03

Спектральная и угловая зависимости эффективности трехслойных рельефно-фазовых дифракционных элементов ИК диапазона

© Г.И. Грейсух¹, В.А. Данилов², С.А. Степанов¹, А.И. Антонов¹, Б.А. Усиевич³

1 Пензенский государственный университет архитектуры и строительства,

440028 Пенза, Россия

² Научно-технологический центр уникального приборостроения РАН,

117342 Москва, Россия

³ Институт общей физики им. А.М. Прохорова РАН,

119991 Москва, Россия

e-mail: grey@pguas.ru

Поступила в редакцию 27.02.2018 г.

В рамках скалярной и строгой теории дифракции, основанной на решении системы уравнений Максвелла, проведено исследование пилообразных рельефно-фазовых трехслойных микроструктур, рассчитанных на работу с полихроматическим излучением среднего ИК диапазона ($3 \le \lambda \le 5 \mu m$). Расширен ряд эффективных микроструктур, скомпонованных из различных оптических материалов, и минимизированы глубины их рельефов. Ряд расширен, в частности, за счет микроструктур, у которых френелевские потери на отражение от обоих рельефов не превышают 10%. Этот фактор в совокупности с относительно небольшой суммарной глубиной рельефов может оказаться определяющим при выборе той или иной микроструктуры для решения конкретной научной или технической задачи.

DOI: 10.21883/OS.2018.07.46267.57-18

Введение

Снижение дифракционной эффективности (ДЭ) дифракционных оптических элементов (ДОЭ) при изменении длины волны и угла падения излучения на элемент является одним из наиболее серьезных факторов, сдерживающих использование таких элементов в изображающих, фокусирующих и др. оптических системах.

Спектральная и угловая зависимости эффективности трехслойных рельефно-фазовых дифракционных оптических элементов, рассчитанных на видимое излучение, достаточно хорошо изучены. Так, в работах [1–5] в рамках скалярной теории дифракции (СТД) получены выражения для ДЭ трехслойных пилообразных рельефно-фазовых микроструктур, предложены методы выбора оптических материалов и компоновки таких микроструктур, а также получения оптимальных глубин пилообразных микрорельефов (рис. 1).

Показано, что при соответствующем выборе трех оптических материалов и приемлемых (с практической точки зрения) оптимальных глубинах рельефов в пределах видимого спектрального диапазона $(0.4 \,\mu\text{m} \le \lambda \le 0.7 \,\mu\text{m})$ и в интервале углов падения излучения из воздуха на микроструктуру $(-30^\circ \le \theta \le 30^\circ)$ минимальная ДЭ в первом рабочем порядке, полученная в рамках СТД, $\eta_{S,\min} \ge 0.95$. Более того, если допустить, чтобы суммарная глубина рельефов $h_{\Sigma} = h_1 + h_2$ не превышала $37 \,\mu\text{m}$, то, как показано в [5], можно подобрать комбинацию оптических материалов, обеспечивающих $\eta_{S,\min} \ge 0.95$ в интервале углов падения излучения из

воздуха на микроструктуру $-70^{\circ} \le \theta \le 70^{\circ}$. К сожалению, полученные в рамках СТД и приведенные выше интервалы углов падения излучения существенно превышают реально достижимые, которые прогнозируются строгой теорией дифракции, основанной на решении системы уравнений Максвелла с соответствующими граничными условиями. Действительно, отношение допустимых углов падения излучения, прогнозируемых СТД — θ и строгой теорией дифракции — Ψ , лежит в диапазоне $1.3 \le \theta/\Psi \le 1.7$ [5].

Интерес к использованию ДОЭ в приборах ИК диапазона обусловил исследования, направленные на созда-

Рис. 1. Трехслойная пилообразная рельефно-фазовая микроструктура.

