14.1

Биологически активные гибридные наносистемы на основе наночастиц нульвалентного селена и биосовместимых полимеров и ПЭК

© С.В. Валуева,¹ М.Э. Вылегжанина,¹ П.Е. Алексеева,^{1,2} Т.Е. Суханова^{1,3}

¹ Институт высокомолекулярных соединений РАН,

199004 Санкт-Петербург, Россия

² Санкт-Петербургский политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

³ Научно-исследовательский институт синтетического каучука им. акад. С.В. Лебедева,

198035 Санкт-Петербург, Россия

e-mail: svalu67@mail.ru

(Поступило в Редакцию 6 декабря 2017 г.)

Методами статического и динамического светорассеяний, ультрафиолетовой спектроскопии, двойного лучепреломления в потоке, атомно-силовой микроскопии и просвечивающей электронной микроскопии при массовом соотношении Se⁰ : полимер $\nu = 0.1$ определены молекулярно-конформационные, морфологические и кинетические характеристики селенсодержащих наносистем (HC) на основе модифицированных наночастицами Se⁰ биосовместимых полимерных матриц различной природы. Определены константы скорости формирования селенсодержащих HC, размерные характеристики соответствующих наноструктур, их форма, молекулярная масса и плотность. Установлено, что в водном растворе образуются изолированные плотные сферические полимолекулярные селенсодержащие наноструктуры. Полученные результаты составляют физико-химическую основу для модификации полимерных материалов с выраженной физиологической активностью биогенными элементами в нульвалентной форме.

DOI: 10.21883/JTF.2018.09.46411.2585

Введение

Известно, что биогенный элемент — селен, входящий в состав пищевых продуктов, оказывает антибластическое действие, а между содержанием селена во внешней среде и частотой поражения населения злокачественными опухолями существует обратно пропорциональная зависимость [1]. Известно также, что в условиях дефицита селена наблюдается развитие миокардиодистрофии, атеросклероза, ишемической болезни сердца, инфаркта миокарда и хронического гепатита различной этимологии [2,3].

Ввиду того что гибридные наносистемы обладают синергизмом свойств исходных компонентов, в настоящей работе была проведена модификация наночастицами нуль-валентного селена (Se⁰) биосовместимых полимерных материалов, используемых для получения лекарственных препаратов и БАД [4–6]. Известно, что нуль-валентный селен обладает комплексом уникальных биомедицинских свойств, одним из которых является высокая противоопухолевая активность. Учитывая тот факт, что, например, полиэлектролитный комплекс (ПЭК) обладает мембранотропными свойствами и резко увеличивает проницаемость липидных бислоев [7], он может повысить уровень активности селена. В связи с этим целесообразна модификация наночастицами Se⁰ биосовместимых полимерных материалов.

Цель настоящей работы — определение методами статического и динамического светорассеяний, УФ спектроскопии, двойного лучепреломления в потоке (ДЛП), атомно-силовой микроскопии (АСМ) и просвечивающей электронной микроскопии (ПЭМ), при массовом соотношении Se^0 : полимер v = 0.1, кинетических, молекулярно-конформационных и морфологических характеристик селенсодержащих наносистем (HC) на основе модифицированных наночастицами Se⁰ биосовместимых полимерных матриц трех разных типов — синтетического полиамфолита — сополимера акриловой кислоты и N,N-диметиламиноэтилметакрилата (П(АК-ДМАЭМ)), АК : ДМАЭМ = 1 : 1, биополиамфолита — бычьего сывороточного альбумина (БСА) и ПЭК додецилсульфата натрия (ДСН) с катионным сополимером N-винилпирролидона (ВП) и N,N,N,N-триэтилметакрилоилоксиэтиламмоний иодида (К) при $\gamma = ДСН/K = 0.5$, где γ — мольное соотношение заряженных субъединиц. Значения молекулярных масс (M_w) биосовместимых полимерных матриц представлены в таблице.

