01,05

Электронная структура и обменные взаимодействия соединений $RNi_4Co~(R = Eu, Yb)$

© Л.Н. Граматеева¹, А.В. Лукоянов^{1,2,¶}

¹ Уральский федеральный университет, Екатеринбург, Россия ² Институт физики металлов им. М.Н. Михеева УрО РАН, Екатеринбург, Россия [¶] E-mail: lukoyanov@imp.uran.ru

(Поступила в Редакцию 29 марта 2018 г.)

Для соединений EuNi₄Co и YbNi₄Co рассчитаны электронная структура и обменные взаимодействия в рамках теоретического подхода с учетом электронных корреляций (метод LSDA + U), рассмотрены варианты замещения никеля ионом кобальта в 3*d*-подрешетке в обоих типах кристаллографических позиций: 2*c* и 3*g*. Вычисленные полные энергии, полученные в самосогласованных расчетах, показали, что одиночные примеси кобальта энергетически выгоднее располагаются в позиции типа 3*g*. Ион Co в RNi₄Co (R = Eu, Yb) характеризуется значительной величиной магнитного момента, что приводит к значительному увеличению обменного взаимодействия ионов Co и Ni в подрешетке 3*d*-металлов.

Исследование выполнено за счет гранта РНФ (проект № 14-22-00004).

DOI: 10.21883/FTT.2018.09.46377.085

1. Введение

Соединения редкоземельных и переходных металлов классов R—Ni и R—Ni—Z (R — редкоземельный металл, Z — d- или p-элемент) на основе никеля уже достаточно давно и успешно исследуются с целью разработки разнообразных функциональных материалов. В основе практических приложений для отдельных соединений данных классов интерметаллических соединений лежат их магнитострикционные и магниторезистивные свойства [1,2], а также магнитокалорический эффект [3,4], характеристики которого в данных соединениях могут достигать гигантских значений [5]. На базе последнего могут разрабатываться устройства магнитного охлаждения.

Семейство интерметаллических соединений RNi5 выделяется среди систем R-Ni большим разнообразием электронных и магнитных свойств. В данной работе рассматриваются два соединения данного класса, а именно EuNi₄Co и YbNi₄Co, в которых один из атомов никеля замещен кобальтом Со. Для базовых соединений EuNi₅ и YbNi₅ ранее изучались: интеркаляция водорода [6-9], статистические и динамические магнитные свойства [10,11], тепловые свойства [11], а также влияние частичных замещений редкоземельного металла атомами La, Ce, Pr, никеля — атомами меди, цинка или водорода, на свойства интерметаллидов [12]. В то время как в EuNi₅ магнитного упорядочения не обнаружено, интерметаллид YbNi5 характеризуется ферромагнитным упорядочением с низкой температурой Кюри 0.5 К [10,13]. Для схожих интерметаллидов ErNi₄Co и HoNi₄Co ранее было экспериментально обнаружено, что примесь кобальта приводит к повышению температуры Кюри T_C до 100 К

в HoNi₄Co и 182 K в ErNi₄Co [14]. Первопринципные расчеты при этом свидетельствуют об увеличении обменного взаимодействия в подсистеме 3d-металлов до 12–14 meV [15]. В литературе отсутствуют работы по изучению влияния магнитной примеси замещения кобальта на электронную структуру и обменные взаимодействия соединений класса RNi_5 на основе европия и иттербия.

В данной работе представлены результаты зонных расчетов электронной структуры интерметаллидов RNi_4Co (R = Eu, Yb), в которых один атом никеля замещен на атом ближайшего к никелю по 3d-ряду металла кобальта.

2. Метод расчета

Интерметаллические соединения YbNi5 и EuNi5 кристаллизуются в гексагональной структуре типа СаСи₅ (пространственная группа Р6/тт) с шестью атомами в элементарной ячейке. Экспериментальные величины параметров их кристаллической решетки использовались в расчетах: для EuNi₅ *a* = 4.905 Å, *c* = 3.948 Å [8] и для YbNi₅ — *a* = 4.83 Å, c = 3.968 Å [16]. Атомы никеля двух типов (Ni1 и Ni2) занимают различающиеся по симметрии позиции типа 2c (1/3, 2/3, 0) и 3g (1/2, 0, 1/2), атомы европия или иттербия располагаются в кристаллографических позициях 1a (0, 0, 0). Для моделирования составов EuNi₄Co и YbNi₄Co один из атомов никеля заменялся на атом кобальта, рассматривалось замещение как в позиции типа 2c, так и 3g. В этих случаях при замещении одного из атомов никеля гексагональная структура кристалла не изменялась.

