02

Поверхностно-радиационные моды и продольные экситоны в спектрах экситон-поляритонной люминесценции

© Б.Ж. Ахмадалиев, Н.Х. Юлдашев, И.И. Юлчиев

Ферганский политехнический институт, 150107 Фергана, Узбекистан e-mail: uzferfizika@mail.ru

Поступила в редакцию 20.02.2018 г.

Исследованы низкотемпературные ($T = 2 \,\mathrm{K}$) спектры экситон-поляритонной люминесценции в окрестности частоты экситонного резонанса $A_{n=1}$ кристаллов CdS с учетом затухания $\hbar\Gamma$ механических экситонов. Проанализированы результаты численных расчетов парциальных и интерференционных вкладов объемных и поверхностно-радиационных спектральных мод в геометрии излучения добавочных волн в вакуум с *s*- и *p*-поляризациями. Показано, что вклады чисто продольных экситонов и их интерференции с поляритонами верхней дисперсионной ветви в люминесценцию вблизи продольной частоты ω_L небольшие (~ 10-30%). Тем не менее, учет их необходим для получения количественного согласия с экспериментом и именно они обусловливают формирование дополнительной линии A'_L при наклонном излучении.

DOI: 10.21883/OS.2018.09.46546.52-18

Введение

Поляритонный механизм люминесценции играет важную роль в формировании низкотемпературных спектров излучения полупроводниковых кристаллов в окрестности экситонных резонансов. К настоящему времени достигнуто понимание многих качественных сторон явления поляритонной люминесценции (ПЛ), связанных с особенностями дисперсии поляритонов, условиями прохождения излучения через границу в области резонанса, характером пространственного и энергетического распределения поляритонов [1-9]. Детальное изучение экситонной энергетической структуры кристаллов показывает, что в формировании спектров низкотемпературной фотолюминесценции наряду с явлениями светоэкситонного взаимодействия (поляритонный эффект) и пространственной дисперсии (зависимость тензора диэлектрической проницаемости ε_{αβ} от волнового вектора k) существенную роль могут играть эффекты, связанные с экситонным затуханием ћГ. В частности, экситонное затухание может обусловливать возгорание излучения поверхностно-радиационных мод (чисто пространственно затухающих волн вглубь кристалла при $\Gamma = 0$) и интерференционной люминесценции когерентно излучающих состояний различных дисперсионных ветвей с близкими значениями ω и k. В работах [6–9] была построена теория ПЛ в случае, когда диссипативное затухание экситона нарушает критерии применимости кинетического уравнения Больцмана

$$|\operatorname{Re}\mathbf{k}_{\beta}| \gg \alpha_{\beta},\tag{1}$$

и справедливая при произвольном соотношении между $|\text{Re}\mathbf{k}_2|$ и α_2 (где \mathbf{k}_2 и α_2 — волновой вектор и коэффициент поглощения поляритонов верхней дисперсионной ветви 2). На основе этой теории были последовательно

рассчитаны вклады волн нижней поляритонной ветви 1 и сильно затухающей волны 2 в ПЛ в окрестности частоты ω_L продольного экситона (ветвь 3) и удовлетворительно проанализированы экспериментальные спектры ПЛ кристаллов ZnP2, CdS и CdTe. Однако при этом конкретный расчет и эксперимент ограничивались самым простым случаем — анализом нормально выходящего из кристалла в вакуум поляритонного излучения, когда отсутствует вклад продольных экситонов в ПЛ. Хотя уже давно известно [3-5], что при наличии пространственной дисперсии (ПД) возможен перенос энергии в кристаллах чисто продольными экситонами и они проявляются в спектрах низкотемпературной фотолюминесценции кристаллов CdS лишь при наклонном излучении [7,8]. Тем не менее, количественный анализ их вкладов в экситон-поляритонную люминесценцию (ЭПЛ) до сих пор не проводился.

В настоящей работе обобщается микроскопическая теория ПЛ кристаллов с ПД типа CdS с учетом вкладов излучения чисто продольных экситонов в окрестности частоты ω_L . Рассматривается ЭПЛ в случае, когда неравенство (1) одновременно нарушается для добавочных волн $\beta = 2$ и $\beta = 3$, но остается справедливым для поляритонов нижней дисперсионной ветви $\beta = 1$. Развитая теория ЭПЛ вопреки обычной теории ПЛ, основанной на использовании функции распределения поляритонов, позволяет учесть интерференцию когерентно излучающих состояний поперечных поляритонов и продольных экситонов при наличии затухания $\Gamma \neq 0$ (что несомненно является новым эффектом, отсутствовавшим в работах [6,7,9-11]), т.е. выйти за пределы применимости кинетического уравнения для волн 2 и 3, определяемым наряду с (1) также и более жестким условием

$$\operatorname{Re}(\mathbf{k}_{\beta} - \mathbf{k}_{\beta'}) | \gg \alpha_{\beta}, \, \alpha_{\beta'} \quad (\beta, \beta' = 2, 3).$$

При выполнении неравенства (2) можно пренебречь интерференционным вкладом когерентно излучающих поляритонных состояний разных дисперсионных ветвей. С помощью этой теории здесь проводится анализ угловой зависимости экспериментальных спектров ЭПЛ кристаллов CdS с гексагональной точечной симметрией для *s*- и *p*-поляризаций излучения.