Экспериментальная часть

Измерения оптической плотности проводились на спектрофотометре "Specord M40" (Карл Цейс Йена, Германия) в диапазоне длин волн от 185 до 900 nm в термостатируемом режиме, с толщиной фотометрического слоя 1 сm. Расчет величин констант скорости *k** процесса самоорганизации селенсодержащих HC был

1291

проведен по формуле [8] $k^* = \ln(D_k/(D_k - D_i))/t_i$, где D_k — оптическая плотность, характеризующая конец процесса (в нашем случае 24 h), D_i — оптическая плотность в данный момент времени t_i .

Для измерения pH-среды использовался милливольтметр И-160МИ.

Методом статического светорассеяния (ССР) [9] определяли средневесовые молекулярные массы M_w^* , среднеквадратичные радиусы инерции R_g^* селенсодержащих наноструктур, а по величинам второго вириального коэффицента A_2^* — их сродство к растворителю. По соотношению величин молекулярной массы полимерного стабилизатора (ПС) и образуемой им НС вычисляли количество N^* адсорбированных макромолекул на поверхности наночастиц Se⁰. Значения M_w^* , N^* , R_g^* и A_2^* представлены в таблице.

Статическое светорассеяние измеряли на фотогониодиффузометре "Fica" при длине волны падающего вертикально поляризованного света $\lambda = 546.1$ nm. Очистку растворов проводили через миллипору (Millex-HV) диаметром 0.45 μ m. Для калибровки прибора использовали коэффициент рассеяния бензола в вертикально поляризованном свете $R_{90}^{\circ} = 22.3 \cdot 10^6$ m⁻¹. Инкременты показателей преломления определяли измерением показателей преломления определяли измерением показателей преломления растворов (*n*) и растворителя (вода) (*n*_s) на рефрактометре марки ИРФ-23 при нескольких концентрациях, затем проводили линейную экстраполяцию $\Delta n(c) = n - n_s$ по методу наименыших квадратов. Угол наклона $\Delta n(c)$ определял инкремент показателя преломления *dn/dc*.

Обработку результатов измерений светорассеяния для определения M_w^* , R_g^* и A_2^* проводили по методу Дебая с использованием уравнения [9]:

$$cK/R_{90}^{\circ} = 1/M_{w}^{*}P(\theta) + 2A_{2}^{*}c,$$

где с — концентрация раствора, $K = 4(\pi n_s dn/dc)^2/N_A\lambda^4$ — оптическая постоянная раствора $(N_A$ — число Авогадро), R_{90}° — отношение Рэлея, измеряемое под углом рассеяния $\theta = 90^{\circ}$, $P(\theta)$ — функция рассеяния, определяемая по асимметрии рассеяния $[z] = \lim(R_{45}^{\circ}/R_{135}^{\circ})$ при $c \to 0$ (R_{45}° и R_{135}° — отношение Рэлея при углах рассеяния 45 и 135°). Для определения величины $P(90^{\circ})$, отвечающей найденному значению [z], использовали расчетные значения, полученные для сферических частиц [9]. Из этих же данных по значениям [z] находили D^*/λ , где D^* — диаметр частицы.

На основании данных по M_w^* и среднеквадратичным радиусам инерции R_g^* по формуле

$$\Phi^* = 3M_w^* / 4\pi N_a R_{sp}^3 \tag{1}$$

(здесь $R_{sp} = 1.29R_g^*$) определяли величины средней плотности наноструктур Φ^* [10]. Значения Φ^* приведены в таблице.

Гидродинамические радиусы наноструктур (R_h^*) определяли методом динамического светорассеяния (ДСР) на корреляционном спектрометре Photo Cor

Complex (источник света — гелий-неоновый лазер фирмы Coherent мощности 20 mW с длиной волны $\lambda =$ $= 632.8 \,\mathrm{nm})$ с программируемым коррелятором Photocor-FC (число каналов 288, ЗАО "Антекс", Россия). Обработку корреляционной функции осуществляли с помощью программы Dyna LS ("Гелиос", Россия). Величины гидродинамических радиусов R_h^* (см. таблицу) рассчитывали из значений коэффицентов диффузии (D^*) по уравнению Эйнштейна–Стокса $R_h^* =$ $k = kT/6\pi \eta_0 D^*$ (η_0 — вязкость растворителя, k константа Больцмана, Т — температура) [11]. По соотношению экспериментальных величин R_{g}^{*} и R_{h}^{*} находили значение структурно-конформационного параметра ρ^* [12–15].

