^{05,11} Магнитные свойства слоистого кобальтита $Sr_{1-x}Y_xCoO_{3-\delta}$ (x = 0.1)

© И.О. Троянчук¹, М.В. Бушинский¹, Р.А. Лановский¹, В.В. Сиколенко², К. Риттер³

 ¹ НПЦ НАН Беларуси по материаловедению, Минск, Беларусь
² Объединенный институт ядерных исследований, Дубна, Россия
³ Institut Laue Langevin, Grenoble, France
E-mail: troyan@physics.by

(Поступила в Редакцию 12 апреля 2018 г.)

Исследованы структура, магнитные и магнитотранспортные свойства перовскита $Sr_{0.9}Y_{0.1}CoO_{2.63}$. Показано, что образец является структурно двухфазным. Основная фаза имеет тетрагонально искаженную элементарную ячейку и описывается пространственной группой *I4/mmm*. Уширение рефлексов с индексами, соответствующими удвоению параметра *с* элементарной ячейки, указывает на отсутствие строгой трансляционной симметрии вдоль оси *с*. Наличие уширенного сверхструктурного рефлекса, наблюдаемого на малых углах на рентгенограммах при температуре меньше 400 K, объясняется наличием моноклинной фазы, содержание которой значительно меньше, чем тетрагональной, но которая является доминирующей в составе $Sr_{0.8}Y_{0.2}CoO_{3-\delta}$. Спонтанная намагниченность появляется при формировании моноклинной фазы. Магнитная структура является преимущественно антиферромагнитной *G*-типа с магнитными моментами 1.5 μ_B в слоях из октаэдров CoO₆ и 2 μ_B в анион-дефицитных CoO_{4+ γ} слоях. Электропроводность состава $Sr_{0.9}Y_{0.1}CoO_{2.63}$ имеет полупроводниковый характер. Магнитосопротивление достигает 57% в поле 14 T при температуре 5 K и сильно уменьшается с ростом температуры.

Работа поддержана Белорусским фондом фундаментальных исследований (договор Ф17Д-007).

DOI: 10.21883/FTT.2018.10.46523.104

1. Введение

Сложные оксиды кобальта со структурой перовскита вызывают интерес вследствии различных спиновых состояний иона Со³⁺, наличия связи между магнитными и транспортными свойствами [1] и эффектом гигантского магнитосопротивления [2]. Характер магнитных взаимодействий в кобальтитах зависит от спинового состояния ионов Со³⁺, которые могут находиться в низкоспиновом $(t_{2g}^6, S = 0)$, промежуточном спиновом $(t_{2g}^5 e_g, S = 1)$ и высокоспиновом $(t_{2g}^4 e_g^2, S = 2)$ состояниях. В базовом соединении LaCoO₃ ионы Co³⁺ находятся в низкоспиновом состоянии ниже 30 К [1]. Увеличение температуры выше 30 К ведет к увеличению намагниченности, которая максимальна при 110 К. При температуре выше 500 К наблюдается постепенный переход полупроводник-металл с увеличением намагниченности при повышении температуры. Эти переходы сопровождаются изменением спинового состояния ионов Co³⁺. На поверхности кристаллитов в порошках и внутри эпитаксиальных пленок LaCoO3 обнаружен ферромагнетизм с $T_C \sim 85 \text{ K}$ [3].

Замещение ионов La ионами Sr в системе La_{1-x}Sr_xCoO₃ ведет к ферромагнетизму с температурой Кюри до 305 K (SrCoO₃) [4]. Базовое соединение SrCoO_{3- γ} в зависимости от условий синтеза и содержания кислорода может иметь различные структурные

искажения: при $\gamma = 0.5$ — орторомбические, при $\gamma \approx 0.15$ — тетрагональные, а близкое к стехиометрическому по кислороду соединение характеризуется кубической элементарной ячейкой с пространственной группой *Pm*3*m* [4]. Уменьшение содержания кислорода ведет к переходу из ферромагнитного состояния с $T_C \approx 305 \,\mathrm{K}$ ($\gamma \approx 0$) к антиферромагнитному с $T_N \approx 537 \,\mathrm{K} \; (\gamma \approx 0.5) \; [5]$. В работе [6] было показано, что небольшое замещение ионов Sr редкоземельными ионами (порядка 5%) может стабилизировать кубическую фазу Sr_{0.95}Y_{0.05}CoO_{3-v} в условиях синтеза на воздухе, тогда как кубическая фаза SrCoO_{3-v} получается только под высоким давлением кислорода [4]. В зависимости от содержания кислорода составы Sr_{0.95}Y_{0.05}CoO_{3-v} могут быть также тетрагональными $a_p \times a_p \times 2a_p$ (а_р — параметр примитивной элементарной ячейки), пространственная группа *P4/mmm*).

