Реакция электро- и магнетосопротивления эпитаксиальных пленок La_{0.67}Ca_{0.33}MnO₃ на двухосные сжимающие механические напряжения, действующие в плоскости (001) или (110)

© Ю.А. Бойков, Т. Клаесон*, А.Ю. Бойков**

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Чалмерский технический университет, S-41296 Гётеборг, Швеция ** Санкт-Петербургский государственный университет, 198904 Санкт-Петербург, Россия E-mail: yu.boikov@mail.ioffe.ru

(Поступила в Редакцию 4 октября 2002 г.)

Исследована зависимость сопротивления и магнетосопротивления пленок $La_{0.67}Ca_{0.33}MnO_3$ с толщиной 40–120 nm, выращенных на подложках из алюмината лантана с различной ориентацией. Обнаружено существенное уменьшение объема элементарной ячейки в тонких (40 nm) пленках $La_{0.67}Ca_{0.33}MnO_3$, когерентно выращенных на поверхности (001)LaAlO₃. Релаксация механических напряжений в двухосно механически напряженных пленках $La_{0.67}Ca_{0.33}MnO_3$ сопровождается увеличением объема элементарной ячейки. Температура, при которой наблюдались максимальные значения удельного сопротивления и магнетосопротивления для двухосно напряженных пленок $La_{0.67}Ca_{0.33}MnO_3$, может на 60–70 K отличаться от соответствующих значений для объемных монокристаллов.

Работа выполнена в рамках научного сотрудничества между Российской и Шведской Королевской академиями наук. Финансовая поддержка исследований частично получена из проекта 9Б19 Министерства науки Российской Федерации.

Тонкие слои перовскитоподобных манганитов $La_{1-x}Ca_{x}MnO_{3}$ перспективны для использования в головках для записи и считывания информации с магнитных дисков, в чувствительных элементах детекторов ИК излучения и т.д. [1,2]. Для применений в микроэлектронике и измерительной технике манганитные пленки должны быть выращены эпитаксиально на соответствующей подложке. Жесткая связь с подложкой, параметры элементарной ячейки и температурный коэффициент линейного расширения которой могут существенно отличаться от параметров кристаллической решетки выращенного слоя, является одной из причин возникновения двухосных механических напряжений в последнем.

Исследованию влияния механических напряжений на параметры перовскитоподобных манганитов посвящено значительное количество работ [3–5]. В [5] показано, что в условиях гидростатического сжатия температура Кюри T_C в объемных образцах La_{1-x}Ca_xMnO₃ существенно возрастает. Согласно [6], двухосные механические напряжения в гетероэпитаксиальных манганитных пленках должны способствовать локализации носителей заряда, а T_C может на десятки градусов отличаться от соответствующих значений для объемных образцов.

В данной работе исследованы структура и электронные параметры тонких, двухосно напряженных пленок $La_{0.67}Ca_{0.33}MnO_3$ (LCMO), выращенных на полированных пластинах (001) и (110) LaAlO₃ (LAO). Использование различных типов подложек важно для установления степени зависимости ориентации, микроструктуры и электронных свойств пленок LCMO от симметрии и эффективного параметра плоской решетки ионов на поверхности LAO.

1. Эксперимент

Метод лазерного испарения (СОМРЕХ 100, KrF, $\lambda = 248$ nm, $\tau = 30$ ns) использован для выращивания пленок LCMO на подложках из алюмината лантана. Плотность лазерного испарения на поверхности исходной мишени LCMO равнялась 2 J/cm^2 . Давление кислорода в ростовой камере поддерживалось равным 0.3 mbar. В идентичных условиях на каждом из указанных типов подложек выращены пленки LCMO толщиной d = 40, 60, 80 и 120 nm. Процесс выращивания липения эпитаксиальных пленок LCMO описан в [7,8].