АСМ исследования морфологии селенсодержащих HC проводили на атомно-силовом микроскопе Nanotop NT-206 (ОДО "Микротестмашины", Беларусь). Измерения выполняли в контактном режиме в атмосферных условиях с использованием кремниевых кантилеверов NSC11/AIBS с коэффициентом жесткости k = 3.0 N/m и радиусом кривизны кончика острия 10 nm. Экспериментальные данные обрабатывали с помощью программы SurfaceExplorer.

Исследования методом ПЭМ проводили на электронном микроскопе BS-500 (фирмы Tesla, Чехия) при ускоряющем напряжении U = 60 kV, в диапазоне увеличений 9000–30 000. Перед исследованием раствор полимера или наносистемы наносили на медную сетку, покрытую формваровой пленкой, и сушили на воздухе.

Методом ДЛП [16] по характеру градиентной зависимости величины ДЛП Δn оценивали молекулярную дисперсность растворов образующихся наноструктур. При этом величину ДЛП Δn определяли в зависимости от градиента скорости вращения ротора g и концентрации c ПС при фиксированной концентрации селена. Использовали титановый динамооптиметр с внутренним ротором высотой 4 ст и величиной зазора между ротором и статором 0.03 cm. Все исследования ДЛП проводили при термостатировании растворов (21°C) во избежание изменений их вязкости и оптических искажений, вызываемых температурным градиентом. Для градуировки установки применяли фенилэтиловый спирт, который обладает значительным ДЛП ($\Delta n/g = 17 \cdot 10^{-12}$ (Δn разность двух главных показателей преломления раствора)), а также систему полистирол-бромоформ. Погрешность определения характеристической величины ДЛП $[n] = \lim_{g \to 0, c \to 0} (\Delta n/g c \eta_0)$ (где η_0 — вязкость растворителя) не превышала 10%. Измерения проводили при $g < g_k$, где g_k — градиент скорости, при котором наступает турбулентность потока.

Экспериментальная величина [n] в общем случае $dn/dc \neq 0$ складывается из трех эффектов: $[n] = [n]_e + +[n]_{fs} + [n]_f$, где $[n]_e$ — собственная анизотропия, $[n]_{fs}$ — эффект микроформы, $[n]_f$ — эффект макроформы [16]. При этом величина $[n]_f$ связана с асимметрией

Молекулярно-конформационные и термодинамические параметры для селенсодержащих HC при $\nu = 0.1$ и pH = 3.8

НС	$M_w \cdot 10^{-3}$	$M_w^* \cdot 10^{-6}$	N^*	$R_g^*,$ nm	$R_h^*,$ nm	$A_2^* \cdot 10^4$, cm ³ · mol/g ²	Φ^* , g/cm ³	R^*_{ACM} , nm
$\begin{array}{l} \mathrm{Se^0/\Pi(AK\text{-}\mathcal{M}A\mathcal{J}M)}\\ \mathrm{Se^0/}\ \mathrm{ECA}\\ \mathrm{Se^0/\Pi\mathcal{J}K},\ \gamma=0.5 \end{array}$	$\begin{array}{r} 20\cdot10^3\\70\\117\end{array}$	60 70 10	3 10 ³ 85	100 50 40	100 50 40	0.4 0.2 0.5	0.01 0.10 0.03	120 70 50

формы частицы p^* соотношением

$$[n]_{f} = \left((n_{s}^{2} + 2)/3 \right)^{2} \left(M_{w} (dn/dc)^{2} f(p) \right) / (30\pi RT n_{s})$$

= const \cdot M_{w} (dn/dc)^{2} f(p^{*}), (2)

где n_s — показатель преломления растворителя, T — абсолютная температура, R — универсальная газовая постоянная, $f(p^*)$ — табулированная функция отношения осей жесткого (непротекаемого для растворителя) эллипсоида, аппроксимирующего частицу [16].