Относительно недавно были получены анион-дефицитные слоистые кобальтиты $Sr_3YCo_4O_{10.5+\delta}$ (приведенная формула $Sr_{0.75}Y_{0.25}CoO_{3-\gamma}$), в которых редкоземельные ионы замещают ионы стронция и могут упорядочиваться [7]. Эти соединения являются преимущественно антиферромагнитными с температурой Нееля выше комнатной [7]. Относительно небольшая ферромагнитная компонента возникает одновременно с магнитным упорядочением [7]. Кристаллическая структура слоистых кобальтитов $Sr_3LnCo_4O_{10.5+\delta}$ состоит из чередующихся анион-дефицитных слоев $CoO_{4+\delta}$ и слоев состоящих из октаэдров CoO_6 , соприкасающихся вершинами [7].

Соединения Sr₃LnCo₄O_{10.5+ δ} характеризуются высокой температурой магнитного упорядочения, которая достигает 360 К [8]. Ниже температуры магнитного упорядочения появляется спонтанная намагниченность, достигающая максимального значения вблизи комнатной температуры [8]. Кроме того, согласно [8] магнитное упорядочение сопровождается появлением сверхструктуры типа $4\sqrt{2}a_p \times 2\sqrt{2}a_p \times 4a_p$ и кристаллическая структура описывается моноклинной группой A2/m. Показано, что магнитная структура Sr₃YCo₄O_{10.5} преимущественно антиферромагнитная *G*-типа с *T_N* близкой 350 К.

Соединения Sr₃LnCo₄O_{10.5+ δ} проявляют переход первого рода антиферромагнетик-ферромагнетик [9], аналогичный тому, который наблюдается в серии слоистых кобальтитов LnBaCo₂O_{5.5} [10]. Ферромагнитная компонента исчезает при небольшом замещении ионов Sr²⁺ ионами Ca²⁺ или ионов Со на ионы Fe [7,11]. Происхождение ферромагнитной компоненты объясняется орбитальным упорядочением [12], ферримагнетизмом, обусловленным наличием неэквивалентных позиций ионов Co³⁺ в аниондефицитных слоях [13], образованием ферромагнитных регулярных спиновых кластеров в обогащенных кислородом слоях CoO₆ [14] или неколлинеарной магнитной структурой в анион-дефицитных слоях CoO_{4+ γ} [7,9].

В работе [12] было проведено исследование слоистого кобальтита Sr₃YCo₄O_{10,5} методом рентгеновской спектроскопии, которое указало на наличие упорядочения 3д-орбиталей ионов кобальта ниже точки Нееля. Поэтому ферримагнитная компонента этого соединения была объяснена упорядочением 3d-орбиталей ионов Co^{3+} , находящихся в промежуточном спиновом состоянии в слоях обогащенных ионами кислорода. Однако упорядочение 3*d*-орбиталей ионов кобальта может быть связано с анион-дефицитными слоями. В связи с наличием разных точек зрения на природу ферромагнитной компоненты в слоистых кобальтитах Sr_{3-x}Ln_xCo₄O_{10.5+δ} нами было проведено исследование структуры, магнитных и магнитотранспортных свойств кобальтита Sr_{0.9}Y_{0.1}CoO_{3-v}, в котором содержание иттрия и кислорода является промежуточным между $SrCoO_{2.5}$ и $Sr_3YCo_4O_{10.5+\delta}$.