Теория

Рассмотрим дипольно-активный триплетный экситон, характеризуемый резонансной частотой ω_0 , эффективной массой M и продольно-поперечным расщеплением $\omega_{LT} = \omega_L - \omega_0$ в кристалле с изотропным тензором диэлектрической проницаемости [5,6,9]:

$$\varepsilon_{\alpha,\beta}(\omega \mathbf{k}) = \varepsilon(\omega, \mathbf{k})\delta_{\alpha\beta}$$
$$= \varepsilon_b \left[1 + \frac{\omega_{LT}}{\omega_0(\mathbf{k}) - \omega - i\Gamma(\omega, \mathbf{k})/2} \right] \delta_{\alpha\beta}, \quad (3)$$

где ε_b — фоновая диэлектрическая проницаемость, $\hbar\omega_0(\mathbf{k}) = \hbar\omega_0 + \frac{\hbar^2 \mathbf{k}^2}{2M}$ — энергия механического экситона, $\Gamma(\omega, \mathbf{k})$ — затухание экситона, определяемое процессами рассеяния или захвата. Известно, что в таких кристаллах могут возбуждаться нормальные волны двух типов — поперечные ($\varepsilon(\omega, \mathbf{k}) = c^2 k^2 / \omega^2$, где c — скорость света в вакууме) и продольные ($\varepsilon(\omega, \mathbf{k}) = 0$). Для большинства полупроводников $\omega_{LT} \ll \omega_0$ (например, для CdS $\omega_{LT} = 2.0$ meV, $\omega_0 = 2552.4$ meV при T = 2 K) и в окрестности резонанса ω_0 , определяемой условием

$$|\omega - \omega_0| \ll \sqrt{\omega_0 \omega_{LT}},\tag{4}$$

дисперсионные уравнения поперечных поляритонов $\beta = 1, 2$ и продольных экситонов $\beta = 3$ можно представить в упрощенном виде:

$$\omega = \omega_{\mathbf{k}}^{(T)} = \omega_0 + \frac{\hbar \mathbf{k}^2}{2M} - \frac{\varepsilon_b \omega_{LT}}{(c \, \mathbf{k}/\omega_0)^2 - \varepsilon_b} - i \, \frac{\Gamma(\omega, \mathbf{k})}{2}, \quad (5)$$

$$\omega = \omega_{\mathbf{k}}^{(3)} = \omega_L + \frac{\hbar \mathbf{k}^2}{2M} - i \frac{\Gamma(\omega, \mathbf{k})}{2}, \ \omega_L = \omega_0 + \omega_{LT}, \ (6)$$

причем поляритоны 1 и 2 описываются формулой (5) соответственно в областях $k > k_0 \sqrt{\varepsilon_b}$ и $k < k_0 \sqrt{\varepsilon_b}$, где $k_0 = \omega_0/c$.

С ростом затухания $\hbar\Gamma$ дисперсионные кривые, согласно (5) и (6), сильно изменяются. Это особенно заметно вблизи продольной частоты ω_L для мод 2 и 3, которые при $\hbar\Gamma = 0$ являются распространяющимися лишь в области частот $\omega > \omega_{\theta}$ и чисто затухающими, т. е. поверхностно-радиационными, когда $\omega < \omega_{\theta}$. Характерная частота $\omega_{\theta} \ge \omega_L$ определяется условием полного внутреннего отражения волн $\beta = 2, 3$:

$$\operatorname{Re} n_{\beta} = c \operatorname{Re} k_{\beta}(\omega) / \omega = \sin \theta.$$
(7)

Здесь θ — угол выхода излучения из кристалла в вакуум, n_{β} — показатель преломления кристалла для

волны β , причем Re $n_{\beta} < 1$ при $\omega < \omega_{\theta}$. Заметим, что, во-первых, появление при $\hbar\Gamma \neq 0$ мнимой части волнового вектора \mathbf{k}_{β} при $\omega > \omega_{\beta}$ означает определенное пространственное затухание распространяющихся мод, что приводит в некоторой области частот $\omega - \omega_{\theta} \sim \Gamma$ к нарушению неравенств (1) и (2). Во-вторых, в области частот $\omega < \omega_{\theta}$, где всегда нарушается условие (1) для волн 2 и 3, при конечном Г возникает вещественная добавка к волновому вектору \mathbf{k}_{β} , которая означает, что поверхностно-радиационные моды 2 и 3 перестают быть чисто затухающими и включаются в перенос энергии экситонного возбуждения в кристалле. Последние обстоятельства безусловно имеют существенное значение в формировании спектра ЭПЛ кристаллов в геометрии излучения чисто продольных экситонов, исследование которых и является основной целью настоящей работы.

Исследуем спектральную интенсивность излучения $I_{\lambda}^{(0)}(\omega, \Omega)$ с поляризацией λ , распространяющегося в вакууме у поверхности кристалла (z = -0) в направлении единичного вектора $\Omega(\theta, \varphi)$ (который лежит в плоскости yz, а внутренняя нормаль к границе кристалла направлена вдоль оси z; $\lambda = s, p$, где $s \parallel x, p \parallel y$):

$$I^{(0)}_\lambda(\omega,\,\Omega) = \sum_eta I^{(0)}_{eta\lambda}(\omega,\,\Omega),$$

 $\beta = 1, 2$ при $\lambda = s$ и $\beta = 1, 2, 3, 23$ при $\lambda = p$. Парциальная интенсивность $I_{23p}^{(0)}$ описывает интерференционный вклад в ЭПЛ волн 2 и 3. Считаем, что в окрестности частоты ω_L можно пренебречь рассеянием волн внутри ветвей $\beta = 2, 3$ и не учитываем генерацию волн 2 и 3 с малыми значениями **k**, происходящую за счет рассеяния на LO-фононах из вышележащих экситонных состояний, а также возможное их индуцирование многократным зеркальным отражением волн 1 от внутренней границы кристалла [5]. Таким образом, функция распределения *f* поляритонов в основном формируется за счет их релаксации по состояниям поперечной моды $1 - f_{1k\lambda}(\omega, z)$.

