Формирование и эволюция гигантских динамических доменов в гармоническом магнитном поле

© М.В. Логунов, М.В. Герасимов

Мордовский государственный университет им. Н.П. Огарева, 430000 Саранск, Россия

E-mail: logunov@mrsu.ru

(Поступила в Редакцию 17 июля 2002 г.)

Стробоскопическим методом исследованы процессы перемагничивания пленок ферритов-гранатов в гармоническом магнитном поле, приводящие к формированию метастабильных динамических доменов с размерами, на порядок и более превышающими размеры квазистатических доменов. Формирование гигантских динамических доменов (ГДД) связано с конечной скоростью движения доменных границ и зависит от плотности центров зарождения доменов. Показано, что образование гребенчатой границы ГДД имеет место в течение части периода поля вблизи момента времени смены полярности поля. Области формирования ГДД соответствует переход формы динамической петли гистерезиса от треугольной к эллиптической.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 98-02-03325).

При перемагничивании пленок ферритов-гранатов в гармоническом магнитном поле звуковых и ультразвуковых частот динамические доменные структуры, возникающие в процессе перемагничивания, отличаются большим разнообразием: на фазовой диаграмме динамических систем магнитных доменов [1] выделяется более десяти областей, соответствующих различным видам доменных структур. В целом их можно разделить на две группы. К первой относятся динамические доменные структуры, имеющие примерно те же размеры доменов, что и квазистатические полосовые, гантелевидные, цилиндрические магнитные домены (ЦМД) при соответствующих величинах действующих магнитных полей. От квазистатических доменов они отличаются возникновением нового порядка в расположении доменов формированием спиральных, кольцевых доменов [1–5], двумерных решеток доменов [6-8]. Такие структуры, как правило, являются рефлексивными, полностью или частично сохраняя свои свойства при выключении переменного магнитного поля или в промежутках между импульсами [3] (при формировании их с помощью импульсного поля).

Ко второй группе следует отнести динамические доменные структуры, характерные размеры которых на порядок и более превышают размеры квазистатических доменов. Это структуры в виде концентрических кольцевых доменов [2,9], искаженных ЦМД и др. [1,9,10], которые могут перемещаться по площади пленки [1] или быть жестко привязаны к определенным центрам в пленке (дефектам) [10]. Формирование гигантских динамических доменов (ГДД) происходит при достаточно большой амплитуде гармонического поля, превышающей статическое поле насыщения доменной структуры H_s [1,2,9,10]. Они являются относительно стабильными, сохраняя усредненную форму почти неизменной на протяжении сотен и тысяч периодов поля. С ростом частоты поля максимальные размеры ГДД уменьшаются [1]. ГДД существуют только в динамических условиях и при выключении гармонического поля трансформируются в сеть лабиринтных доменов с обычными для равновесных доменов размерами.

Сложный характер фазовых диаграмм динамических доменов и многообразие возникающих динамических доменных структур являются причиной того, что многое в природе наблюдаемых явлений остается невыясненным. Из-за ограничений экспериментальной методики опубликованные фотографии ГДД представляют собой усредненные изображения доменов за десятки периодов магнитного поля; остается открытым вопрос о взаимосвязи условий образования ГДД и параметров образцов.

В настоящей работе с целью выяснения механизмов формирования и эволюции ГДД изучение таких доменов проведено стробоскопическим методом со временем экспозиции доменных структур, не менее чем на порядок меньшим периода поля, и с одновременной регистрацией интегральных характеристик процессов перемагничивания — динамических петель гистерезиса.

1. Методика эксперимента

Наблюдение динамических доменов проводилось магнитооптическим методом с использованием эффекта Фарадея, временное разрешение стробоскопической установки составляло $0.8\,\mu s$ [5]. Информацию об эволюции формы доменов получали, сканируя импульс источника света — гелий-неонового лазера с СВЧ-накачкой — по периоду магнитного поля. Путем изменения кратности стробирования переходили от стробоскопического режима наблюдения доменов к режиму высокоскоростной фотографии, что необходимо при исследовании неповторяющихся процессов. Часть магнитооптического

Рис. 1. Равновесная доменная структура (*a*) ($H_b = 0$) и гигантский динамический домен (*b*) в гармоническом магнитном поле при амплитуде поля $H_m = 85$ Ое и частоте f = 40 kHz.