2. Экспериментальная часть

Поликристаллический образец состава $Sr_{0.9}Y_{0.1}CoO_{3-\gamma}$ был получен по обычной керамической технологии на воздухе. Исходные реактивы Y_2O_3 , Co_3O_4 и $SrCO_3$ высокой чистоты были взяты в стехиометрическом соотношении и тщательно перемешаны в планетарной шаровой мельнице фирмы "RETSCH" PM-100 в течение 30 min со скоростью 250 грт. Перед взвешиванием оксид Y_2O_3 был предварительно отожжен при температуре 1000°С для удаления влаги. Синтез образцов проводился в два этапа. Предварительный

обжиг был проведен при температуре 1000°С. Окончательный синтез проходил при температуре 1185°С в течение 8 h. Затем образец охлаждался в течение 12 h до температуры 300°С. Рентгеноструктурные исследования ($95 \le T \le 420 \,\mathrm{K}$) проводились на источнике синхротронного излучения в исследовательском центре института Пауля Шеррера (Виллиген, Швейцария). Нейтронографические исследования в интервале температур 10-420 К были выполнены на дифрактометре высокого разрешения D2B в институте Лауэ-Ланжевена (Гренобль, Франция). Уточнение кристаллической и магнитной структуры выполнено по методу Ритвельда с использованием программного пакета FullProf [15]. Магнитные и магнитотранспортные измерения были проведены на установке измерения физических свойств (Cryogenic Ltd.) в магнитных полях до 14 Т в диапазоне температур 5-315 К. Измерения электропроводности выполнены четырехконтактным методом с индиевыми контактами, нанесенными с помощью ультразвука.

3. Результаты и обсуждение

Рентгеноструктурные исследования состава $Sr_{0.9}Y_{0.1}CoO_{3-\gamma}$ были проведены в температурном диапазоне 95-420 К. На рис. 1 показана рентгенограмма, полученная при температуре 100 К, а также результат ее обработки в программе Fullprof в двухфазной структурной модели. Основная структурная фаза $Sr_{0.9}Y_{0.1}CoO_{3-\gamma}$ была рассчитана в тетрагональной пространственной группе І4/ттт с элементарной ячейкой типа $2a_p \times 2a_p \times 4a_p$ $(a_p$ — параметр примитивной кубической ячейки). Фазовых переходов для этой фазы в исследуемом температурном интервале не наблюдалось. На рентгенограммах (95-420 К) обнаружено сильное уширение рефлексов с индексами 103, 202, 206 и т.д., связанное с удвоением параметра элементарной ячейки вдоль оси с (рис. 1, вставка). Такое уширение рефлексов вероятнее всего обусловлено отсутствием строгой трансляционной симметрии вдоль оси с. Кроме того, на рентгенограммах в области малых углов (4-4.5°) наблюдается сильно уширенный сверхструктурный рефлекс, который присутствовал вплоть до температуры 400 К (рис. 1, вставка). Наличие данного сверхструктурного рефлекса скорее всего связанно с существованием моноклинно искаженной фазы, так как он описывается в рамках сверхструктуры, присущей пространственной группе А2/*m*.

На рис. 2 показаны температурные зависимости параметров и объема элементарной ячейки состава $Sr_{0.9}Y_{0.1}CoO_{3-\gamma}$. Из рис. 2 видно, что тепловое расширение вдоль оси а больше чем вдоль оси *с*. Параметры и объем элементаной ячейки увеличиваются монотонно с увеличением температуры. Кристаллоструктурного и спинового переходов не обнаружено.

С увеличением содержания ионов иттрия до x = 0.2 на рентгенограммах наблюдается появление дополни-

Рис. 1. Рентгенограмма образца $Sr_{0.9}Y_{0.1}CoO_{3-\gamma}$ при 100 К. Штрихами показаны брэгтовские рефлексы, измеренный (черная линия) и рассчитанный (серая линия) профили рентгенограммы. На вставках показаны уширение пиков на углах 19–21° и сверхструктурный рефлекс (200) при температурах 95, 380 и 420 К.