Обсуждение результатов

 k^* Константы скорости для наносистем Se⁰/П(АК-ДМАЭМ), Se⁰/БСА и Se⁰/ПЭК при $\gamma = 0.5$ в условиях полного насыщения адсорбционной емкости наночастиц селена (v = 0.1) [17-20] и при фиксированном значении pH = 3.8 составили соответственно $3.3 \cdot 10^3$, $2.5 \cdot 10^{-3}$ и $0.9 \cdot 10^{-3}$ s⁻¹. Такое существенное изменение величины константы скорости самоорганизации гибридных НС при неизменных значениях параметров среды (рН) указывает на ощутимое влияние структуры (природы) ПС на величину k*. Структурноморфологические особенности ПС, используемых в настоящей работе, хорошо иллюстрируют данные, полученные методом АСМ. На рис. 1 представлены АСМ изображения (на слюде) поверхности пленок, полученных из водных растворов ПС-П(АК-ДМАЭМ), БСА и ПЭК (с соотношением $\gamma = 0.5$). Поверхность пленки $\Pi(AK-ДМАЭM)$ (рис. 1, *a*) имеет мелкозернистую (нанодоменную) морфологию, размер зерна составляет 35-40 nm. Пленка достаточно гладкая — величины среднеарифметической (R_a) и среднеквадратичной (R_a) шероховатостей составляют соответственно 0.5 и 0.6 nm, высота зерен над усредненной поверхностью не превышает 3 nm (рис. 1, d). Тонкая структура пленки, полученной из водного раствора БСА (рис. 1, b), имеет также зернистую морфологию, размер зерна $\sim 70-90\,{\rm nm};$ кроме того, на поверхности наблюдаются частицы с размерами 100-200 nm, отдельные максимальная высота которых над поверхностью не превышает 14 nm (рис. 1, *e*). Пленка, отлитая из раствора БСА, более шероховатая, величины шероховатости составляют: $R_a = 1.6$ nm и $R_q = 2.3$ nm. Совершенно иная морфология наблюдается в случае пленки, полученной из водного раствора ПЭК (рис. 1, c, f): на поверхности наблюдаются крупные агрегаты субмикронных и микронных размеров длиной 750-1500 nm и шириной 450-900 nm; максимальная высота над поверхностью этих агрегатов составляет ~ 50 nm.

Оценка гидродинамического радиуса R_h^* наночастиц селена (при $\nu = 0.1$) методом ДСР показала, что в отсутствие ПС образуются крупные частицы с радиусом ~ 180 nm, с узким унимодальным распределением по размерам. По истечении двух суток происходит визуально видимая агрегация наночастиц селена, выпадающих в осадок. При использовании в качестве полимерного стабилизатора П(АК-ДМАЭМ), БСА или ПЭК в водных растворах формируются наноструктуры с размером ≤ 100 nm (см. таблицу), при этом наносистемы характеризуются узким унимодальным распределением по размерам и достаточно высокой стабильностью.

Информацию об изменении молекулярной массы (M_w^*) , размеров $(R_g^*$ и $R_h^*)$ и формы $(
ho^*, p^*)$ наноструктур дают методы ССР, ДСР и ДЛП. Величина молекулярной массы при переходе от водных растворов полимеров или ПЭК к НС в зависимости от природы ПС возрастала в 3 раза (ПС-П(АК-ДМАЭМ)), 85 раз (ПЭК) и 1000 раз (БСА), т.е. на поверхности НЧ адсорбировано $3 \cdot 10^3$ молекул полимера ($N^* = 29 - 61$) (см. таблицу). При этом сохранялось молекулярнодисперсное состояние растворов наноструктур, о чем свидетельствовал характер градиентных зависимостей $\Delta n = f(g)$: при $g < g_{\kappa}$ (где g_{κ} — величина критического градиента скорости, при котором наступает турбулентность потока, а исследования следует проводить только при ламинарном течении жидкости [16]) для всех изученных НС они хорошо аппроксимируются прямыми линиями, проходящими через начало координат [16].