Расчеты электронной структуры были проведены в пакете программ [17] на основе подхода ТВ-LMTO-ASA, базирующегося на базисе линеаризованных маффинтин (МТ) орбиталей и приближении атомных сфер (ASA). Электронная структура получена в результате самосогласованных расчетов в рамках метода LSDA + U [18], сочетающего приближение локальной электронной спиновой плотности (LSDA) с поправкой на сильное электрон-электронное взаимодействие в 4*f*-оболочке редкоземельных ионов. В данной работе для 4f-состояний европия и иттербия использовалась величина параметра прямого кулоновского взаимодействия $U = 6.5 \, \text{eV}$, а также величина параметра обменного взаимодействия $J_H = 0.7 \, \text{eV} [19]$. Для интегрирования использовалась сетка k-точек в обратном пространстве с полным числом точек $10 \times 10 \times 10 = 1000$, интегрирование осуществлялось методом тетраэдров. Орбитальный базис включал маффин-тин орбитали, соответствующие 6s-, 6p-, 5d- и 4f-состояниям европия и иттербия, а также 4s-, 4p- и 3d-состояниям никеля и кобальта. Радиус МТ-сферы иона европия составлял 3.5 а.и., для иона иттербия — 3.4 а.u., для ионов никеля и кобальта — 2.6 а.u. как в позиции типа 2c, так и в позиции типа 3g. В самосогласованных расчетах электронной структуры моделировалось ферромагнитное упорядочение локальных магнитных моментов на узлах решетки. Также были рассчитаны величины параметров обменного взаимодействия в подрешетке 3*d*-металлов.

3. Результаты и обсуждение

На рис. 1 приведены полученные в результате самосогласованных расчетов плотности электронных состояний N для соединения EuNi₄Co. Приведены полные и парциальные плотности состояний для случаев расположения ионов кобальта в позициях 2c (часть a) и 3g (часть b) для двух спиновых проекций \uparrow и \downarrow . Интенсивные пики в полной плотности состояний в соединении EuNi₄Co с ионом кобальта в позиции типа 3g формируются полосой на энергиях от -5 до 0 eV, в том числе от $-2 \,\mathrm{eV}$ и до уровня Ферми E_{F} в спиновой проекции 1 располагается узкий интенсивный пик плотности состояний, образованный за счет заполненных 4f-состояний Eu, которые показаны затемненной областью. В этом же интервале энергий можно обнаружить Со и Ni-3d-состояния. Последние практически не обладают спиновой поляризацией, что также можно понять по малой величине магнитных моментов ионов никеля в обоих соединениях в табл. 1. Значительные изменения наблюдаются на интервале энергий от -2 eV до уровня Ферми, где располагается узкий пик плотности состояний, образованный за счет 4f-состояний Еи с направлением спина ↑, и на интервале энергий от 8 до 9 eV выше уровня Ферми E_F, где располагается пик плотности состояний, образованных за счет 4f-состояний Eu с направлением спина \downarrow .

Рис. 1. Полные (пунктирная кривая) и парциальные плотности электронных состояний в соединениях EuNi₄Co с ионом Co в позиции 2c (a) и 3g (b): 3d-состояния Co (сплошная темная линия) и 4f-состояния Eu (светлая затемненная область). В скобках указана позиция атома переходного металла. Уровень Ферми соответствует нулю на шкале энергий.

Для интерметаллида YbNi₄Co полученные полные и парциальные плотности состояний приведены на рис. 2. Интенсивные пики в полной плотности состояний в соединении YbNi₄Co с ионами кобальта в позиции типа 3g в основном формируются на энергиях от -5 до 1 eV. Состояния 4f -иттербия в виде интенсивной заполненной полосы располагаются на -1 eV. Спиновая поляризация электронных состояний Yb и Ni практически отсутствует (см. табл. 1), поэтому для плотности состояний для двух противоположных направлений спина \uparrow и \downarrow на рис. 2 отличаются, главным образом, только из-за 3d-состояний кобальта. Последние благодаря магнитному моменту на ионе кобальта дают вклад в плотность состояний на уровне Ферми с направлением спина \downarrow .