тельных рефлексов 111 и 111, которые исчезают при температуре выше 350 К. Эти рефлексы могут быть описаны в рамках пространственной группы А2/т и ячейки типа $4\sqrt{2}a_p \times 2\sqrt{2}a_p \times 4a_p$ (рис. 3). Появление этих рефлексов возможно связано со спиновым переходом ионов Со или орбитальным упорядочением в слоях СоО₆, как это было показано ранее для системы Sr_{3.12}Er_{0.88}Co₄O_{10.5} при температуре ниже 360 К [8]. При увеличении температуры выше 350 К наблюдается фазовый переход первого рода, сопровождающийся кристаллоструктурным переходом в рамках пространственной группы A2/m к ячейке типа $2\sqrt{2}a_p \times 2\sqrt{2}a_p \times 4a_p$. Нейтронографические исследования были проведены при температуре 10, 260 и 400 К. На рис. 4 показаны результаты расчета кристаллической и магнитной структуры основной фазы состава Sr_{0.9}Y_{0.1}CoO_{3-v} при 10 и 400 К, который был проведен в рамках пространственной группы I4/mmm и ячейки типа $2a_p \times 2a_p \times 4a_p$. Согласно полученным данным, кристаллическая структура состоит из чередующихся вдоль оси с слоев из октаэдров CoO_6 и анион-дефицитных слоев $CoO_{4+\nu}$, что ранее было показано для других слоистых кобальтитов $Sr_{0.75}Y_{0.25}CoO_{3-\gamma}$ [7]. При 400 К моноклинно искаженная фаза отсутствует.

Уточненное из нейтронографических данных содержание кислорода в образце близко к 2.63, что означает, что ион кобальта находится в трехвалентном состоянии. Анализ нейтронографических данных, полученных при температуре 10 К, показал, что основной магнитный вклад присутствует в рефлексах 110, 112, 202, 211, где индексы относятся к ячейке типа $2a_p \times 2a_p \times 4a_p$ (рис. 4). Из этого следует, что базовая магнитная структура может быть описана антиферромагнитным упорядочением G-типа с магнитной ячейкой типа $2a_p \times 2a_p \times 4a_p$ с двумя различными магнитными позициями в слоях из октаэдров СоО₆ и анион-дефицитных слоях. Возрастание интенсивности рефлекса 110 при понижении температуры указывает на различную величину магнитных моментов ионов Со в слоях из октаэдров СоО₆ и анион-дефицитных слоях СоО_{4+ν}. Уточнение магнитной структуры в модели, когда направления магнитных моментов совпадают с кристаллоструктурной осью с позволяет более точно описать вклад во все магнитные рефлексы по сравнению с моделью, в которой магнитные моменты обеих подрешеток направлены коллинеарно вдоль кристаллоструктурных осей а или b. Магнитные моменты в анион-дефицитных слоях и в слоях из октаэдров СоО₆ при температуре 10 К равны $2\mu_{\rm B}$ и $1.5\mu_{\rm B}$ соответственно. При температуре 400 К магнитный вклад не выявлен. Основные расчетные кристаллоструктурные и магнитные параметры приведены в таблице.

Зависимость намагниченности от температуры состава $Sr_{0.9}Y_{0.1}CoO_{2.63}$ показана на вставке рис. 5. Изме-

Рис. 2. Температурные зависимости параметров и объема элементарной ячейки состава $Sr_{0.9}Y_{0.1}CoO_{3-\gamma}$.

Рис. 3. Рентгенограммы образцов $Sr_{0.9}Y_{0.1}CoO_{3-\gamma}$ и $Sr_{0.8}Y_{0.2}CoO_{3-\gamma}$ при температуре 100 К на углах 3.5–6.5°.

Параметры кри	сталлической	И	магнитн	ОЙ	структур	зы	состава
$Sr_{0.9}Y_{0.1}CoO_{2.63}$, уточненные	по	методу	Ри	твельда.	Пţ	остран-
ственная группа	a I4/mmm						

