, V.Y. Aleshkin, O.E. Rut, A.A. Sherstobitov, A.V. Germanenko, S.A. Dvoretski, N.N. Mikhailov. Phys. Rev. B, 96, 035310 (2017).
- [16] S.A. Tarasenko, M.V. Durnev, M.O. Nestoklon, E.L. Ivchenko, J.-W. Luo, A. Zunger. Phys. Rev. B, 91, 081302(R) (2015).
- [17] K.P. Kalinin, S.S. Krishtopenko, K.V. Maremyanin, K.E. Spirin, V.I. Gavrilenko, A.A. Biryukov, N.V. Baidus, B.N. Zvonkov. Semiconductors, 47, 1485 (2013).

- [18] A.V. Ikonnikov, M.S. Zholudev, K.E. Spirin, A.A. Lastovkin, K.V. Maremyanin, V.Y. Aleshkin, V.I. Gavrilenko, O. Drachenko, M. Helm, J. Wosnitza, M. Goiran, N.N. Mikhailov, S.A. Dvoretskii, F. Teppe, N. Diakonova, C. Consejo, B. Chenaud, W. Knap. Semicond. Sci. Technol., 26, 125011 (2011).
- [19] X.C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, C.R. Becker, G. Landwehr. Phys. Rev. B, 65, 045324 (2002).
- [20] M. Schultz, U. Merkt, A. Sonntag, U. Røssler, R. Winkler, T. Colin, P. Helgesen, T. Skauli, S. Løvold. Phys. Rev. B, 57, 14772 (1998).
- [21] L.S. Bovkun, A.V. Ikonnikov, V.Y. Aleshkin, K.E. Spirin, V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretski, F. Teppe, B. Piot, M. Potemski, M. Orlita. https://arxiv.org/abs/1711.08783 (2018).

Редактор Г.А. Оганесян

Magneto-optics in HgTe/CdTe quantum wells with giant Rashba splitting in magnetic fields up to 34 T

L.S. Bovkun^{1,2}, K.V. Maremyanin^{1,3}, A.V. Ikonnikov⁴, K.E. Spirin¹, V.Ya. Aleshkin^{1,3}, M. Potemski², B. Piot², M. Orlita², N.N. Mikhailov^{5,6}, S.A. Dvoretskii ^{5,7}, V.I. Gavrilenko^{1,3}

¹ Institute for Physics of Microstructures Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia ² Laboratoire National des Champs Magnétiques Intenses. CNRS-UJF-UPS-INSA, 38042 Grenoble, France ³ Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia ⁴ Lomonosov Moscow State University, 119991 Moscow, Russia ⁵ Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia ⁶ Novosibirsk State University, 630090 Novosibirsk, Russia ⁷ Tomsk State University, 634050 Tomsk, Russia

Abstract Cyclotron resonance spectra are studied both in classical and quantizing magnetic fields in asymmetric heterostructures with HgCdTe/CdHgTe quantum wells with selective barrier doping. Self-consistent calculations of the energy spectra (for B = 0) and Landau levels in the framework of the 8-band Kane model in the Hartree approximation are performed. The strong splitting of the cyclotron resonance line ($\sim 10\%$) is observed in low fields, which is related to the Rashba effect in samples with both an inverted and a normal band structure. The evolution of the absorption lines with a magnetic field is followed up to 34 T when the magnetic quantization already prevails over the Rashba splitting.