Важно также отметить, что для изученных гибридных НС величина среднеквадратичного радиуса инерции R_g^* совпадает с величиной гидродинамического радиуса R_h^* (см. таблицу) и значение структурноконформационного параметра $\rho^* = R_g^*/R_h^*$ составляло $\rho^* = 1.0$, что характерно для глобулярных образований — сплошных однородных сфер [12–15]. Эти значения ρ^* существенно меньше величины структурноконформационного параметра для клубкообразных макромолекул в термодинамически хорошем растворителе ($\rho_{coil} = 1.5-1.7$) [12–15]. Формирование наноструктур с формой, близкой к сферической, экспериментально обнаружено также в работах [4–6,17–21].

Оценка величины параметра p^* для исследованных наноструктур в приближении $[n] \sim [n]_f$ на основании соотношения (2) показала, что для всех изученных HC характерна сферическая форма наноструктур ($p^* = 1.0-1.2$).

Рис. 1. АСМ изображения: свободного сополимера П(АК-ДМАЭМ) в воде (a, d); БСА в воде (b, e); ПЭК с соотношением $\gamma = 0.5$ в воде (c, f); a-c — изображения высоты поверхности (топография: размер скана $3 \times 3 \mu$ m), d-f — 3D-изображения.

Рис. 2. АСМ изображения поверхности пленки, полученной из водного раствора селенсодержащих HC ($\nu = 0.1$): П(АК-ДМАЭМ)/Se⁰ (a, d); БСА/Se⁰ (b, e) и ПЭК/Se⁰ (c, f); a-c — изображения высоты поверхности, d-f — профили выделенных участков поверхности.

Это полностью согласуется с данными по параметру ρ^* ($\rho^* = 1.0$) и данными АСМ (рис. 2, *a*-*c*): на АСМ изображениях поверхности тонких пленок, отлитых из водных растворов НС Se⁰/П(АК-ДМАЭМ), Se⁰/БСА

и Se⁰/ПЭК, четко видны сферические наноструктуры. Это также подтверждается результатами, полученными методом ПЭМ для пленки, высушенной из водного раствора НС Se⁰/ПЭК (ПЭК при $\gamma = 0.5$): нанострук-

500 nm

Рис. 3. ПЭМ микрофотография тонкой пленки, приготовленной из раствора HC ПЭК/Se⁰ ($\gamma = 0.5$).

туры Se⁰/ПЭК представляют собой преимущественно моноядерные сферические структуры (рис. 3).

Важно отметить, что прослеживается хорошая корреляция величин размерных характеристик изученных наноструктур, полученных методами ССР ($R_{sp}^* = 1.29 \cdot R_g^*$) и АСМ (R_{ACM}^*) (см. таблицу и рис. 2). Так, средние величины радиусов сферических наноструктур, полученные методом АСМ для НС Se⁰/П(АК-ДМАЭМ) составляют $R_{ACM}^* = 120$ nm ($R_{sp}^* = 129$ nm), для НС Se⁰/БСА $R_{ACM}^* = 70$ nm ($R_{sp}^* = 65$ nm) и для НС Se⁰/ПЭК $R_{ACM}^* = 50$ nm ($R_{sp}^* = 52$ nm).

Расчет средней плотности НС по формуле (1) показал, что в зависимости от природы ПС формируются НС с плотностью в диапазоне $\Phi^* = 0.01 - 0.10 \,\text{g/cm}^3$ (см. таблицу), существенно превосходящей плотность полимерного клубка [16]. Важно отметить, что наименее плотные наноструктуры образуются в случае НС Se⁰/П(АК-ДМАЭМ), а наиболее плотные наноструктуры наблюдаются при стабилизации наночастиц селена молекулами БСА. Таким образом, более массивная частица (ПС-БСА) оказывается и более плотной: $M_w^* = 70 \cdot 10^6$ и $\Phi^* = 0.10 \,\text{g/cm}^3$ (см. таблицу). Очевидно, что изученные наноструктуры имеют различные упаковку и распределение органических молекул вокруг селенового ядра (ядер). Так, сопоставление величины контурной длины белковой макромолекулы L [16] с величиной $R_{sp}^* = 65 \,\mathrm{nm}$ показало, что наноструктура Se⁰/БСА является полиядерной: $L \ll R_{sp}^*$.