Температура, К	10	260	400			
a, b, Å	7.6907(3)	7.7017	7.7022			
c, Å	15.3830(1)	15.4126	15.4394			
V , $Å^3$	909.86(14)	914.174	915.926			
Sr1/Y1	0, 0, <i>z</i>					
z	0.86471	0.86432	0.86571			
$B_{iso}, Å^2$	1.45(34)	1.87(50)	2.27(03)			
Sr2/Y2	0, 0.5, z					
z	0.86844	0.86772	0.86673			
$B_{iso}, Å^2$	1.13(10)	1.37(94)	1.79(56)			
Sr3/Y3	0, 0, <i>z</i>					
Z	0.37409	0.37438	0.375			
$B_{iso}, Å^2$	0.27(84)	0.64(27)	0.75(6)			
Co1	<i>x</i> , <i>y</i> , 0					
X	0.24172	0.24154	0.24439			
у	0.24172	0.24154	0.24439			
Магнитный момент μ_z , μ_B	1.517	1.199				
$B_{iso}, Å^2$	0.63(33)	0.89(61)	1.02(38)			
Co2	0.2					
Магнитный момент μ_z , μ_B	1.964	1.534				
$B_{iso}, \mathrm{\AA}^2$	0.29(61)	0.68(32)	1.37(02)			
01		0, y, z				
У	0.2481	0.24817	0.24883			
Z	0.2545	0.25471	0.25428			
B_{iso}, A^2	1.22(56)	1.62(82)	1.91(94)			
02	<i>x</i> , <i>y</i> , <i>z</i>					
<i>x</i> , <i>y</i>	0.23086	0.23119	0.22927			
z 0.11635	0.11615	0.11599				
B_{iso}, A^2	2.14(99)	2.50(20)	2.72(38)			
O3	0, y, 0					
y	0.75(48)	0.75399	0.75536			
B_{iso}, A^2	0.17(01)	0.41(05)	0.16(30)			
04	<i>x</i> , 0.5, 0					
<i>x</i>	0.21197	0.21065	0.21238			
B_{iso}, A^2	2.78(52)	3.15(56)	3.50(41)			
K_p/K_{wp} (%)	4.66/6.37	4.24/5.77	4.01/5.33			
K_{Bragg} (%)	9.53	9.93	11.4			
warhuthыи <i>к</i> -factor	13.1	11.9	0.5			
χ2	13.5	11.1	9.5			

рения проводились в режиме охлаждения в поле (FC) B = 0.03 Т. Согласно данным магнитных измерений, была грубо оценена температура Нееля, которая составляет около $T_N \approx 380$ К. С уменьшением температуры от 320 до 5 К намагниченность сначала увеличивается, достигая максимального значения 0.5 еmu/g при $T \approx 130$ К, а затем слегка уменьшается.

На рис. 5 показаны полевые зависимости намагниченности состава Sr_{0.9}Y_{0.1}CoO_{2.63}. Коэрцитивная сила при гелиевой температуре составляет 0.75 T и с ростом температуры до 220 K, как и намагниченность, слабо меняется. Величина остаточной намагниченности составляет $\sim 0.022\,\mu_{\rm B}$ на ион кобальта (0.65 emu/g) при температуре 5 K и незначительно уменьшается

Рис. 4. Профили нейтронограмм образца Sr_{0.9}Y_{0.1}CoO_{3-γ} при температурах 10 и 400 К. Штрихами показаны брэгговские рефлексы, измеренный (черная линия) и рассчитанный (серая линия) профили нейтронограмм.

Рис. 5. Полевые зависимости намагниченности состава Sr_{0.9}Y_{0.1}CoO_{2.63}. На вставке показана зависимость намагниченности от температуры.

Рис. 6. Зависимости магнитосопротивления состава $Sr_{0.9}Y_{0.1}CoO_{2.63}$ при температурах 5, 100 и 200 К (на вставке показана зависимость электропроводности от температуры без приложенного поля).

до $0.017 \mu_B$ на ион кобальта (0.5 emu/g) при температуре 220 К. Насыщения намагниченности в полях до 14 Т не наблюдалось. Намагниченность при 5 и 220 К в поле 14 Т приблизительно равна.

Измерение электротранспортных свойств состава Sr_{0.9}Y_{0.1}CoO_{2.63} показало, что зависимость электропроводности от температуры носит полупроводниковый характер (рис. 6, вставка). Величина удельного электрического сопротивления увеличивается от ~ 0.02 Ω · ст при 300 K до ~ 20 k Ω · ст при гелиевой температуре. Аномалий на зависимости удельного электрического сопротивления от температуры не обнаружено. Отрицательный магниторезистивный эффект, определенный как MR = $(\rho(0) - \rho(H))/\rho(0) \cdot 100\%$, достигает 57% при температуре 5 K в магнитном поле B = 14 T (рис. 6). С увеличением температуры магнитосопротив-

ление сильно уменьшается до 1.6% в поле 14 T при температуре 220 K.

Полученные данные свидетельствуют о том, что кристаллическая структура при увеличении содержания иттрия в системе $Sr_{1-x}Y_xCoO_{2.63+\gamma}$ меняется от тетрагональной P4/mmm ($a_p \times a_p \times 2a_p$) до моноклинной A2/m через промежуточную тетрагональную фазу I4/mmm ($2a_p \times 2a_p \times 4a_p$), в которой нет строгой трансляционной симметрии вдоль оси *с*. Одновременное исчезновение моноклинной фазы и спонтанной намагниченности является доказательством того, что тип кристаллической структуры определяет возникновение ферромагнитной компоненты.