В табл. 1 представлены величины магнитных моментов (в μ_B) ионов в соединениях EuNi₅, YbNi₅, EuNi₄Co,

Таблица 1. Величины магнитных моментов ионов (в μ_B) в *R*Ni₄Co (R = Eu, Yb) для конфигураций с расположением иона Со в позиции типа 2*c* и 3*g*

Ион	EuNi ₅	EuNi ₄ Co	EuNi ₄ Co	YbNi ₅	YbNi ₄ Co	YbNi ₄ Co
		(2c)	(3g)		(2c)	(3g)
Eu/Yb	7.0	6.9	7.0	0.04	0.01	0.03
Ni $(2c)$	0.3	0.1	0.4	0.3	0.2	0.4
Ni (3g)	0.3	0.3	0.3	0.3	0.3	0.4
Co	-	0.8	1.2	-	1.2	1.2

Рис. 2. Полные (штриховая кривая) и парциальные плотности электронных состояний в соединениях YbNi₄Co с ионом Co в позиции 2c (*a*) и 3g (*b*): 3d-состояния Co (сплошная темная линия) и 4f-состояния Yb (светлая затемненная область). В скобках указана позиция атома переходного металла. Уровень Ферми соответствует нулю на шкале энергий.

YbNi₄Co для случаев расположения иона кобальта в позициях типа 2c и 3g. Магнитный (спиновый) момент иона Eu составляет около $7\mu_{\rm B}$. В YbNi₅ и YbNi₄Co редкоземельный ион практически не обладает магнитным моментом. В обеих позициях магнитный момент иона кобальта в соединениях с Yb равен $1.2\mu_{\rm B}$, а в

Таблица 2. Значения полной энергии и их разница (в Ry) для RNi_4Co (R = Eu, Yb) с расположением иона Co в позиции типа 2c или 3g

	Полная энергия, Ry				
Соединение	позиция	nashima			
	2c	3 <i>g</i>	разница		
EuNi₄Co YbNi₄Co	-36609.02 -43037.53	-36609.03 -43037.55	0.01 0.02		

Еи — уменьшается до $0.8 \mu_{\rm B}$ в позиции 2*c*. Рассчитанные величины магнитных моментов 3*d*-ионов близки к полученным в ErNi₄Co и HoNi₄Co [15].

Сравнение полных энергий рассчитанных конфигураций представлено в табл. 2. Было обнаружено, что минимальное значение полной энергии имеет конфигурация с расположением Со в позиции типа 2*c* для обоих интерметаллидов, при этом выигрыш полной энергии от реализации такой конфигурации в YbNi₄Co более значительный, чем в EuNi₄Co.

В табл. З представлены результатов расчетов обменного взаимодействия для пар ионов в соединениях EuNi₅, YbNi₅, EuNi₄Co, YbNi₄Co (для случаев расположения иона кобальта в позициях типа 2c и 3g). Наибольшее обменное взаимодействие в данных соединениях обнаружено в паре никель в позициях типа 3g с кобальтом, величина обменного взаимодействия между Ni остается небольшой (до 5 meV). Полученные значения параметров обменного взаимодействия Ni-Co в соединениях EuNi₄Co и YbNi₄Co превосходят по величине полученные ранее для интерметаллидов ErNi₄Co и HoNi₄Co [15], что может свидетельствовать о высоких значениях температуры Кюри в EuNi₄Co и YbNi₄Co, поскольку обменные взаимодействия в подсистеме 3*d*-металлов дают существенный вклад в увеличение T_C в RNi₄Co. К настоящему времени в литературе результаты магнитных измерений данных интерметаллидов не опубликованы.