ние высокоэффективных дифракционных микроструктур этого диапазона. Так, в работе [6] предложены и в рамках СТД исследованы трехслойные рельефно-фазовые микроструктуры, рассчитанные на полихроматическое излучение среднего ИК диапазона ($3 \le \lambda \le 5 \mu m$). Эти микроструктуры компонуются из обычно используемых в этом диапазоне оптических материалов, таких как Al₂O₃, Ge, MgF₂, Si, SiO₂, ZnS. ДЭ микроструктур η_S в зависимости от длины волны λ и угла падения излучения θ оценивается по формулам, предложенным в работе [1]. При этом глубины рельефов h₁ и h₂ получают путем решения системы двух уравнений, обеспечивающих $\eta_S = 1$ на двух выбранных длинах волн заданного спектрального диапазона при нормальном падении излучения ($\theta = 0$). Показано, что у некоторых микроструктур $\eta_{S,\min}$ больше 0.9 или даже 0.95 при углах падения излучения свыше 65°.

Очевидно, что используемый авторами работы [6] подход к получению глубин рельефов трудно назвать оптимальным, а главное, есть основания сомневаться в том, что полученные в рамках СТД предельно допустимые углы падения излучения соответствуют реально достижимым. Действительно, если явное несоответствие этих углов наблюдается в видимом диапазоне, то в ИК диапазоне соответствие углов (или степень их несоответствия) требует, как минимум, оценки. Более того, только в рамках строгой теории дифракции можно оценить и сопоставить потенциальные возможности каждой из предложенных в [6] трехслойных микроструктур, а следовательно, и прогнозировать перспективы их практического использования.

Используемые методы исследования и критерии

Для вычисления ДЭ трехслойных микроструктур в рамках СТД за основу также взяты соответствующие формулы работы [1], но с целью объективного сопоставления микроструктур, скомпонованных из различных материалов, в них угол падения излучения в оптическом материале заменен на угол падения излучения из воздуха в материал с показателем преломления $n_1(\lambda)$ (рис. 1). В результате формулы приобрели вид

 $\eta_{S} = \left[\frac{\sin(\pi(m-\chi))}{\pi(m-\chi)}\right]^{2},$

где

$$\chi = \left(\frac{1}{\lambda}\right) \left[h_1(\sqrt{n'^2 - \sin^2 \theta} - \sqrt{n_1^2 - \sin^2 \theta}) + h_2(\sqrt{n_2^2 - \sin^2 \theta} - \sqrt{n'^2 - \sin^2 \theta}) \right],$$

т — номер порядка дифракции.

Оптимальные значения глубин рельефов h_1 и h_2 для выбранной тройки оптических материалов зависят от

выбора критерия оптимальности. Если предполагается использовать ДОЭ в спектральном приборе или изображающей оптической системе и дифракция излучения в побочные порядки нежелательна на любой длине волны рабочего спектрального диапазона, то наиболее адекватным является критерий, предложенный в работе [7]. В соответствии с ним за оптимальные значения глубин h_1 и h_2 принимаются значения, обеспечивающие в выбранном спектральном диапазоне максимально возможный интервал углов падения излучения, в пределах которого ДЭ (в точке ее минимума) не опускалась ниже заданного уровня.

Для оценки ДЭ трехслойной микроструктуры в рамках строгой теории дифракции, основанной на решении системы уравнений Максвелла, используется строгий метод связанных волн (Rigorous coupled-wave analysis (RCWA)) [8]. В соответствии с ним пилообразные рельефы дифракционной микроструктуры заменяются ступенчатыми, и каждая ступень ограничивает тонкий слой, образующий бинарную диэлектрическую решетку, к которой применяется разложение в ряд Фурье. Наши исследования, выполненные RCWA-методом с использованием компьютерной программы, представленной в [9], показали, что в случае трехслойной микроструктуры хорошая сходимость результатов расчета, а следовательно, и их высокая достоверность достигаются при высоте ступеней порядка (0.15-0.2) λ_{\min} и числе гармоник ряда Фурье больше 300. Здесь λ_{\min} — минимальная длина волны рабочего спектрального диапазона.