Ориентация, фазовый состав и параметры элементарных ячеек в выращенных пленках LCMO определялись с использованием рентгеновской дифракции (Philips X'pert MRD, Cu $K_{\alpha 1}$, $\omega/2\theta$ - и ϕ -сканы, кривые качания). При определении параметров решетки пленок LCMO/(001)LAO использовались значения 2θ для рефлексов (004) и (303)LCMO, а параметры решетки манганитных пленок, выращенных на (110)LAO, рассчитывались с использованием значений 2θ для рентгеновских пиков (330) и (222)LCMO, визуализированных с применением прецизионной рентгеновской оптики.

Морфология свободной поверхности пленок LCMO исследовалась с использованием микроскопа атомных сил (AFM, Nanoscope–IIIa).

Сопротивление *R* пленок LCMO измерялось на переменном токе в конфигурации Van der Pauw с использованием прибора hp 4263 A LCR meter в магнитном поле и без него (f = 100 Hz). Удельное сопротивление пленок рассчитывалось с использованием соотношения $\rho = (\pi d / \ln 2)R$ [9]. Магнитное поле напряженностью H = 0.4 T прикладывалось параллельно плоскости подложки. Четыре серебряных контакта, расположенных на углах квадрата, были нанесены на поверхность манганитных пленок методом термического испарения из вольфрамовой лодочки.

2. Структура выращенных пленок LCMO

Ориентация пленки LCMO относительно подложки определяется процессом зародышеобразования и условиями последующего роста. Стабильными в первую очередь становятся те из зародышей LCMO, для которых свободная энергия свободной поверхности γ и энергия упругой деформации η в системе зародыш–подложка минимальны. При отсутствии релаксации механических напряжений именно такие зародыши определяют ориентацию гетероэпитаксиального слоя LCMO относительно подложки.

Параметр псевдокубической элементарной ячейки LAO (~ 3.79 Å [4]) меньше соответствующего параметра элементарной ячейки LCMO (~ 3.86 Å [10]), а температурные коэффициенты линейного расширения LAO и LCMO имеют близкие значения [4,11]. Рассогласование в параметрах кристаллических решеток m $(m = (a_L - a_S)/a_S$, где a_L и a_S — параметры элементарной ячейки слоя и подложки соответственно) для LCMO и LAO составляет приблизительно 1.8%, причем m > 0. Это должно приводить к появлению в манганитном слое сжимающих в плоскости подложки механических напряжений. Энергия упругой деформации η , рассчитанная на единицу поверхности межфазной границы пленка-подложка, квадратично зависит от m и линейно возрастает с толщиной слоя.

Литературных данных, характеризующих величину и анизотропию γ для LCMO, найти не удалось. Однако приведенные в [12] результаты по структуре пленок LCMO, выращенных на подложках из химически нестабильных относительно LCMO материалов (Y–ZrO₂, $T_S \approx 750^{\circ}$ C), указывают на то, что плоскость (110)LCMO обладает наименьшей величиной γ .

На рентгеновских дифрактограммах от (40-120 nm) LCMO/(001)LAO так же, как от (40-120 nm) LCMO/(110)LAO, имелись рефлексы только от манганитной пленки и от подложки (рис. 1), что указывает на отсутствие в выращенных слоях макровключений вторичных фаз. Из полученных рентгеновских $\omega/2\theta$ -и ϕ -сканов следует, что ориентация сформированных манганитных слоев совпадала с ориентацией использованных подложек из алюмината лантана, т.е. пленки LCMO были выращены по типу "куб на куб".

2.1. Ориентация и параметры решетки пленок LCMO, выращенных на (001)LAO. В манганитных пленках (d = 40 - 120 nm), выращенных на (001)LAO, параллельными плоскости подложки были плоскости (001), а направление [010]LCMO было параллельно [010]LAO (рис. 1, а и 2, а). На рентгеновских дифрактограммах, полученных для пленок (40 nm)LCMO, даже при $2\theta > 100$ градусов, не удалось выявить какой-либо сложной структуры рентгеновских пиков (00n)LCMO (вставка на рис. 1, a), которая могла бы быть связана с релаксацией механических напряжений. Параметр элементарной ячейки с в пленке (40 nm)LCMO/(001)LAO, измеренный вдоль направления [001] LCMO (перпендикулярно плоскости подложки), был существенно больше параметра b, измеренного вдоль направления [010] LCMO, параллельного