4. Заключение

В работе проведены расчеты электронной структуры интерметаллидов серии RNi_4Co (YbNi_4Co и EuNi_4Co) при помощи метода LSDA + U. Проведен анализ плотностей электронных состояний и обменных взаимодействий. Рассмотрены случаи замещения одного атома кобальта в 3*d*-подрешетке никеля в обоих типах кристаллографических позиций 2*c* и 3*g*. Расчеты в рамках метода LSDA + U показали, что более энергетически выгодным является заполнение кобальтом позиции типа 3*g*, поскольку это дает минимальное значение полной энергии, а выигрыш полной энергии от реализации такой конфигурации больше в YbNi_4Co. Из расчетов также следует, что в RNi_4Co (R = Eu, Yb) магнитные моменты иона никеля малы и составляют $0.1-0.4\mu_B$,

Таблица 3. Величины параметров обменных взаимодействий ионов различных 3*d*-металлов для соединений YbNi₅, EuNi₅, YbNi₄Co и EuNi₄Co (meV)

Обмен	EuNi5	EuNi4Co (2c)	EuNi4Co (3g)	YbNi5	YbNi4Co (2c)	YbNi4Co (3g)
Ni(2c)- $Ni(2c)Ni(2c)$ $Ni(2c)$	4.0	-	3.0	4.8	-	4.1
Ni(3g)-Ni(3g)	3.1	3.1	3.5	3.0	4.9	2.8 4.0
Ni(2c)-Co Ni(3g)-Co	_	0.4 12.1	15.5 16.6	_	4.1 17.2	16.8 19.0

тогда как ион кобальта характеризуется магнитным моментом $0.8-1.2\,\mu_{\rm B}$. Большой магнитный момент иона кобальта в EuNi₄Co и YbNi₄Co приводит к большой величине обменного взаимодействия пар ионов Co-Ni по сравнению с Ni-Ni.

Список литературы

- [1] S. Gupta, K.G. Suresh. J. Alloys Compd. 618, 562 (2015).
- [2] V. Franco, J.S. Blázquez, B. Ingale, A. Conde. Ann. Rev. Mater. Res. 42, 305 (2012).
- [3] A. Haldar, I. Dhiman, A. Das, K.G. Suresh, A.K. Nigam. J. Alloys Compd. 509, 3760 (2011).
- [4] G.Y. Zhang, F. Hu, X. Dong, W.S. Xia. J. Alloys Compd. 671, 299 (2016).
- [5] H. Zhang, Y. Li, E. Liu, Y. Ke, J. Jin, Y. Long, B. Shen. Sci. Rep. 5, 11929 (2015).
- [6] I. Bigun, V. Smetana, Y.Mudryk, I. Hlova, M. Dzevenko, L. Havela, Y. Kalychak, V. Pecharsky, A.-V. Mudring. J. Mater. Chem. C 5, 2994 (2017).
- [7] Z. Gavra, G.G. Murray, L.D. Calvert, J.B. Taylor. J. Less-Common Met. 105, 291 (1985).
- [8] F.W. Oliver, K.W. West, R.L. Cohen, K.H.J. Buschow. J. Phys. F 8, 4 (1978).
- [9] Z. Gavra, G.G. Murray, L.D. Calvert, J.B. Taylor. Mater. Res. Bull. 20, 209 (1985).
- [10] J.A. Hodges, P. Bonville, M. Ocio. Eur. Phys. J. 57, 365 (2007).
- [11] S. Kardellass, C. Servant, N. Selhaoui. J. Therm. Anal. Calorim. 125, 255 (2016).
- [12] B. Perscheid, E.V. Sampathkumaran, G. Kaindl. Hyperfine Interact. 28, 1059 (1986).
- [13] G.M. Kolvius, D.R. Noakes, O. Hartmann. Handbook on the Physics and Chemistry of Rare Earths 32, 55 (2001).
- [14] V.V. Chuyev, V.V. Kelarev, A.N. Pirogov, S.K. Sidorov, V.S. Koryakova. Phys. Met. Metallogr. 55, 80 (1983).
- [15] A.V. Lukoyanov, Yu.V. Knyazev, Yu.I. Kuz'min, A.G. Kuchin.
 J. Magn. Magn. Mater. 368, 87 (2014).
- [16] I.V. Veremchuk, N.F. Chaban, Y.B. Kuz'ma. J. Alloys Compd. 413, 127 (2006).
- [17] A.O. Shorikov, A.V. Lukoyanov, M.A. Korotin, V.I. Anisimov. Phys. Rev. B 72, 24458 (2005).
- [18] V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein. J. Phys.: Condens. Matter 9, 767 (1997).
- [19] Yu.V. Knyazev, A.V. Lukoyanov, Yu.I. Kuz'min, A.G. Kuchin. Phys. Status Solidi B 249, 824 (2012).

Редактор Т.Н. Василевская