сигнала с помощью полупрозрачного зеркала подавалась на фотоэлектронный умножитель для регистрации петель гистерезиса. Для формирования однородного гармонического магнитного поля (однородность поля ~ 1% в исследуемой области образца) использовались кольца Гельмгольца диаметром 2.5 mm. Гармоническое поле прикладывали вдоль оси легкого намагничивания исследуемой пленки.

Далее приведены результаты для пленки ферритаграната состава (Bi, Tm)₃(Fe, Ga)₅O₁₂ с ориентацией (111) [5] и следующими параметрами: толщина $h = 5.6 \,\mu$ m, равновесная ширина полосовых доменов $w = 8.9 \,\mu$ m, поле коллапса ЦМД $H_0 = 46$ Oe, намагниченность насыщения $M_s = 9.9$ Gs. Образец обладал значительной одноосной анизотропией: фактор качества $Q = K_u/2\pi M_s^2 = 20$ (K_u — константа одноосной анизотропии), ось легкого намагничивания перпендикулярна плоскости пленки. В отсутствии внешних магнитных полей в пленке существовала лабиринтная доменная структура (рис. 1, *a*), а области формирования ГДД (рис. 2, *b*) соответствовал диапазон частот гармонического поля f = 15-80 kHz и амплитуд поля $H_M = 70-160$ Oe.

Выбор образца во многом обусловлен простым видом зависимости скорости доменных границ V от действующего поля H. Измерения скорости границ в импульсном магнитном поле методом высокоскоростной фотографии показали, что в большом интервале полей (от нескольких эрстед до H > 200 Oe) скорость V почти не зависит от амплитуды поля H и не превышает 10 m/s. Такой вид зависимости V(H)практически для всего диапазона мгновенных значений гармонических полей, используемых в настоящей работе, значительно упрощает интерпретацию результатов экспериментов.

2. Результаты эксперимента

Закономерности перехода к механизмам образования ГДД по мере увеличения амплитуды гармонического поля рассмотрим для частоты поля f = 40 kHz (рис. 2). Именно при этой или близких частотах размеры доменов могут достигать максимальных величин. Микрофотографии для одних и тех же амплитуд поля, но для разных фаз, приведенные на рис. 2, соответствуют различным периодам поля. Это позволяет судить о повторяемости процесса перемагничивания.

При амплитуде поля $H_M < H_0$ от периода к периоду поля происходит перестройка доменной структуры, причем структура остается лабиринтной (рис. 2, a). Легко заметить отличия такой структуры от лабиринтной структуры, сформированной квазистатически (рис. 1, *a*). Они заключаются в уменьшении периода доменов и одновременном увеличении плотности дисклинаций в доменной структуре. Последнее отличие, как отмечалось ранее [3,6,11], является косвенным, но надежным признаком изменения структуры доменных границ и увеличения плотности блоховских линий в границах. Происходить это может в том случае, если доменные границы движутся со скоростью, близкой к скорости насыщения. Таким образом, с увеличением частоты поля имеют место явные признаки перехода от квазистатических к нелинейным динамическим процессам движения доменных границ. При этом коэрцитивная сила, рассчитанная по полуширине, соответствующей процессу частной петли гистрезиса, несколько увеличивается (рис. 3).

С увеличением амплитуды поля все перечисленные признаки динамической природы процессов движения доменов: ветвление доменов, увеличение плотности дисклинаций, уменьшение периода доменной структуры (при $H_b \sim 0$), уменьшение периода искажений по длине доменов, — приобретают все более явный характер и наиболее выражены при $H_M \rightarrow H_0$ (рис. 2, b). При недостаточной разрешающей способности аппаратуры динамические доменные структуры, показанные на рис. 2, *a*, *b*, из-за значительного изменения положения доменов от периода к периоду поля могут восприниматься как "серый фон" [1].