Рис. 1. *а* — рентгеновская дифрактограмма ($CuK_{\alpha 1}$, $\omega/2\theta$) для пленки LCMO толщиной 80 nm, выращенной на (001)LAO. Рентгеновские пики (00*n*) от манганитной пленки расщеплены на два. Фрагмент рентгеновского скана, измеренного для пленки (40 nm)LCMO/(001)LAO, приведен на вставке. Расщепления пиков (00*n*) на рентгеновской дифрактограмме не обнаружено. *b* — рентгеновская дифрактограмма ($CuK_{\alpha 1}$, $\omega/2\theta$) для пленки LCMO толщиной 80 nm, выращенной на (110)LAO. На вставке — рентгеновские пики (110), измеренные для пленок LCMO толщиной 60 (*I*) и 80 nm (*2*). Рентгеновский пик (110) от манганитной пленки с толщиной 80 nm существенно искажен со стороны малых углов.

Рис. 2. *а* — параметры элементарной ячейки *a* и *b* в манганитной пленке, выращенной на (001)LAO, существенно меньше параметра *c*, измеренного вдоль нормали к плоскости подложки (направление [001]LCMO). *b* — параметры элементарной ячейки *a* и *b* в манганитной пленке, выращенной на (110)LAO, больше параметра *c*, измеренного вдоль направления [001]LCMO.

плоскости подложки (b = a, где a — параметр ячейки вдоль направления [100]LCMO) (рис. 2, a и таблица). Параметр b четко совпадал с измеренным параметром псевдокубической решетки алюмината лантана, т. е. манганитные пленки (d = 40 nm) были выращены когерентно на поверхности (001)LAO. Разница в измеренных значениях c и b для (40 nm)LCMO/(001)LAO указывает на существенное тетрагональное искажение элементарной ячейки в тонких (d = 40 nm) манганитных пленках, выращенных на (001)LAO. Объем элементарной ячейки $V_{ef} = (cxb^2) \approx 56.7 \text{ Å}^3$ в пленках (40 nm)LCMO/(001)LAO был существенно меньше объема элементарной ячейки в стехиометрических объемных образцах LCMO [10].

Обнаруженное уменьшение $V_{\rm ef}$ в пленках LCMO/(001)LAO толщиной 40 nm указывает на то, что концентрация ионов Mn⁴⁺ в их объеме выше значения 33%, которое следует из химической формулы материала, использованного в качестве исходной мишени. Ионный радиус Mn⁴⁺ меньше ионного радиуса Mn^{3+} , что и является причиной уменьшения V_{ef} с увеличением относительной концентрации Mn⁴⁺. Используя данные по зависимости эффективного параметра решетки от концентрации четырехвалентного марганца в объемных керамических образцах La_{1-x}Ca_xMnO₃ [11], для относительной концентрации ионов Mn⁴⁺ в пленках (40 nm)LCMO/(001)LAO мы получили значение 45%. Основной причиной увеличения концентрации четырехвалентных ионов марганца в манганитных пленках

толщиной в 40 nm являются сжимающие механические напряжения, действующие в зародышах LCMO в плоскости подложки. Увеличение концентрации ионов Mn⁴⁺ в пленках (40 nm)LCMO/(001)LAO сопровождается формированием вакансий в катионной подрешетке и их обогащением кальцием.

Ширина кривой качания ($\omega - 2\theta$), измеренной на половине высоты пика (002) от пленки (40 nm)LCMO/(001)LAO, равнялась 0.09–0.1 градуса, что указывает на высокое качество микроструктуры в ее объеме.