Последовательное определение функции $f_{1k\lambda}(\omega, z)$ выходит за рамки настоящей работы, и она считается заданной. Естественно, что в кубическом кристалле в результате многократных рассеяний происходит изотропизация функции распределения по направлениям и состояниям поляризации. Далее при расчете в узкой области частот вблизи ω_L достаточно ограничится простейшей факторизованной формой

$$f_{1\mathbf{k}\lambda}(\omega, z) = f_1(\omega) \exp(-z/L),$$

содержащей некоторую плавную частотную зависимость $f_1(\omega)$. Здесь L — эффективная глубина распределения поляритонов ветви 1, определяемая процессами многократного рассеяния экситон-поляритонов. Координатная зависимость $f_{1k\lambda}(\omega, z)$ только от z соответствует однородности задачи вдоль поверхности.

Рис. 1. Диаграмма для функции Грина $G_{\beta\lambda}^{-+}(\mathbf{k}, \mathbf{k}'; \omega)$. При $\lambda = s$ индекс $\beta = \beta' = 2$, при $\lambda = p - \beta$, $\beta' = 2$, 3.

Парциальный вклад $I_{1\lambda}^{(0)}$ определяется по формуле [5]:

$$I_{1\lambda}^{(0)}(\omega,\Omega) = \frac{k_0^2}{(2\pi)^3} \,\hbar\omega T_{01}^{(\lambda)} f_{1\mathbf{k}\lambda}(z=+0),\tag{8}$$

где

$$T_{0eta}^{(\lambda)}=rac{I_N^{(0)}}{I_N^{(eta)}}=rac{\cos heta}{\cos heta_eta}\,rac{1}{n_eta}\,rac{w_0}{w_eta}\,|t_{0eta}^{(\lambda)}|\,.$$

— энергетический коэффициент пропускания волны β с поляризацией λ из кристалла в вакуум, $t_{0\beta}^{(\lambda)}$ — соответствующий амплитудный коэффициент пропускания, I_N — нормальная составляющая плотности потока энергии к поверхности, $n_\beta w_\beta$ — коэффициент связи между плотностью потока энергии и квадратом модуля амплитуды электрического поля нормальной волны β :

$$w_0 = \frac{c}{8\pi}, \ w_\beta = \frac{c}{8\pi} \left[1 - \delta_{\beta 3} + \frac{\omega_M \varepsilon_b}{\omega_{LT}} \left(\frac{n_\beta^2}{\varepsilon_b} - 1 + \delta_{\beta 3} \right)^2 \right],$$
$$\beta = 1 - 3$$

Интенсивность ЭПЛ с s-поляризацией

$$I_{s}^{(0)}(\omega, \Omega) = I_{1s}^{(0)}(\omega, \Omega) + I_{2s}^{(0)}(\omega, \Omega)$$

не содержит интерференционный член, так как условие (2) считаем выполненным. Парциальный вклад $I_{1s}^{(0)}$ определяется в кинетическом приближении формулой (8) с $\lambda = s$. Для расчета $I_{2s}^{(0)}$ при конечных значениях экситонного затухания, т.е. с учетом произвольного соотношения между Re_2 и α_2 , воспользуемся диаграммной техникой Келдыша и рассчитаем функцию Грина $G_{2s}^{-+}(\mathbf{k}, \mathbf{k}'; \omega)$ для поляритонов ветви 2 с поляризацией λ при заданной функции распределения поляритонов ветви 1 в пренебрежении рассеянием внутри ветви 2. На рис. 1 представлена диаграмма для функции $G_{\beta\lambda}^{-+}(\mathbf{k}, \mathbf{k}'; \omega)$. Сплошным линиям отвечают функции

Грина экситонов, перенормированные с учетом экситонфотонного и экситон-решеточного взаимодействия:

$$\begin{split} G_{\mathbf{k}\omega}^{-+} &= [\omega - \omega_{\mathbf{k}}^{(T)} + i\Gamma(\omega,\mathbf{k})/2]^{-1}, \ G_{\mathbf{k}\omega}^{++} = -(G_{\mathbf{k}\omega}^{--})^*, \\ G_{1\mathbf{k}\lambda\omega}^{-+}(z) &= 2\pi f_{1\mathbf{k}\lambda}(z)\delta(\omega - \omega_{1\mathbf{k}}^{(T)}), \end{split}$$

где $\Gamma(\omega, \mathbf{k})$ — затухание поляритона, определяемое процессами рассеяния или захвата. Функция $G_{\mathbf{k}\omega}^{--}(G_{\mathbf{k}\omega}^{++})$ разлагается на сумму двух полюсных слагаемых:

$$G_{\mathbf{k}\omega}^{--} = \sum_{\beta=1,2} G_{\beta\mathbf{k}\omega}^{--}, \quad G_{\beta\mathbf{k}\omega}^{--} = (-1)^{\beta} \frac{2M}{\hbar} \frac{k_{\beta}^{2} - \varepsilon_{b}k_{0}^{2}}{k_{1}^{2} - k_{2}^{2}} \frac{1}{k^{2} - k_{\beta}^{2}}$$