При амплитуде гармонического поля, превышающей величину статического поля насыщения, часть доменов за время периода поля коллапсирует, и в результате происходит переход к динамической структуре, имеющей принципиально отличный от равновесного вид и размеры (рис. 2, c). При дальнейшем увеличении поля почти все домены в течение периода поля коллапсируют, и в поле зрения остается всего один или несколько гигантских доменов (рис. 2, d). Размеры их на порядок и более превышают равновесные размеры доменов.

Рис. 2. Динамические доменные структуры, соответствующие фазам $\varphi = 90$, 180 и 270° гармонического магнитного поля при частоте f = 40 kHz и амплитуде $H_m = 30$ (*a*), 40 (*b*), 79 (*c*) и 98 Oe (*d*).

Реализация механизма увеличения в несколько раз периода динамической доменной структуры в диапазоне сверхзвуковых частот магнитного поля приводит к модификации формы петли гистерезиса. На рис. 3 приведены динамическая петля гистерезиса, соответствующая середине области формирования ГДД (по амплитуде и частоте поля, рис. 3, e), и петли гистерезиса при выходе за границы этой области (рис. 3, a–d, f–k). Для области формирования ГДД характерными являются следующие признаки: петля гистерезиса имеет форму искаженного эллипса; петля смещена по вертикали относительно линии, соответствующей намагниченности M = 0; возможна нестабильность петли.

В полях с амплитудой $H_M \leq H_0$ (ниже области формирования ГДД) динамические петли гистерезиса являются частными. Раскрытие петель (коэрцитивная сила доменных границ) увеличивается по мере роста частоты поля из-за инерционных эффектов при движении доменных границ (рис. 3, *a*, *d*, *g*). С увеличением амплитуды поля максимальная намагниченность образца, достигаемая в течение периода поля, увеличивается. Тем не менее даже при амплитуде поля $H_M > H_s$ состояние насыщения

Рис. 3. Динамические петли гистерезиса для частот гармонического магнитного поля f = 20 (*a*-*c*), 50 (*d*-*f*), 100 kHz (*g*-*k*). Для каждой частоты амплитуды поля составляют (слева направо) $H_m = 50$, 100, 150 Oe.

в течение периода поля не всегда успевает реализоваться из-за конечной скорости движения доменных границ (рис. 3, *e*, *h*, *i*). Выше области формирования ГДД (по частоте) искажения эллиптической формы петли уменьшаются.

Увеличение амплитуды или уменьшение частоты поля (относительно середины области формирования ГДД) приводит к изменению поля старта на петле гистерезиса и частичному схлопыванию петли по вертикали (рис. 3, b, c, f): в течение одного из полупериодов поля образец намагничивается до насыщения, а в течение другого из-за задержки процессов зарождения и роста доменов, ограниченного числа центров зародышеобразования не успевает размагнититься. Петля гистерезиса теряет симметричность относительно начала координат и смещается в область, например, положительной намагниченности (рис. 3, b, c, f). С увеличением амплитуды переменного магнитного поля тенденция к выбору предпочтительного направления намагничивания до насыщения усиливается. Выбор этого направления может быть обусловлен незначительной асимметрией синусоиды поля или параметров образца. Это направление легко изменить приложением небольшого постоянного подмагничивающего поля $H_b \ll H_0$ вдоль оси легкого намагничивания пленки.

Подробно закономерности эволюции ГДД в течение периода поля удобнее проследить на примере формирования домена не самых больших размеров (рис. 4), периодически зарождающегося на одном и том же месте пленки. Так же, как и на рис. 2, микрофотографии представляют домены в одном и том же месте образца, но в разные периоды поля. Динамические домены небольших размеров при расширении имеют цилиндрическую форму (рис. 4, a, b). В области смены полярности поля (при фазе $\phi = 180 \pm 30^{\circ}$) из-за уменьшения эффективного действующего поля границы доменов испытывают изгибную неустойчивость и вместо плавных границ образуется сеть полосовых доменов — "гребень" (рис. 2, d; рис. 4). Его происхождение аналогично появлению лепестковых искажений при радиальном расширении ЦМД [12,13] из-за магнитостатической неустойчивости домена. Вероятно, наличие подобного гребня приводило к размытию изображений границ ГДД на представленных в работах [1,9] фотографиях.