4. Заключение

Методом рентгеновских и нейтронографических исследований, а также измерениями магнитных и магнитотранспортных свойств были определены свойства перовскита Sr_{0.9}Y_{0.1}CoO_{2.63}. Установленное содержание кислорода соответствуют тому, что кобальт находится в трехвалентном состоянии. Образец является структурно двухфазным. Основная фаза описана тетрагональной пространственной группой І4/тт со сверхструктурной ячейкой $2a_p \times 2a_p \times 4a_p$ вследствие наличия чередующихся слоев CoO₆ и CoO_{4+γ}. Рефлексы, обусловленные удвоением параметра решетки вдоль оси с, сильно размыты, что свидетельствует об отсутствии строгой трансляционной симметрии вдоль оси с. Ниже температуры 400 К на передних углах рентгенограмм наблюдался сильно размытый пик, который индексируется в пространственной моноклинной группе А2/т $(2\sqrt{2a_p} \times 2\sqrt{2a_p} \times 4a_p)$. Наличие спонтанной намагниченности с Т_С значительно выше комнатной температуры связывается с моноклинной фазой, которая появляется одновременно со спонтанной намагниченностью. Магнитная структура антиферромагнетика в основном G-типа. Величина магнитных моментов Co³⁺ в слоях CoO_6 и $CoO_{4+\delta}$ равна $1.5 \mu_B$ и $2 \mu_B$ соответственно. Электропроводность имеет полупроводниковый характер. Магнитосопротивление при низких температурах большое, однако сильно уменьшается с повышением температуры, несмотря на слабое изменение намагниченности.

Список литературы

- Н.Б. Иванова, С.Г. Овчинников, М.М. Коршунов, И.М. Ерёмин, Н.В. Казак. УФН 179, 837 (2009).
- [2] A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, B.Raveau. J. Solid State Chem. 142, 247 (1999).
- [3] D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, H.V. Löhneysen. Phys. Rev. B 75, 144402 (2007).
- [4] Y. Long, Y. Kaneko, Sh. Ishiwata, Y. Taguchi, Y. Tokura. J. Phys.: Condens. Matter 23, 245601 (2011).

- [5] A. Muñoz, C. de la Calle, J.A. Alonso, P.M. Botta, V. Pardo, D. Baldomir, J. Rivas. Phys. Rev. B 78, 054404 (2008).
- [6] M. James, D. Cassidy, K.F. Wilson, J. Horvat, R.L. Withers. Solid State Sci. 6, 655 (2004).
- [7] И.О. Троянчук, Д.В. Карпинский, В.М. Добрянский, А.Н. Чобот, А.П. Сазонов. ЖЭТФ 135, 490 (2009).
- [8] S. Ishiwata, W. Kobayashi, I. Terasaki, K. Kato, M. Takata. Phys. Rev. B 75, 220406 (2007).
- [9] И.О. Троянчук, М.В. Бушинский, В.М. Добрянский, Н.В. Пушкарев. Письма в ЖЭТФ 94, 930 (2011).
- [10] I.O. Troyanchuk, N.V. Kasper, D.D. Khalyavin, H. Szymczak, R. Szymczak, M. Baran. Phys. Rev. Lett. 80, 3380 (1998).
- [11] I. Terasaki, S. Shibasaki, S. Yoshida, W. Kobayashi. Materials 3, 786 (2010).
- [12] H. Nakao, T. Murata, D. Bizen, Y. Murakami, K. Ohoyama, K. Yamada, S. Ishiwata, W. Kobayashi, I. Terasaki. J. Phys. Soc. Jpn. 80, 023711 (2011).
- [13] D.D. Khalyavin, L.C. Chapon, E. Suard, J.E. Parker, S.P. Thompson, A.A. Yaremchenko, V.V. Kharton. Phys. Rev. B 83, 140403 (2011).
- [14] J.L. Bettis, H. Xiang, M.-H. Whangbo. Chem. Mater. 24, 3117 (2012).
- [15] T. Roisnel, J. Rodríquez-Carvajal. Mater. Sci. Forum 378–381, 118 (2001).

Редактор К.В. Емцев