На рентгеновских дифрактограммах, полученных для пленок LCMO/(001)LAO с $d \ge 60$ nm, пики (00*n*) имели сдвоенный характер (рис. 1, а). Данный факт связан с релаксацией механических напряжений после достижения пленкой критической толщины d_K (для (001)LCMO||(001)LAO $d_K \approx 45-50$ nm). Манганитная пленка, в которой произошла частичная релаксация механических напряжений, состоит из двух частей: а) нижней части, прилегающей к подложке, параметры элементарной ячейки в которой примерно совпадают с соответствующими параметрами в пленке (40 nm)LCMO/(001)LAO и б) верхней части, параметр с в которой меньше, а параметр b больше, чем соответствующие параметры в пленке (40 nm)LCMO/(001)LAO (см. таблицу). Между верхней и нижней частями пленки LCMO/(001)LAO $(d \ge 60 \,\mathrm{nm})$ располагается узкая прослойка с высокой концентрацией дефектов структуры [13,14]. Объем элементарной ячейки в той части пленки LCMO, в которой произошла частичная релаксация механических напряжений, больше, чем Vef для (40 nm)LCMO/(001)LAO (см. таблицу), однако меньше значения V_{ef} для стехиометрических объемных образцов, в которых концентрация Mn⁴⁺ равна 33%. Таким образом, объем элементарной ячейки в пленке LCMO/(001)LAO не остается постоянным при уменьшении ее толщины в интервале 120-40 nm. Ширина кривой качания для рентгеновского пика (002) от пленок ($d \ge 60 \, \text{nm}$)LCMO/(001)LAO на 50-80% превышала соответствующие данные для тонких слоев LCMO, когерентно выращенных на (001)LAO.

Параметры эпитаксиальных пленок LCMO, выращенных на (001) и (110)LAO

Подложка	d, nm	c,Å	$b, m \AA$	$V_{\rm ef}, {\rm \AA}^3$	T_M, K
(001)LAO	40 80	3.948 3.950* 3.875**	3.789 3.789* 3.833**	56.7 56.7 56.9	179 237
(110)LAO	60 120	3.788 3.787* 3.839**	3.893 3.894* 3.872**	57.4 57.4 57.6	234 257

* Параметры элементарной ячейки в подслое LCMO, когерентно выращенном на подложке.

** Параметры элементарной ячейки в подслое LCMO, в котором произошла частичная релаксация механических напряжений.

Уменьшение параметров элементарной ячейки в пленке (001)LCMO||(001)LAO вдоль направлений [010]LCMO и [100]LCMO без изменения валентности ионов марганца практически невозможно, поскольку удвоенная сумма ($\Sigma \approx 3.92$ Å) ионных радиусов кислорода (O²⁻ r = 1.32 Å [15]) и марганца Mn³⁺ r = 0.66 и Mn⁴⁺ 0.60 Å [15]) превосходит параметр псевдокубической решетки LCMO.

2.2. Ориентация и параметры решетки LCMO, выращенных на пленок (110)LAO. пленках LCMO (d = 40 - 120 nm), выращенных В на (110) LAO, плоскость (110) параллельна плоскости подложки (рис. 1, b и 2, b), а направления [100] и [010] LCMO составляли с ней угол в 45°. Параметр с элементарной ячейки в пленках $(d \le 60 \,\mathrm{nm})$ LCMO/(110)LAO, рассчитанный с использованием полученных рентгеновских данных, заметно меньше параметра b (b = a, показано на рис. 2, b) (см. таблицу). Параметр c в пленках LCMO (d < 60 nm), выращенных на поверхности (110)LAO, практически совпадал с параметром псевдокубической решетки алюмината лантана.

В отличие от манганитных слоев, выращенных на (001)LAO, сдвоенность пиков (110)LCMO на рентгеновском $\omega/2\theta$ скане наблюдалась лишь при d > 80 nm, т.е. релаксация механических напряжений в пленках (110) LCMO || (110) LAO начиналась при большей толщине, чем в случае пленок (001)LCMO (001)LAO. Увеличение d_K в пленках (110)LCMO||(110)LAO по сравнению с пленками (001) LCMO || (001) LAO обусловлено меньшей величиной η в случае манганитной пленки, выращенной на (110)LAO, чем для пленки такой же толщины, сформированной на (100)LAO. Это связано как с различием в величине эффективных упругих модулей, так и с тем, что плотность ионов кислорода на поверхности подложки (110)LAO примерно на 40% ниже, чем на поверхности подложки с ориентацией (001)LAO. Ширина кривой качания для пика (110) LCMO от манганитных пленок, выращенных на (110)LAO, находилась в пределах 0.19-0.22 градуса.