При расчете $I_{2s}^{(0)}$ верхней и нижней экситонным линиям на рис. 1 сопоставляются функции $G_{2k\omega}^{--}$ и $G_{2k'\omega}^{++}$. Учитывать диаграмму с внешними линиями $G_{1k\omega}^{--}$ и $G_{1k\omega}^{++}$, т.е. учитывать рассеяние $1 \rightarrow 1$ не требуется, так как функция $f_{1k\lambda}(z)$ считается заданной. Используя правила диаграммной техники, получим

$$I_{2s}^{(0)}(\omega, \Omega) = \frac{1}{8\pi} \frac{k_0^2}{(2\pi)^3} |t_{02}^{(s)}|^2 \langle |E_s^{(2)}(\mathbf{k}_{\perp}, \omega; z = +0)|^2 \rangle,$$
(9a)
$$\langle |E_s^{(2)}(\mathbf{k}_{\perp}, \omega; z)|^2 \rangle = C \sum_{\mathbf{k}_1 \lambda_1} \sum_j \left| \sum_{k_z} \frac{G_{2\mathbf{k}\omega}^{--}}{n_2^2(\omega) - \varepsilon_b} \right|^2 \langle |\mathbf{k}_z(z - z_j)|^2 e_s^{(\mathbf{k}_1 \lambda_1)} V(\mathbf{k}_1 - \mathbf{k}_2) \right|^2 G_{1\mathbf{k}_1 \lambda_1 \omega}^{-+}(z).$$
(9b)

Здесь $E_s^{(2)}(\mathbf{k}_{\perp},\omega;z)$ — амплитуда световой волны с частотой ω и поперечной составляющей \mathbf{k}_{\perp} (отметим, что \mathbf{k}_{\perp} является хорошим квантовым числом), равной поперечной составляющей $k_0\Omega_{\perp}$ волнового вектора этой волны в вакууме, $t_{02}^{(s)}$ — амплитудный коэффициент пропускания, $n_2 = k_2/k_0$ — показатель преломления волны 2, $e^{(\mathbf{k}_1\lambda_1)}$ — вектор поляризации, $e_s^{(\mathbf{k}_1\lambda_1)}$ — его проекция на ось X, z_j — координата *j*-го рассеивающего центра, C — константа.

Подставляя (9b) в (9a), заменяя суммирование по jинтегрированием по \mathbf{r}_j согласно правилу $\sum_j \rightarrow N_i \int d\mathbf{r}_j$

и интегрируя по k_z и \mathbf{k}_1 , окончательно получим

$$I_{2s}^{(0)}(\omega,\,\Omega) = \frac{|t_{02}^{(s)}|^2}{(2\pi)^3} \frac{f_1(\omega)}{2k_0 \mathrm{Im}n_{2z} + L^{-1}} \frac{2M^2 c \varepsilon_b \omega_{LT} \cos\theta}{\hbar \tau_{21} |n_{2z}(n_1^2 - n_2^2)|^2},$$
(9)

где $n_{2z} = (n_2^2 - \sin^2 \theta)^{1/2}$ величины $t_{02}^{(s)}$ и n_2 рассчитываются с учетом затухания $\Gamma = 1/2\tau_{21}$.

При упругом рассеянии на статических дефектах

$$\frac{1}{\tau_{21}(\omega)} = \frac{2\pi}{\hbar^2} \frac{2}{3} N_i \sum_{k_1} |V(\mathbf{k}_1 - \mathbf{k}_2)|^2 \delta(\omega - \omega_{1\mathbf{k}_1}^{(T)}), \quad (9c)$$

где N_i — концентрация дефектов, $V(\mathbf{q})$ — фурье-образ возмущающего потенциала. Для изотропного потенциала $V(\mathbf{q}) \equiv V(q)$. Заметим, что при $\omega_M \ll \omega_{LT}/\varepsilon_b$ величина $k_2(\omega)$ мала по сравнению с $k_1(\omega)$ и в (9с) $V(\mathbf{k}_1 - \mathbf{k}_2)$ можно заменить на $V(\mathbf{k}_1)$. В случае излучения с *p*-поляризацией для расчета парциальных вкладов $I_{1p}^{(0)}$, $I_{3p}^{(0)}$ и интерференционной составляющей $I_{p23}^{(0)}$ в суммарную интенсивность $I_p^{(0)}$ по (8):

$$I_{p}^{(0)}(\omega, \Omega) = \sum_{\beta=1,2,3} I_{\beta p}^{(0)}(\omega, \Omega) + I_{p23}^{(0)}(\omega, \Omega)$$
(10)

рассмотрим функции Грина $G_{2p}^{-+}(\mathbf{k}, \mathbf{k}'; \omega)$ для поперечных поляритонов ветви 2 и $G_{3p}^{-+}(\mathbf{k}, \mathbf{k}'; \omega)$ для продольных экситонов. Диаграмма для этих функций изображена на рис. 1, где $\lambda, \lambda' = p$ и $\beta, \beta' = 2, 3$. Сплошной линии в случае продольного экситона отвечает функция Грина

$$G_{3\mathbf{k}\omega}^{--} = [\omega - \omega_k^{(3)} + i\Gamma(\omega, \mathbf{k})/2]^{-1}$$
$$= -\frac{2M}{\hbar} \frac{1}{k^2 - k_3^2},$$
(11)

где $\omega_{\mathbf{k}}^{(3)}$ — определяется формулой (6), а k_3 является решением дисперсионного уравнения продольных экситонов:

$$k_3 = n_3 k_0, \quad n_3 = \left(\left(\omega + i \frac{\Gamma}{2} - \omega_L \right) / \omega_M \right)^{1/2}.$$
(12)

Используя рассуждения и технику выкладки для *s*-поляризации, получим

$$I_{\beta p}^{(0)}(\omega,\theta) = F_{\beta} \, \frac{|F_{\beta p}|^2}{2k_0 \mathrm{Im}_{\beta z} + L^{-1}}, \ \beta = 2, 3, \qquad (13)$$

$$I_{p23}^{(0)}(\omega,\theta) = 2\operatorname{Re}\left[F_{23} \frac{F_{2p}F_{3p}^*}{-ik_0(n_{2z}-n_{3z}^*)+L^{-1}}\right], \quad (14)$$