Как известно [22], свободная энергия ΔG^* взаимодействия макромолекула-наночастица в расчете на единицу площади поверхности частицы может быть определена по соотношению

$$\Delta G^* = kT \ln c / 4\pi R_{sp}^2, \tag{3}$$

где *с* — начальная концентрация полимера в mol/l. Отметим, что соотношение (3) справедливо для сферических наноструктур произвольной морфологии

в области образования устойчивых дисперсий. Применение уравнения (3) к исследованным наноструктурам показало, что в случае НС Se⁰/П(АК-ДМАЭМ) $\Delta G^* = -0.02 \cdot 10^{-5} \text{ J/m}^2$, для НС Se⁰/БСА $\Delta G = -0.07 \cdot 10^{-5} \text{ J/m}^2$, а для НС Se⁰/ПЭК с соотношением ДСН/К $\gamma = 0.5 \Delta G = -0.06 \cdot 10^{-5} \text{ J/m}^2$. Таким образом, при использовании в качестве ПС сополимера П(АК-ДМАЭМ) свободная энергия ΔG^* взаимодействия макромолекула-наночастица селена заметно меньше по абсолютной величине, чем аналогичная величина для НС Se⁰/БСА и Se⁰/ПЭК.

Итак, изученные сферические наноструктуры ощутимо различаются по значениям молекулярных масс, размерам и плотности, кроме того, при варьировании природы ПС ощутимо изменяются энергия и характер взаимодействий наночастиц Se⁰ с ПС, что отражает параметр ΔG^* .

Второй вириальный коэффициент A_2^* для изученных HC стремится к нулю ($A_2^* = (0.2-0.5) \cdot 10^{-4} \text{ cm}^3 \cdot \text{mol/g}^2$ (см. таблицу)), что характеризует состояние растворов как близкое к идеальному (близком к тета-точке). Следует заметить, что для исследованной в настоящей работе HC Se⁰/ПЭК при $\gamma = 0.5$ наличие в растворе селена практически не сказывается на его термодинамическом состоянии, в то время как при $\gamma = 4.0$ [4] переход от системы ПЭК-вода к системе Se⁰/ПЭК-вода сопровождался кардинальным изменением термодинамического состояния раствора от хорошего ($A_2^* = 22 \cdot 10^{-4} \text{ cm}^3 \cdot \text{mol/g}^2$) к плохому ($A_2^* = -1.8 \cdot 10^{-4} \text{ cm}^3 \cdot \text{mol/g}^2$), по-видимому, вследствие ориентации гидрофобных алкильных цепей ДСН в объемную фазу раствора (система–Se⁰/ПЭК–вода).

Заключение

Методами светорассеяния, УФ спектроскопии, ДЛП, АСМ и ПЭМ показано, что гибридные селенсодержащие наносистемы на основе биосовместимых полимерных матриц трех разных типов — синтетического полиамфолита — сополимера акриловой кислоты и N,N-диметиламиноэтилметакрилата, биополиамфолита — бычьего сывороточного альбумина и полиэлектролитного комплекса при $\gamma = ДСН/K = 0.5$ различаются по кинетическим (k^*) , размерным $(R_h^*, R_g^*, R_{ACM}^*)$, молекулярно-массовым (M_w^*) , термодинамическим (A_2^*) параметрам, плотности (Ф*) и величине свободной энергии (ΔG^*). Таким образом, показано, что структура (природа) стабилизирующего полимера является определяющим фактором в процессе формирования гибридных селенсодержащих наноструктур и оптимизации их параметров (константы скорости, размерных характеристик, формы, молекулярной массы, плотности, термодинамического параметра и величины свободной энергии). Полученные результаты составляют физико-химическую основу для целенаправленного синтеза потенциальных лекарственных веществ на основе селена.