На основании данных, часть которых приведена на рис. 4, получены зависимости размеров доменов от времени (рис. 5). Видно, что диаметр домена *d* как при расширении (одном полупериоде поля), так и при сжатии (другом полупериоде поля) практически линейно зависит от времени, т.е. движение доменных границ

Рис. 4. Эволюция ГДД в поле частотой f = 40 kHz и амплитудой $H_m = 98$ Oe. Моменты времени относительно смены полярности поля t, μ s: a = 0.8, b = 6, c = 7, d = 9, e = 11, f = 12, g = 13, h = 14, i = 15.

происходит с постоянной скоростью $V \sim 7$ m/s. Такая величина скорости насыщения согласуется как с расчетными значениями, полученными с использованием различных моделей [14–16], так и с измеренными нами экспериментально в импульсном поле.

3. Обсуждение результатов

Механизмы формирования и эволюции ГДД определяются особенностями зарождения доменов и динамическими свойствами доменных границ в гармоническом магнитном поле, в первую очередь явлением насыщения скорости движения доменных границ. Вследствие конечной величины скорости насыщения за время, равное полупериоду магнитного поля $\tau/2$ (для области формирования ГДД $\tau/2 \sim 10 \,\mu s$), смещение доменной границы не превышает части диаметра ГДД. В результате состояние насыщения в течение полупериода поля не достигается. Этим обусловлена относительная

Рис. 5. Напряженность магнитного поля *H* (*a*) и изменение размеров ГДД в течение периода поля: *b* — внешний диаметр ГДД, *c* — диаметр ГДД без учета гребенчатой границы.

стабильность во времени подобных доменных структур, когда существенные изменения происходят спустя $10^5 - 10^7$ периодов магнитного поля.

Изменения, происходящие с формой и размерами ГДД от периода к периоду поля, должны приводить к размытию петли гистерезиса. Из рис. З видно, что размытие мало, но наблюдается некоторая нестабильность формы петли. Следовательно, наиболее существенные изменения в ГДД происходят не непрерывно, а ступенчато, через 500–1000 периодов поля (по данным рис. 3).

Переход к треугольной форме петли гистерезиса связан с задержкой образования и роста обратной магнитной фазы [17]. Достигаемое при этом в течение одного из периодов поля насыщение образца делает невозможным существование устойчивых ГДД на протяжении многих периодов поля. Для области формирования ГДД, как и для области формирования двумерных доменных структур [8], характерна несимметричная петля гистерезиса. В случае ГДД ее форма имеет вид, промежуточный между треугольной и эллиптической петлями (рис. 3).

В ряде работ, посвященных изучению свойств ферритов-гранатов в гармоническом магнитном поле, исследованы колебания доменных границ интегральными методами [18-20], в основном при амплитудах полей $H_M \ll H_s$. Динамические механизмы перемагничивания в сильных гармонических полях с $H_M \ge H_s$ (зарождение доменов, движение доменных границ) практически не изучены, поэтому для выяснения количественных закономерностей формирования доменных структур необходимы дальнейшие исследования. Здесь отметим (без уточнения причин) следующие особенности перемагничивания в гармоническом поле, выявленные при выполнении настоящей работы: зарождение доменов может происходить спустя сравнительно большое время несколько микросекунд после смены полярности поля (для сравнения в импульсном поле для зарождения домена достаточно $t \sim 0.1 \,\mu s$ [21,22]). На коллапсирование сблизившихся на расстояние ~ 1 µm доменных границ требуется время $t > 2 \mu s$ (рис. 4, g - i), так же как и на изменение направления движения "гребня" при смене полярности поля (рис. 5). Скорости движения доменных границ в различных условиях имеют близкие величины: при движении как сравнительно плоской границы расширяющегося домена, так и лидирующих участков "гребня" (радиусы закругления доменных границ ~ 100 и $\sim 5 \mu m$ соответственно), а также при расширении и сжатии домена.