где

$$F_{\beta} = \frac{1}{(2\pi)^3} \frac{2M^2 c \varepsilon_b \omega_{LT} \cos \theta f_1(\omega)}{\hbar \tau_{\beta 1}},$$

$$F_{2p} = \frac{t_{02}^{(p)}}{n_{2z} (n_1^2 - n_2^2)}, \quad F_{3p} = \frac{t_{03}^{(p)}}{n_{3z} \varepsilon_b},$$
(15)

а F_{23} получается из F_{β} заменой величины $\tau_{\beta 1}$ на $(\tau_{21}\tau_{31})^{1/2}$. При этом учитывалось, что для продольных экситонов напряженность электрического поля и экситонная часть поляризации кристалла связаны соотношением $4\pi \mathbf{P}_3 = -\varepsilon_b \mathbf{E}_3$. Выражение (14) описывает интерференционный вклад волн ветвей 2 и 3 в интенсивность внешнего излучения *p*-поляризации, обусловленный рассеянием на одном и том же центре поляритонов ветви 1 в когерентно излучающие состояния 2 и 3 в условиях, когда наряду с (1) нарушается и неравенство (2).

Теперь остается рассчитать амплитудные коэффициенты пропускания $t_{0\beta}^{(p)}$ волны β в вакуум. При этом использовали наряду с граничными условиями Максвелла еще и дополнительное граничное условие Пекара с "мертвым слоем" [7]. В случае падения изнутри кристалла на его поверхность волны 2 с р-поляризацией находим

$$t_{02}^{(p)}(\theta) = \frac{n_1^2 - n_2^2}{n_1^2 - \varepsilon_b} \\ \times \frac{2n_{2z}/n_2}{(n_{0z} + \bar{n}_p)\cos\delta - i\sin\delta \left[\frac{\bar{n}_z}{\varepsilon_b}(1 + \bar{n}_{p1}) + \frac{n_{0z}\varepsilon_b}{\bar{n}_z}\bar{n}_{p2}\right]},$$
(16)

где

$$ar{n}_p = n_{0z}ar{n}_{p1} + ar{n}_{p2}, \quad ar{n}_{p2} = (n_{2z} + n_{1z}ar{n}_{p1})arepsilon_b,$$

 $ar{n}_{p1} = rac{n_1^2 n_{2z} n_{3z} + n_{0x}^2}{n_2^2 n_{1z} n_{3z} + n_{0x}^2} rac{arepsilon_b - n_2^2}{n_1^2 - arepsilon_b}, \quad n_{eta x} = n_{0x} = \sin heta.$

Коэффициент пропускания $t_{01}^{(p)}$ получается из $t_{02}^{(p)}$ симметричной заменой $n_1 \leftrightarrow n_2$. А в случае падения изнутри кристалла на его поверхность продольной волны определяем амплитудный коэффициент превращения нормальной волны продольных экситонов во внешнее световое излучение в следующем виде:

$$t_{03}^{(p)}(\theta) = \frac{2n_{0x}(n_{1z} - n_{2z})n_{3z}/n_{3}}{\sum_{\beta=1,2}(-1)^{\beta}\frac{n_{\beta}^{2} - \varepsilon_{\beta}}{n_{\beta}^{2}}(n_{0x}^{2} + n_{\beta z}n_{3z})[(n_{0z} + \frac{n_{3-\beta,z}}{\tilde{n}_{z}})\cos\delta - i\sin\delta(\frac{\tilde{n}_{z}}{\varepsilon_{b}} + \frac{n_{0z}n_{3-\beta,z}}{\tilde{n}_{z}})]}.$$
 (17)

Результаты численного расчета и сравнение с экспериментом

Для численного расчета парциальных $I^{(0)}_{\beta p}(\omega),~I^{(0)}_{\beta s}$ и интегральных $I_s^{(0)}(\omega), I_p^{(0)}$ спектральных интенсивностей люминесценции воспользовались формулами (8)-(10) и (13)-(15) как основными, а также вспомогательными формулами типа (16), (17) для амплитудных коэффициентов пропускания $t_{0\beta}^{(\lambda)}$ и показателей преломления n_{β} . Единственным варьируемым параметром теории является эффективная глубина распределения поляритонов L нижней ветви 1. Значение ћГ считаем известным из эксперимента. Численные расчеты проводились при следующих значениях основных параметров экситонного резонанса $A_{n=1}$ кристалла CdS: $\hbar\omega_0 = 2.5524 \,\text{eV}$, $\hbar\omega_{LT} = 2.0 \,\mathrm{meV}, \; M_{ex} = 0.9 m_0 \; (m_0 \; - \;$ масса свободного электрона), фоновая диэлектрическая проницаемость $\varepsilon_b = 9.4$, толщина "мертвого слоя" $\lambda = 70^\circ$. Эти значения параметров хорошо согласуются с экспериментальными результатами по экситонному отражению света и экситонной люминесценции при T = 2 K [4,7].

На рис. 2 приведены теоретические спектральные зависимости $I_p^{(0)}(a)$, $I_{2p}^{(0)}(b)$, $I_{3p}^{(0)}(c)$ и $I_{p23}^{(0)}(d)$, рассчитанные при $\theta = 80^{\circ}$ и разных значениях параметров Г и L. Оказалось, что интенсивность и полуширина кривых $I_{2p}^{(0)}(\omega)$, и следовательно, $I_p^{(0)}(\omega)$ существенно зависят от ГL. Аналогичные параметры кривых $I_{3p}^{(0)}(\omega)$ и $I_{p23}^{(0)}(\omega)$ при $L > 1 \mu$ т практически не чувствуют изменение значения L, что обусловлено относительно

Puc. 2. Спектральные зависимости полной $I_p^{(0)}$, парциальных $I_{2p}^{(0)}$, $I_{3p}^{(0)}$ интенсивностей и интерференционного вклада $I_{23p}^{(0)}$, рассчитанные для параметров экситонного резонанса $A_{(n=1)}$ в CdS при угле выхода в вакуум $\theta = 80^{\circ}$ и для разных значений экситонного затухания $\hbar\Gamma = 0.075$ (1-3), 0.15 meV (1'-3') и глубины распределения поляритонов ветви 1: L = 0.2 (1, 1'), 1.0 (2, 2'), 2.0 μ m (3, 3').