Как и в случае манганитной пленки, выращенной на (001)LAO, слой LCMO, сформированный на (110)LAO, находился под действием сжимающих в плоскости подложки механических напряжений. Именно механические напряжения являются причиной того, что параметр элементарной ячейки с, измеренный в пленке LCMO/(110)LAO в плоскости подложки, существенно меньше параметров элементарной ячейки а и b (см. таблицу). Однако объем элементарной ячейки V_{ef} в пленке (40 nm)LCMO/(110)LAO был больше, чем $V_{\rm ef}$ для (40 nm)LCMO/(001)LAO, но несколько уступал соответствующему значению для объемных стехиометрических керамических образцов, т.е. относительная концентрация ионов Mn⁴⁺ в пленках LCMO/(110)LAO незначительно выше 33%. В отличие от пленок LCMO/(001)LAO при увеличении толщины манганитных пленок, выращенных на (110)LAO, от 40

Рис. 3. *а* — снимок поверхности пленки (40 nm)LCMO, выращенной на подложке (110)LAO. Границы блоков в пленке четко декорированы характерными углублениями на свободной поверхности пленки. *b* — снимок поверхности пленки (120 nm)LCMO, выращенной на подложке (110)LAO. Плотность межблочных границ в верхнем слое манганитной пленки, в которой произошла частичная релаксация механических напряжений, в 3–4 раза меньше, чем плотность границ в тонком слое LCMO, когерентно выращенном на подложке из алюмината лантана.

до 120 nm не происходило существенного изменения объема элементарной ячейки. Слабая зависимость $V_{\rm ef}$ в манганитных пленках, выращенных на подложках (110)LAO, от толщины (d = 120-40 nm) указывает на то, что под действием механических напряжений, приложенных в плоскости (110)LCMO, происходит упругая деформация элементарной ячейки без существенного изменения эффективной валентности иона марганца, расположенного в центре кислородного октаэдра.

2.3. Морфология поверхности выращенных пленок LCMO. Какой-либо систематической разницы в морфологии поверхности пленок LCMO (одинаковой толщины), выращенных на подложках (001)LAO и (110)LAO, выявлено не было. Снимок поверхности пленки (40 nm)LCMO/(110)LAO, полученный с использованием микроскопа атомных сил, приведен на рис. 3, а. На поверхности манганитной пленки четко видны характерные углубления, декорирующие кристаллические зерна. Зерна имеют размеры 20-30 nm. Причины появления межзеренных границ в эпитаксиальных пленках перовскитоподобных оксидов, когерентно выращенных на монокристаллических подложках, проанализированы нами в [16,17]. Гранулированность пленок LCMO, когерентно выращенных на пластинах алюмината лантана, в основном обусловлена нарушением стехиометрии фазы, адсорбированной на поверхности растущего слоя. С увеличением d плотность межкристаллитных границ на поверхности пленок LCMO уменьшалась (рис. 3). При толщинах $d > d_K$ состав фазы, адсорбированной на поверхности растущего слоя, лучше соответствует составу исходной мишени LCMO, что отчасти способствует увеличению средних размеров кристаллических зерен.

3. Температурные зависимости сопротивления и магнетосопротивления пленок LCMO

Удельное сопротивление выращенных пленок LCMO существенно зависело и от их толщины, и от типа использованной подложки, причем наивысшие значения ρ получены для слоев (40 nm)LCMO/(001)LAO (рис. 4, a). Низкая проводимость тонких, когерентно выращенных пленок LCMO/(001)LAO представляется вполне понятной, учитывая полученные на основе рентгеновских данных оценки концентрации четырехвалентных ионов марганца в их объеме. Согласно анализу, проведенному в [18], наивысшая проводимость в твердых растворах (La,Ca)MnO₃ должна наблюдаться при концентрации ионов Mn⁴⁺ порядка 32%. Высокие значения ρ в пленках (40 nm)LCMO/(001)LAO могут быть отчасти обусловлены и появлением в их объеме зерен с антиферромагнитным упорядочением спинов, что наблюдалось в объемных керамических образцах La_{0.6}Ca_{0.4}MnO₃ [11], относительная концентрация Mn⁴⁺ в которых составляла порядка 44%. Абсолютные значения ρ для пленок LCMO/(001)LAO и LCMO/(110)LAO, в которых произошла частичная релаксация механических напряжений, имели близкие значения (рис. 4).