Таким образом, сопоставление результатов прямого исследования динамических доменных структур стробоскопическим методом и интегральных характеристик процессов перемагничивания — динамических петель гистерезиса — позволяет сделать выводы, что формирование ГДД в гармоническом магнитном поле возможно при выполнении следующих условий:

 амплитуда поля превышает статическое поле насыщения доменной структуры образца, но из-за ограничения времени воздействия часть доменов при этом не успевает коллапсировать;

 плотность оставшихся центров зарождения/закрепления доменов и скорости доменных границ таковы, что за полупериод поля доменные границы проходят расстояние, не превышающее половины среднего расстояния между центрами доменов;

3) наличие нижней (по амплитуде поля) и верхней (по частоте) границ области формирования ГДД обусловлено невозможностью коллапсирования доменов в течение периода поля, в первом случае из-за малой амплитуды поля $H_M \leq H_s$, во втором — из-за недостатка времени на сближение в течение полупериода поля границ доменов;

4) верхняя (по амплитуде поля) и нижняя (по частоте) границы области формирования ГДД определяются практически полным подавлением зародышей доменов хотя бы в одном из полупериодов поля, что в свою очередь приводит к треугольной форме петли гистерезиса и невозможности сохранения доменной структуры в течение многих периодов поля.

Список литературы

- [1] Г.С. Кандаурова, А.А. Русинов. ДАН 340, 5, 610 (1995).
- [2] Г.С. Кандаурова. ДАН СССР 308, 1364 (1989).
- [3] И.Е. Дикштейн, Ф.В. Лисовский, Е.Г. Мансветова, Е.С. Чижик. ЖЭТФ 100, 5, 1606 (1991).
- [4] М.В. Четкин, А.И. Ахуткина, Т.Б. Шабаева. Микроэлектроника 27, 5, 396 (1998).
- [5] М.В. Логунов, М.В. Герасимов. ФТТ 44, 9, 1627 (2002).
- [6] Ф.В. Лисовский, Е.Г. Мансветова, Е.П. Николаева, А.В. Николаев. ЖЭТФ 103, *1*, 213 (1993).
- [7] Ф.В. Лисовский, Е.Г. Мансветова, Ч.М. Пак. ЖЭТФ 108, 9, 103 (1995).
- [8] М.В. Логунов, М.В. Герасимов. Письма в ЖЭТФ 74, 10, 551 (2001).
- [9] G.S. Kandaurova, A.E. Sviderskiy. Physica B176, 213 (1992).
- [10] Г.С. Кандаурова. ФММ 79, 1, 158 (1995).
- [11] D.J. Craik, G. Myers. Phil. Mag. 31, 489 (1975).
- [12] G.J. Zimmer, T.M. Morris, F.B. Humphrey. IEEE Trans. Magn. MAG-10, 3, 651 (1974).
- [13] Л.П. Иванов, А.С. Логгинов, Г.А. Непокойчицкий, В.В. Рандошкин. ФТТ **22**, *11*, 3469 (1980).
- [14] F.H. de Leew. IEEE Trans. Magn. MAG-14, 5, 596 (1978).
- [15] A.P. Malozemoff, J.C. Slonczewski. Magnetic Domain Walls in Bubble Materials. Acad. Press, N.Y. (1979).
- [16] В.А. Боков, В.В. Волков, В.И. Карпович. ФТТ 24, 8, 2318 (1982).
- [17] Г.С. Кандаурова, В.Х. Осадченко. Письма в ЖТФ 21, 20, 11 (1995).
- [18] B.E. Argyle, J.C. Slonczewski, M.H. Kryder. IEEE Trans. Magn. MAG-18, 6, 1325 (1982).
- [19] Л.В. Великов, Е.П. Ляшенко, С.С. Маркианов. ЖЭТФ 84, 2, 783 (1983).
- [20] А.Ф. Алейников, Е.Г. Рудашевский. ПТЭ 4, 149 (1988).
- [21] V.G. Kleparsky, I. Pinter. Phys. Stat. Sol. (a) 76, 1, K1 (1983).
- [22] V.G. Kleparsky, I. Pinter, L. Bodis. IEEE Trans. Magn. MAG-20, 5, 1156 (1984).