большим значением коэффициента поглощения волны З $(\alpha_3 L \gg 1)$. Более того, полуширина Δ_3 кривой $I_{3p}^{(0)}(\omega)$ почти полностью определяется величиной Г. Согласно численному расчету $\Delta_3 \approx 2\Gamma$. Заметим, что вклад $I_{3p}^{(0)}$ в $I_p^{(0)}$ с ростом $\hbar\Gamma$ резко уменьшается, при этом $I_{2p}^{(0)}$ — растет и сильно уширяется, в результате чего при одном и том же значении L увеличение Γ приводит к слабому уменьшению максимума $I_p^{(0)}(\omega)$ на частоте ω_{θ} и его уширению. Это объясняется результатом подавления ПД для продольных волн затуханием механических экситонов.

Квантовую теорию, развитую выше, используем для описания экспериментальных спектров ЭПЛ кристаллов

СdS в "изотропных" геометриях излучения (s — поляризация, когда $\Omega(\theta, \phi)$ лежит в плоскости YZ и оптическая ось C ||Y; p — поляризация, когда $\Omega \perp C \parallel X$). Спектры регистрировались на установке профессора Селькина А.В., собранной на базе спектрометра ДФС-24, в режиме счета фотонов при минимальной спектральной ширине щели 0.04 meV в условиях максимально возможного спектрального разрешения. Возбуждение ЭПЛ осуществлялось на длине волны $\lambda = 476.5$ nm светом Ar⁺-лазера, сфокусированным на поверхность кристалла в пятно размером ~ 0.4 × 4 mm при мощности светового потока ~ 7 mW.

Рис. 3. Экспериментальные (a, b, c) и теоретические (a', b', c') спектры ЭПЛ кристаллов CdS (T = 2 K) при *s*- (a, a'; c, c') и *p*-поляризации (b, b') для углов выхода $\theta = 0$ (a, a') и 80° (b, b', c, c'). θ — суммарная интенсивность излучения, треугольники — эксперимент; 1, 2 и 3 — вклады поперечных поляритонов (ветви 1, 2) и продольных экситонов (ветвь 3), 23 — интерференционный вклад $I_{p23}^{(0)}$.

На рис. 3, *а*, *с* представлены общий вид контуров люминесценции кристалла CdS $(A_{n=1}, T = 2K)$ в *s*-геометрии излучения при $\theta = 0$ (*a*) и $\theta = 80^{\circ}$ (*c*). Штриховая линия на рис. 3, *а* изображает экспериментально измеренную по спектру 2LO-повторения функцию заселенности $g_1(\omega) = \rho_1(\omega)f_1(\omega)$ поляритонных состояний ветви 1, откуда определялась функция распределения $f_1(\omega)$, показанная там же пунктирной линией. Теоретические спектры ЭПЛ на рис. 3, *a'*, *c'* (кривые 0), рассчитанные при значениях параметров $\hbar\Gamma = 0.075$ meV, $L = 0.8 \,\mu$ m и $\delta = 70^{\circ}$, хорошо совпадают с экспериментом (треугольники). Парциальный вклад $I_{2s}^{(0)}$ (пунктирные кривые 2) играет существенную роль в формировании суммарной интенсивности $I_s^{(0)}$ в области частот $\omega \ge \omega_L$ и даже превосходит вклад $I_{1s}^{(0)}$ (штриховые *I*).

На рис. 3, *b* изображен экспериментальный контур ЭПЛ CdS при *p*-поляризации и $\theta \approx 80^{\circ}$, в которой наблюдается наряду с основным максимумом излучения A_T еще и дополнительный небольшой максимум A'_L , расположенный с коротковолновой стороны от ω_L на частоте $\omega_{\theta=80^{\circ}} = 2.5547 \text{ eV}/\hbar$. Появление максимума A'_L ранее объяснялось только "высвечиванием" чисто продольных экситонов. Однако, как показывает результаты численного расчета, представленные на рис. 3, *b'*, линия A'_L формируется сложным образом. Спектральные зависимости суммарной интенсивности $I^{(0)}_p$ (сплошная кривая 0), парциальных вкладов $I^{(0)}_{1p}$ (кривая 1), $I^{(0)}_{2p}$ (кривая 2), $I^{(0)}_{3p}$ (кривая 3) и интерференционной составляющей $I^{(0)}_{p23}$ (кривая 23) рассчитывались для известных параметров CdS [2] и при тех же значениях Γ , *L*, *l*, что и кривые на рис. 3, *a'*, *c'*.

Обращает на себя внимание область частот $\omega < \omega_{\theta}$, где с точки зрения кинетического приближения продольные экситоны так же, как и поперечные поляритоны 2, не могут превращаться во внешние фотоны, т. е. высвечиваться в вакуум. Согласно квантовой теории, совпадающей с экспериментом (ср. кривую 0 и треугольники на рис. 3, b'), экситонное затухание индуцирует излучение поверхностно-радиационных мод 2 и 3, а также их интерференцию. Это, несомненно, является новым механизмом формирования ЭПЛ в кристаллах с пространственной дисперсией. Строго говоря, частоты ω_{θ} для волны 2 и 3 несколько отличаются. Поскольку при $\Gamma = 0$ в окрестности ω_L дисперсионные зависимости волн 2 и 3 можно выразить с точностью до малого параметра $\omega_M \varepsilon_b / \omega_{LT} \ll 1$ формулами

$$\omega_{2\mathbf{k}}^{(T)} \approx \omega_L + n_2^2(\omega)\omega_{LT}/\varepsilon_b, \qquad (18)$$

$$\omega_{3\mathbf{k}}^{(L)} \approx \omega_L + n_3^2(\omega)\omega_M, \qquad (19)$$