Как и в случае объемных монокристаллов LCMO, ферромагнитное упорядочение спинов в выращенных пленках сопровождалось падением их сопротивления, что являлось причиной появления на зависимостях $\rho(T)$ резко выраженного максимума. Для пленок LCMO/(001)LAO и LCMO/(110)LAO с толщиной $d < d_K$ температура T_M , при которой ρ достигало максимального значения, была ниже, чем в случае манганитных пленок с $d > d_K$ (рис. 4). Более высокие значения T_M, полученные для LCMO пленок, в которых произошла частичная релаксация механических напряжений, хорошо согласуются с приведенными в [11] данными по зависимости температуры Кюри в объемных керамических образцах (La,Ca)MnO3 от относительной концентрации четырехвалентных ионов марганца. Согласно [11], Т_С в перовскитоподобных манганитах

Рис. 4. *а* — температурные зависимости удельного сопротивления ρ (*I*-4) и магнетосопротивления MR (5,6) для пленок (001)LCMO||(001)LAO с толщиной *d* в 40 (*I*, 2, 5) и 80 nm (*3*, 4, 6); для пленки с *d* = 80 на рисунке приведены зависимости 10 · $\rho(T)$ — кривые 3 и 4. *I*, 3 — *H* = 0, 2, 4 — 0.4 T. *b* — температурные зависимости удельного сопротивления ρ (*I*, 2) и магнетосопротивления MR (*3*, 4) для пленок (110)LCMO||(110)LAO с толщиной в 60 (*I*, 3) и 120 nm (*2*, 4). На вставке — зависимости $\rho(T)$ при температурах, близких к *T_M*, измеренные для тех же пленок в магнитном поле (*2*, 4) и без него (*I*, 3). *I*, 2 — *d* = 60, 3, 4 — 120 nm.

 $(La,Ca)MnO_3$ уменьшается примерно на 80 K при увеличении концентрации Mn^{4+} в их объеме с 33 до 45%.

Магнитное поле способствует упорядочению спинов в перовскитоподобных манганитах, что отчетливо проявлялось в снижении сопротивления выращенных пленок. Для пленок $(d \ge 60 \text{ nm})$ LCMO / (100)LAO (d = 40 - 120 nm) LCMO / (110) LAOИ существенное уменьшение удельного сопротивления в магнитном поле наблюдалось при $T_M - 60 < T < T_M + 10$ К. Для пленок (40 nm)LCMO/(001)LAO заметное понижение ρ зафиксировано при уменьшении температуры от $T_M + 20$ до 50 К. Максимум на зависимостях $\rho(T, H = 0.4 \text{ T})$, измеренных для выращенных пленок LCMO, сдвигался на 3-5 градусов в сторону высоких температур относительно его положения на кривых $\rho(T, H = 0)$ (рис. 4, *a* и вставка на рис. 4, *b*).

На температурных зависимостях магнетосопротивления $MR = [\rho(H = 0.4 T) - \rho(H = 0)]/\rho(H = 0)$, измеренных для пленок $(d \ge 60 \text{ nm})\text{LCMO}/(001)\text{LAO}$ и (d = 40 - 120 nm)LCMO/(110)LAO, имелся резкий пик при температуре на 10-20 градусов ниже T_M (рис. 4). Максимальные значения MR для пленок LCMO, в которых произошла частичная релаксация механических напряжений, хорошо согласуются с литературными данными для эпитаксиальных толстых (d > 100 nm) манганитных слоев и объемных керамических образцов [19].