Для сопоставления углов падения излучения на микроструктуру, приводящих к снижению ДЭ до одного и того же уровня, но полученных двумя различными методами, эти углы обозначены разными буквами: θ в рамках СТД и Ψ — RCWA-методом. Это вызвано тем, что в силу асимметрии рельефа модуль отрицательного угла падения $|\Psi_N|$ и положительный угол падения излучения Ψ_P , приводящие к снижению ДЭ, оцениваемого RCWA-методом, до одного и того же уровня, могут существенно отличаться, и за оценочный угол Ψ , как и в работах [5,7], в настоящей работе принят наименыший из углов $|\Psi_N|$ и Ψ_P падения излучения из воздуха на ДОЭ, приводящий к снижению ДЭ до заданного уровня.

Завершая раздел, заметим, что при расчете ДЭ RCWA-методом (в отличие от расчета в рамках СТД) учитываются френелевские потери, обусловленные отражением излучения от обоих рельефов, т.е. оценивается фактическая эффективность микроструктуры, обозначенная ниже как η_{EM} . В то же время, чтобы обеспечить корректность сравнения ДЭ, полученных разными методами, френелевские потери исключаются путем нормирования значений ДЭ, полученных RCWA-методом, на максимальное значение ДЭ в пределах выбранного спектрального диапазона, но полученное при нормальном падении излучения на ДОЭ ($\Psi = 0$). Нормированная ДЭ обозначена как $\eta_{EM}^{(N)}$. Все расчеты, как и в работе [6], выполнялись в среднем ИК диапазоне ($3 \le \lambda \le 5 \mu$ m).

N₂	Оптические материалы	Источник	$h_1, \mu m$	$h_2, \mu m$	$\theta_{\rm max}, { m grad}$	$\eta_{S,\min}$	$\eta_{EM,\min}$	$\eta_{EM,\min}^{(N)}$	Френелевские потери, %
1	MgF ₂ /SiO ₂ /Si [6]	[HC]	-23.1	2.10	80	0.94	0.71	0.87	
							при $\Psi_{max} = 30^{\circ}$		179
		[6]	-27.84	2.46	25	0.94	0.61	0.75	
							при Ψ_{ma}	$_{\rm ix}=30^{\circ}$	
2	SiO ₂ /ZnS/Al ₂ O ₃ [6]	[HC]	-13	-26.20	65	0.95	0.74	0.82	7.7
							при Ψ_{ma}	$_{\rm ix} = 30^{\circ}$	
		[6]	-31.06	-53.47	25	0.47	0.32	0.35	
							при Ψ_{ma}	$_{\rm ix} = 20^{\circ}$	
3	MgF ₂ /SiO ₂ /Al ₂ O ₃ [6]	[HC]	-31.77	16.56	40	0.81	0.75	0.76	0.8
							при Ψ_{ma}	$_{\rm ix} = 20^{\circ}$	
		[6]	-31.97	18.06	40	0.53	0.52	0.53	
							при Ψ_{max}	$_{\rm ex} = 20^{\circ}$	
4	ZnS/Si/Ge [6]	[HC]	-18.36	29.74	30	0.81	0.38	0.40	4.9
							при Ψ_{max}	$_{\rm ex} = 20^{\circ}$	
5	Al ₂ O ₃ /ZnS/MgF ₂	[HC]	-14.15	-5.08	80	0.91	0.71	0.80	8.3
							при Ψ_{ma}	$_{\rm int}=30^{\circ}$	
							0.75	0.84	
							при Ψ_{ma}	$_{\rm ix} = 20^{\circ}$	
6	Al ₂ O ₃ /MgF ₂ /AMTIR3	[HC]	-13.96	-6.66	80	0.97	0.68	0.79	11.1
							при Ψ_{ma}	$x = 30^{\circ}$	1 11.1
7	Al ₂ O ₃ /ZnS/AMTIR3	[HC]	-11.44	7.42	40	0.93	0.68	0.72	2.8
							при Ψ_{ma}	$_{\rm ix} = 30^{\circ}$	
		1			1		1		