то находим из (18) и (19) следующие соотношения для характерных частот $\omega_{\theta}^{(2)}$ и $\omega_{\theta}^{(3)}$:

$$\omega_{\theta}^{(2)} \approx \omega_L + \sin^2 \theta \omega_{LT} / \varepsilon_b,$$
 (20)

$$\omega_{\theta}^{(3)} \approx \omega_L + \sin \theta \omega_M. \tag{21}$$

В случае предельно больших углов выхода ($\theta \approx 85^{\circ}$) отсюда получим для параметров CdS (T = 2 K)

$$\omega_{\theta,\max}^{(2)} \approx \omega_L + \omega_{LT}/\varepsilon_b, \quad \omega_{LT}/\varepsilon_b \approx 0.22 \text{ meV},$$

 $\omega_{\theta,\max}^{(3)} \approx \omega_L + \omega_M, \quad \hbar\omega_M \cong 7 \cdot 10^{-3} \text{ meV},$
 $\hbar\omega_L = 2.5544 \text{ eV}$

Согласно эксперименту и численному расчету (рис. 3, b'), максимум линии излучения A'_L находится вблизи характерной частоты поперечного поляритона 2: $\hbar \omega^{(2)}_{ heta,\mathrm{max}} pprox 2.5546$ eV. Из-за влияния экситонного затухания Γ реальный максимум частотной зависимости $I^{(0)}_{3p}$ смещается в коротковолновую сторону от частоты ω_L и приближается к частоте $\omega_{\theta} \approx \omega_{\theta}^{(2)}$. Рис. 3, *b'* также показывает, что контур линии A'_{L} нельзя получить, ограничиваясь лишь вкладом $I^{(0)}_{3p}$. На частоте ω_{θ} отношения $I_{1p}^{(0)}$, $I_{2p}^{(0)}$, $I_{3p}^{(0)}$ и $I_{p23}^{(0)}$ к суммарной $I_p^{(0)}$ составляют 0.30, 0.52, 0.30, -0.12 соответственно. Особо следует отметить, что даже для практически минимального значения $\hbar\Gamma = 0.075 \,\text{meV}$ в кристаллах CdS неприменимо кинетическое приближение для описания парциальных вкладов $I_{2p}^{(0)}$ и $I_{3p}^{(0)}$ в окрестности линии излучения A'_L , так как $(\omega_{\theta,\max} - \omega_L)/\Gamma \approx 2.0$ и неравенство (1) на частоте $\omega = \omega_{\theta}$ не выполняется для продольной волны, а для поперечной моды ω_{θ} является критической частотой, ниже которой для данного направления $\Omega(\theta, \phi)$ в вакууме величина \mathbf{k}_2 является чисто мнимой при $\Gamma = 0$.

На рис. 4 сравниваются теоретические (кривые θ) и экспериментальные (треугольники) спектры ЭПЛ кристаллов CdS, а также расчетные частотные зависимости парциальных вкладов (кривые 1, 2, 3, 23), соответствующие *s*- (*a*, *c*, *e*) и *p*-поляризациям (*b*, *d*, *f*) при разных значениях угла выхода в вакуум θ : 30° (*a*, *b*), 45° (*c*, *d*) и 60° (*e*, *f*). Видно, что относительные вклады $I_{1\lambda}^{(0)}$ и $I_{2\lambda}^{(0)}$ в люминесценцию слабо зависят от θ , однако вклад $I_{3p}^{(0)}$ (кривые 3) нормальной волны 3 существенно увеличивается с ростом θ и играет основную роль в формировании линии A'_{I} .

Рост вклада $I_{3p}^{(0)}$ с увеличением θ непосредственно связан с проявлением ПД в спектрах люминесценции. Без ПД волны 3 так же, как и волны 1, не могут существовать в области частот $\omega > \omega_L$. При $\theta = 0$ продольные волны 3 испытывают полное внутреннее отражение и поэтому вклад $I_{3p}^{(0)}$ в $I_p^{(0)}$ отсутствует. Последнее имеет место также при $n_{3L} > \sin \theta$, чем и объясняется резкое уменьшение $I_{3p}^{(0)}$ с ростом частоты в области $\omega > \omega_{\theta}$.

Интересно заметить, что интерференционная составляющая $I_{p23}^{(0)}$ дает незначительный отрицательный вклад (~10%) в суммарную интенсивность $I_p^{(0)}$, абсолютное значение которого уменьшается с увеличением θ , когда происходит "расталкивание" мод 2 и 3. Однако без

Рис. 4. Сравнение теоретических (0) и экспериментальных (треугольники) спектров ЭПЛ при s- (a, c, e) и p-поляризации (b, d, f) излучения кристаллов CdS для углов выхода $\theta = 30^{\circ}$ (a, b), 45° (c, d), 60° (e, f). Обозначения такие же, как и на рис. 3.