Список литературы

- Yoshizawa K., Willett W.C., Morris S.J. // J. Natl. Cancer Inst. 1998. Vol. 90. N 16. P. 1219–1224. DOI: 10.1093/jnci/90.16.1219
- [2] Абдуллаев Г.М., Зейналлы Э.М., Сафаров Ю.И. // Врачебное дело. 1978. № 11. С. 35–37.
- [3] Yu S.Y., Zhu Y.J., Li W.G. // Biol. Trace Element Res. 1997.
 Vol. 51. N 1. P. 117–124. DOI: 10.1007/BF02778987
- [4] Валуева С.В., Боровикова Л.Н., Волков А.Я. // Сборник статей по материалам Международной научнопрактической конф. "Дни науки". 2012. Прага, Чехия. С. 24–32.
- [5] Валуева С.В., Суханова Т.Е., Матвеева Н.А., Вылегжанина М.Э., Гельфонд М.Л. // Сборник статей Второй Международной научно-практической конф. "Высокие технологии, фундаментальные и прикладные исследования в физиологии и медицине" (PhysioMedi). 2011. Санкт-Петербург, Россия. С. 130–137.
- [6] Валуева С.В., Азизбекян С.Г., Кучинский М.П., Набиуллин А.Р., Суханова Т.Е. // Нанотехника. 2012. № 4 (32). С. 53–58.
- [7] Копейкин В.В. // Биологич. мембраны. 1988. Т. 5. № 7. С. 728–734.
- [8] Березин И.В., Клесов А.А. Практический курс химической и ферментативной кинетики. М.: МГУ, 1976. 320 с.
- [9] Эскин В.Е. Рассеяние света растворами полимеров и свойства макромолекул. Л.: Наука, 1986. 288 с.
- [10] Pogodina N.V., Tsvetkov N.V. // Macromolecules. 1997.
 Vol. 30. N 17. P. 4897–4904. DOI: 10.1021/ma9617983
- [11] Brown W. Dynamic Light Scattering: the Method and Some Application. Oxford: Clarondon Press, 1993. 305 p.
- [12] Meewes M., Ricka J., De Silva M., Nuffengger R., Binkert Th. // Macromolecules. 1991. Vol. 24. N 21. P. 5811– 5816. DOI: 10.1021/ma00021a014
- [13] Nishio I., Shao Thang Sun, Swislow G., Tanaka T. // Nature. 1979. Vol. 281. N 5728. P. 208–209. DOI: 10.1038/281208a0
- [14] Konishi T., Yoshizaki T., Yamakawa H. // Macromolecules. 1991. Vol. 24. N 20. P. 5614–5622.
 - DOI: 10.1021/ma00020a021
- [15] Burchard B.W. Static and dynamic light scattering approaches to structure determination of biopolymers / Laser Light Scattering in Biochemistry Eds by S.E. Harding, D.B. Satelle, V.A. Bloomfild. Cambridge: Royal Soc. Chem. Information Services, 1992. P. 3–21.
- [16] Цветков В.Н., Эскин В.Е., Френкель С.Я. Структура макромолекул в растворах. М.: Наука, 1964. 720 с.
- [17] Валуева С.В., Боровикова Л.Н., Коренева В.В., Назаркина Я.И., Киппер А.И., Копейкин В.В. // Журн. физ. химии. 2007. Т. 81. № 7. С.1329–1333.
- [18] Валуева С.В., Боровикова Л.Н., Киппер А.И. // Журн. физ. химии. 2008. Т. 82. № 6. С. 1131–1136.
- [19] *Валуева С.В., Боровикова Л.Н.* // Бутлеровские сообщения. 2010. Т. 20. № 5. С. 52–61.
- [20] Валуева С.В., Вылегжанина М.Э., Лаврентьев В.К., Боровикова Л.Н., Суханова Т.Е. // Журн. физ. химии. 2013. Т. 87. № 3. С. 499–504. DOI: 10.7868/S0044453713030345
- [21] Валуева С.В., Титова А.В., Боровикова Л.Н. // Журн. физ. химии. 2015. Т. 89. № 9. С. 1420–1425. DOI: 10.7868/S0044453715090368
- [22] Литманович А.А., Паписов И.М. // Высокомолекулярные соединения. Б. 1997. Т. 39. № 2. С. 323–326.