Конструктивные параметры, дифракционная эффективность и френелевские потери трехслойных микроструктур

Результаты исследований

Основные результаты наших исследований трехслойных микроструктур, как в рамках СТД, так и RCWAметодом, сведены в таблицу. В ней в столбце "Оптические материалы" для заимствованных конфигураций указана работа [6], в которой данная конфигурация предложена впервые. В столбце "Источник" указаны либо работа [6], либо настоящая работа [HC], в которых получены представленные в соответствующих столбцах глубины рельефов h_1 и h_2 . Знак глубин, как и в работе [6], обеспечивает максимальную ДЭ в первом порядке дифракции (m = 1).

В столбце θ_{max} указан интервал углов ($-\theta_{\text{max}} \leq \theta \leq \leq \theta_{\text{max}}$), в пределах которых ДЭ, рассчитанная в рамках СТД, в выбранном спектральном диапазоне не опускается ниже величины, приведенной в столбце $\eta_{S,\min}$. В столбцах $\eta_{EM,\min}$ и $\eta_{EM,\min}^{(N)}$ приведены значения, полученные RCWA-методом, ниже которых ДЭ не опускается в выбранном спектральном диапазоне и в интервале углов $-\Psi_{\text{max}} \leq \Psi \leq \Psi_{\text{max}}$. Эти значения ДЭ получены для микроструктуры с пространственным периодом, десятикратно превышающим суммарную глубину пилообразных рельефов, $\Lambda = 10(|h_1| + |h_2|)$ [7].

Как следует из таблицы, переход при определении оптимальных глубин рельефов от решения системы двух уравнений к использованию критерия, предложенного в работе [7], дает несомненный выигрыш, наблюдаемый по результатам расчетов как в рамках СТД, так и RCWA-методом. Но главное, что использование критерия, предложенного в работе [7], позволило раскрыть потенциальные возможности конфигураций, описанных в работе [6], и минимизировать глубины их рельефов. Кроме того, это позволило предложить новые эффективные конфигурации, компонуя их из материалов, использованных в работе [6], и материала AMTIR3 из каталога "INFRARED" программы оптического проектирования ZEMAX. Сопоставляя результаты расчетов, выполненных RCWA-методом и представленных в столбцах $\eta_{EM,\min}^{(N)}$ и $\eta_{EM,\min}$, нетрудно видеть, что наилучшей

Рис. 2. Зависимость ДЭ, полученная в рамках СТД, от длины волны и угла падения излучения на микроструктуру в конфигурации № 2 (SiO₂/ZnS/Al₂O₃) при глубинах рельефов $h_1 = -31.06 \,\mu\text{m}$ и $h_2 = -53.47 \,\mu\text{m}$.

Рис. 3. Зависимость ДЭ, полученная в рамках СТД, от длины волны и угла падения излучения на микроструктуру в конфигурации № 2 (SiO₂/ZnS/Al₂O₃) при глубинах рельефов $h_1 = -13 \, \mu m$ и $h_2 = -26.20 \, \mu m$.

Рис. 4. Зависимости ДЭ от длины волны, полученные RCWA-методом, для микроструктуры в конфигурации № 2 (SiO₂/ZnS/Al₂O₃) при глубинах рельефов $h_1 = -31.06 \, \mu m$ и $h_2 = -53.47 \, \mu m$. $\Psi = 0^\circ$ (1); -20° (2); -30° (3); 20° (4); 30° (5).

Рис. 5. Зависимости ДЭ от длины волны, полученные RCWA-методом, для микроструктуры в конфигурации № 2 (SiO₂/ZnS/Al₂O₃) при глубинах рельефов $h_1 = -13 \, \mu m$ и $h_2 = -26.20 \, \mu m$. $\Psi = 0^\circ$ (1); -20° (2); -30° (3); 20° (4); 30° (5).