вклада $I_{p23}^{(0)}$ количественно трудно получить небольшой минимум в спектре ЭПЛ на частоте вблизи ω_L , практически не зависящий от θ . Смещение линии A'_L с ростом угла θ в коротковолновую сторону от ω_L при $\omega_M \varepsilon_b \ll \omega_{LT}$ и $\Gamma \ll (\omega_\theta - \omega_L)$ проанализируем более подробно. В таком случае, учитывая, что $n_{\beta}^2 = n_{\beta z}^2 + \sin^2 \theta$, дисперсионное соотношение для излучающих в вакуум состояний ветви 2 (вблизи ω_L) можем записать как

$$n_{2z}^2 \cong \varepsilon_b - \frac{\varepsilon_b \omega'_{LT}}{\omega - \omega_0},\tag{22}$$

где

$$\omega_{LT}' = \omega_{LT} + \frac{\omega - \omega_0}{\varepsilon_b} \sin^2 \theta \approx \omega_{LT} \left(1 + \frac{\sin^2 \theta}{\varepsilon_b} \right). \quad (23)$$

Естественно, что для значений θ , при которых $n_{2z}^2 < 0$, волна 2 испытывает пространственное затухание даже при $\Gamma = 0$. При $\theta = 0$ это происходит, как видно из (22), в области частот $\omega < \omega_L$, а при $\theta \neq 0$ — в области частот ниже ω_{θ} , для которой из (22) получим формулу

$$\omega_{\theta} = \omega_L + \left(\frac{\sin^2\theta}{\varepsilon_b - \sin^2\theta}\,\omega_{LT}\right),\tag{24}$$

отличающуюся от (20) лишь заменой ε_b на $\varepsilon_b - \sin^2 \theta$. Таким образом, с ростом θ дно энергетической зоны излучающих в вакуум "легких" поперечных поляритонов смещается вверх, т.е. происходит некоторое увеличение продольно-поперечного расщепления ω_{LT} (23). Этот эффект, в основном, и проявляется в смещении линии излучения A'_L с ростом θ . Для двух значений θ_1 и θ_2 угла выхода из (24) находим отношение

$$\frac{\omega_{\theta 1} - \omega_L}{\omega_{\theta 2} - \omega_L} = \frac{(\varepsilon_b / \sin^2 \theta_2) - 1}{(\varepsilon_b / \sin^2 \theta_1) - 1},$$

из которого при $\theta_1 = 60^\circ$, $\theta_2 = 30^\circ$, для CdS ($\varepsilon_b = 9.4$) получим значение 3.2, тогда как рис. 4, *f* дает несколько другое значение, равное 2.8. Такое небольшое несоответствие объяснятся тем, что условие $\Gamma \ll (\omega_{\theta} - \omega_L)$ в данном случае не совсем выполняется.

Заключение

Развита теория экситон-поляритонной люминесценции кубических кристаллов с пространственной дисперсией для продольных экситонов в условиях нарушения критериев применимости кинетического уравнения Больцмана.

Процесс формирования спектра ЭПЛ имеет ряд специфических особенностей: перестройка энергетического спектра нормальных волн с учетом реального экситонного затухания приводит к включению в перенос энергии через границу кристалла поверхностнорадиационных мод, а наличие ПД — к их интерференционному взаимодействию; вклады $I_{3p}^{(0)}$, $I_{23p}^{(0)}$ с ростом $\hbar\Gamma$ резко уменьшаются, что объясняется результатом подавления ПД затуханием механических экситонов для продольных волн, тогда как вклад $I_{2p}^{(0)}$ — растет и сильно уширяется, в результате чего увеличение Г приводит к слабому уменьшению максимума $I_p^{(0)}(\omega)$ на частоте ω_{θ} и его уширению.

Вклад в ЭПЛ чисто продольных экситонов и их интерференции с поляритонами верхней дисперсионной ветви небольшие (~ 10-30%), тем не менее, учет их необходим для правильного количественного описания эксперимента.

Изложенный метод анализа спектров ЭПЛ дает возможность определить оптические параметры кристалла (например, значение ω_{LT} по частоте A'_L -линии) и может быть использован с небольшими изменениями при изучении спектров неупругих рассеяний поляритонов в окрестности частоты продольного экситона с учетом конечного затухания и ПД.

В заключение авторы выражают искреннею признательность А.В. Селькину за представленные экспериментальные спектры ЭПЛ.

Список литературы

- [1] Benoit a la Guillame C., Bonnot A., Delever J.M. // Phys. Rev. Lett. 1970. V. 24. P. 1235.
- [2] Cross E.F., Permogorov S.A., Travnikov V.V., Sel'kin A.V. // Sol. State Commun. 1972. V. 10. P. 1071.
- [3] Пермогоров С.А., Травников В.В., Селькин А.В. // ФТТ. 1972. Т. 14. № 2. С. 3642.
- [4] Sel'kin A.V. // Phys. Stat. Sol. B. 1977. V. 83. P. 47.
- [5] Ивченко Е.Л., Пикус Г.Е., Юлдашев Н.Х. // ЖЭТФ. 1981. Т. 80. № 3. С. 1228.
- [6] Абдукадыров А.Г., Сажин М.И., Селькин А.В., Юлдашев Н.Х. // Опт. и спектр. 1989. Т. 67. № 10. С. 845.
- [7] Абдукадыров А.Г., Ивченко Е.Л., Сажин М.И., Селькин А.В., Юлдашев Н.Х. // ЖЭТФ. 1990. Т. 97. С. 644.
- [8] Юлдашев Н.Х. Экситон-поляритонная люминесценция и перенос резонансного излучения в кристаллах. Фергана: Фаргона, 2001. 214 с.
- [9] Ахмадалиев Б.Ж., Полвонов Б.З., Юлдашев Н.Х. // Опт. и спектр. 2014. Т. 116. С. 106; Akhmadaliev B.J., Polvonov B.Z., Yuldashev N. Kh. // Opt. Spectrosc. 2014. V. 116. P. 244.
- [10] Пермогоров С.А., Суркова Т.П., Тенищев А.Н. // ФТТ. 1998.
 Т. 40. С. 897.
- [11] Багаев В.С., Клевков Ю.В., Колосов С.А., Кривобок В.С., Шепель А.А. // ФТТ. 2010. Т. 52. С. 37.