Максимум на кривых MR(T), измеренных для пленок (d = 40 nm)LCMO/(001)LAO, был не резким (рис. 4, a), причем высокие значения MR имели место и при температурах порядка 50 К. Значительная величина магнетосопротивления, полученная для сильно упруго напряженных пленок (d = 40 nm)LCMO/(001)LAO при низких температурах, может быть связана с существенной разориентацией спинов на ионах марганца при температурах ниже T_M .

Таким образом, рассогласование в параметрах кристаллических решеток является причиной сжимающих двухосных механических напряжений в пленках LCMO, эпитаксиально выращенных на пластинах из алюмината лантана с ориентацией (001) или (110). Эффективный объем элементарной ячейки в пленке LCMO, выращенной когерентно на подложке (001)LAO, существенно меньше Vef в манганитной пленке такой же толщины, выращенной когерентно на подложке (110)LAO. Сжимающие в плоскости подложки двухосные механические напряжения способствуют обогащению пленок LCMO четырехвалентными ионами марганца. Параметры пленок (110) LCMO в меньшей степени, чем пленок (001) LCMO, изменяются под действием механических напряжений, возникающих вследствие рассогласования в параметрах кристаллических решеток с подложкой.

Список литературы

- Y. Tokura. In: Colossal Magnetoresistive Oxides / Ed. by Y. Tokura. Gordon and Breach Science Publishers, Amsterdam, The Netherlands (2000). P. 2.
- [2] A. Goyal, M. Rajeswari, R. Shreekala, S.E. Lofland, S.M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan. Appl. Phys. Lett. **71**, *17*, 2535 (1997).
- [3] E. Gommert, H. Cerva, J. Wecker, K. Samwer. J. Appl. Phys. 85, 8, 5417 (1999).
- [4] R.A. Rao, D. Lavric, T.K. Nath, C.B. Eom, L. Wu, F. Tsui. Appl. Phys. Lett. 73, 22, 3294 (1998).
- [5] H.Y. Hwang, T.T. Palstra, S.-W. Cheong, B. Batlogg. Phys. Rev. B 52, 21, 15046 (1995).
- [6] A.J. Millis, T. Darling, A. Migliory. J. Appl. Phys. 83, 3, 1588 (1998).
- [7] Yu.A. Boikov, D. Erts, T. Claeson. Mater. Sci. Engin. B79, 2, 133 (2001).
- [8] Ю.А. Бойков, Д. Эртс, Т. Клаесон. ФТТ 42, 11, 2042 (2000).
- [9] T.I. Kamins. J. Appl. Phys. 42, 11, 4357 (1971).
- [10] J. Aarts, S. Freisem, R. Hendrikx, H.W. Zandbergen. Appl. Phys. Lett. 72, 23, 2975 (1998).

- [11] E.O. Wollan, W.C. Koehler. Phys. Rev. 100, 2, 545 (1955).
- [12] E.S. Vlakhov, R.A. Chakalov, R.I. Chakalova, K.A. Nenkov, K. Dorr, A. Handstein, K.-H. Muller. J. Appl. Phys. 83, 4, 2152 (1998).
- [13] B. Wiedenhorst, C. Hofener, Y. Lu, J. Klein, L. Alff, R. Gross, B.H. Freitag, W. Mader. Appl. Phys. Lett. 74, 24, 3636 (1999).
- [14] O.I. Lebedev, G. Van Tendeloo, S. Amelinckx, B. Leibold,
 H.-U. Habermeier. Phys. Rev. B 58, 12, 8065 (1998).
- [15] R.C. Weast. Handbook of Chemistry and Physics. 55th ed. CRC Press, Cleveland (1974). P. F-198.
- [16] Ю.А. Бойков, Т. Клаесон, А.Ю. Бойков. ЖТФ 71, 10, 54 (2001).
- [17] Ю.А. Бойков, В.А. Данилов, А.Ю. Бойков. ФТТ 45, 4, 649 (2003).
- [18] J.B. Goodenough. Phys. Rev. 100, 2, 564 (1955).
- [19] H. Asano, J. Hayakawa, M. Matsui. Phys. Rev. B 57, 2, 1052 (1998).