конфигурацией как с точки зрения нормированной ДЭ, не учитывающей френелевские потери, так и с точки зрения фактической ДЭ является конфигурация № 2 (SiO₂/ZnS/Al₂O₃) при глубинах рельефов $h_1 = -13 \, \mu$ т и $h_2 = -26.20 \, \mu$ т. На рис. 2–5 для этой конфигурации приведен ряд графиков, более наглядно иллюстрирующих выигрыш, достигнутый благодаря оптимизации глубин обоих рельефов микроструктуры.

Что касается конфигураций № 5–7, то они по параметрам $\eta_{EM,\min}^{(N)}$ и $\eta_{S,\min}$ несколько уступают конфигурации № 2, но зато отличаются значительно меньшими глубинами рельефов. Это может играть определяющую роль с точки зрения технологии изготовления микроструктур.

Заключение

В настоящей работе в рамках скалярной и строгой теории дифракции (RCWA-методом) проведено исследование пилообразных рельефно-фазовых трехслойных микроструктур, рассчитанных на работу с полихроматическим излучением среднего ИК диапазона $(3 \le \lambda \le 5 \mu m)$. При этом в качестве критерия оценки эффективности микроструктуры использовался критерий, предложенный в работе [7] и требующий, чтобы во всем рабочем спектральном диапазоне обеспечивался максимально возможный интервал углов падения излучения, в пределах которого ДЭ (в точке ее минимума) не опускается ниже заданного уровня.

Данный критерий позволил не только оптимизировать глубины рельефов микроструктур в уже известных конфигурациях, но и организовать в рамках СТД из предложенного каталога оптических материалов автоматический процесс компоновки новых конфигураций, обеспечивающих выполнение заданных требований при минимально возможной суммарной глубине рельефов.

Были сопоставлены значения ДЭ, прогнозируемые СТД и RCWA-методом, и в результате были раскрыты потенциальные возможности конфигураций, описанных в работе [6], и минимизированы глубины их рельефов. Кроме того, были предложены новые эффективные конфигурации, скомпонованные из материалов, использованных в работе [6], и материала AMTIR3 из каталога "INFRARED" программы оптического проектирования ZEMAX. При этом новые конфигурации пополнили ряд тех, у которых френелевские потери на отражение от обоих рельефов не превышают 10%. Этот фактор в совокупности с относительно небольшой суммарной глубиной рельефов может оказаться определяющим при выборе трехслойной микроструктуры в той или иной конфигурации для решения конкретной научной или технической задачи.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 17-19-01461).

Список литературы

- Zhao Y.H., Fan C.J., Ying C.F., Liu S.H. // Opt. Commun. 2013. V. 295. P. 104.
- [2] Shan Mao, Qingfeng Cui, Mingxu Piao, Lidong Zhao // Appl. Optics. 2016. V. 55. N 13. P. 3549–3554.
- [3] Ya-hui Zhao, Chang-jiang Fan, Chao-fu Ying, Hui Wang // Optik. 2013. V. 124. N 20. P. 4142-4144.
- [4] Fan Changjiang // Proc. SPIE. V. 9272. N 92720. P. 1-6.
- [5] Грейсух Г.И., Данилов В.А., Ежов Е.Г., Степанов С.А., Усиевич Б.А. // Опт. и спектр. 2015. Т. 118. № 6. С. 118.
- [6] Hongbo Xie, Delun Ren, Chao Wang, Chensheng Mao & Lei Yang // J. Mod. Optics. 2018. V. 65. N 3. P. 255–261.
- [7] Грейсух Г.И., Данилов В.А., Ежов Е.Г., Степанов С.А., Усиевич Б.А. // Оптический журнал. 2015. Т. 82. № 5. С. 56.
- [8] Moharam M.G., Gaylord T.K. // J. Opt. Soc. Am. 1982. V. 72. N 10. P. 1385.
- [9] Lyndin N.M. Modal and C Methods Grating Design and Analysis Software. [Электронный ресурс] Режим доступа: http://www.mcgrating.com