Нанокомпозиты бор-углерод, созданные воздействием высоких давлений и высоких температур

© Р.Х. Баграмов,¹ Н.Р. Серебряная,^{1,2} В.М. Прохоров,^{1,2} В.Д. Бланк^{1,2,3}

¹ Технологический институт сверхтвердых и новых углеродных материалов,

² Московский физико-технический институт,

141700 Долгопрудный, Московская обл., Россия

³ Национальный исследовательский технологический университет "МИСИС",

119049 Москва, Россия

e-mail: bagramov@tisnum.ru

(Поступило в Редакцию 3 ноября 2017 г.)

Приведены результаты исследования взаимодействия аморфного бора и фуллерита C₆₀ при заданных давлениях 2.0 и 7.7 GPa и температурах 600–1800°C. Установлено влияние параметров термобарической обработки на структуру получаемых материалов, определены температуры синтеза карбида бора и алмаза, а также последовательность превращений углеродной составляющей. Ультразвуковым методом измерены упругие модули образцов, проанализирована их зависимость от структуры. Установлено, что бор-углеродный нанокомпозит, синтезированный при относительно низких параметрах 2.0 GPa и ~ 1000°C, обладает достаточно высокими упругими характеристиками: модуль объемного сжатия $B \approx 75.3-84.0$ GPa, модуль Юнга $E \approx 108-119$ GPa, модуль сдвига $G \approx 43-47$ GPa, при плотности ≈ 2.2 g/cm³. Полученные результаты могут быть использованы при разработке новых нанокомпозитных материалов.

DOI: 10.21883/JTF.2018.07.46174.2545

Введение

Новые формы углерода, такие как фуллериты, нанотрубки и наноалмазы, в настоящее время находят все более широкое применение при разработке новых (объемных) композитных материалов [1]. Ожидается, что эксплуатационные свойства таких материалов значительно улучшатся, если в них будет создана специальная наноструктура.

Система бор-углерод перспективна в качестве основы новых композитов. Наиболее распространенное соединение, карбид бора (B_4C), занимает третье место по твердости после алмаза и нитрида бора. Оно имеет высокие значения прочности, сопротивления износа и упругих модулей, повышенные химическую стойкость и температурную стабильность, высокую теплопроводность. Карбид бора B_4C используется в инструментах для механической обработки, защитных и износоустойчивых покрытиях, соплах водноабразивной резки, фильерах, футеровке и размольных телах мельниц и в других продуктах.

Для создания наноструктурированных композитов в качестве наноструктурирующей компоненты перспективно использовать фуллерит C_{60} . Под воздействием высоких давлений и температур C_{60} формирует структуры со свойствами, изменяющимися в широком диапазоне, ряд из которых обладает исключительной твердостью [2]. Некоторые из них проявляют значительную эластичность, т.е. способность восстанавливать свою форму после снятия нагрузки [3,4]. К ним относятся и вещества с так называемой фуллереноподобной (или луко-

вичной) структурой, которые одновременно могут иметь модуль Юнга 50-65 GPa и твердость 8-12 GPa [5]. Фуллереноподобными было предложено называть структуры, состоящие из изогнутых, графитоподобных взаимосвязанных фрагментов [6]. Насколько нам известно, исследования, направленные на создание такого типа структуры в объемных керамических материалах на основе бора (или карбида бора), до настоящего времени не проводились.

В настоящей работе для создания наноструктурированных бор-углеродных композитов использовался метод высоких давлений и температур (ВДВТ) [7], который, как было упомянуто, используется для получения новых фаз из фуллерита С₆₀. Кроме того, известно, что без использования давлений получить материал без пор при спекании бора и углерода невозможно [8].

Исследования были нацелены на установление взаимосвязи структуры и упругих модулей нанокомпозитов, получаемых при ВДВТ воздействии на систему B + C₆₀.

Материалы и методы исследования

В качестве исходных были выбраны: аморфный бор (круглые частицы размером до $2\,\mu$ m, ТУ 6-02-1333-80) и фуллерит С₆₀ (99.98% чистоты, производства компании "Фуллерен Центр", Нижний Новгород, Россия).

Исходные материалы тщательно смешивались вручную в яшмовой ступке в атомном соотношении B:C=2 (состав — 31 wt.% B + 69 wt.% C_{60}).

Для получения компактных образцов были выбраны два давления 2.0 и 7.7 GPa и диапазон температур

⁰⁶

¹⁴²¹⁹⁰ Москва, Троицк, Россия

600–1800°С. Выбор параметров термобарической обработки обусловлен тем, что давление 7.7 GPa и диапазон температур 600–1800°С соответствует области термодинамической стабильности алмаза, а при 2.0 GPa и выбранных температурах алмаз термодинамически неустойчив [9].

Для обработки порошковой B + C₆₀ смеси использовалось ВДВТ оборудование с камерой высокого давления "тороид" [7]. Смесь изолировалась танталовой фольгой и помещалась внутрь графитового нагревателя внутри контейнера из литографского камня. Для создания давления такая сборка сдавливалась между профилированными твердосплавными наковальнями камеры "тороид" в прессе ДО-138. Нагрев обеспечивался прямым пропусканием электрического тока через графитовый нагреватель. Для измерения температуры использовались термопары: хромель-алюмель до 1200°С, платина-платина-родий до 1600°С и вольфрам-рений для более высоких температур. Погрешность измерения была не более 25°С. Калибровка давления проводилась при комнатной температуре с использованием общепринятой методики регистрации скачков электрического сопротивления, сопровождающих фазовые переходы эталонных веществ [10].

Структурные исследования материалов после ВДВТ обработки проводили методами рентгеновской дифрактометрии (дифрактометр ARL X'TRA, CuK_{α} -излучение), сканирующей (СЭМ) и просвечивающей (ПЭМ) электронной микроскопии (микроскопы JSM-7 600F и JEM-2010).

Для измерения упругих свойств ультразвуковым методом из прошедших ВДВТ обработку заготовок были изготовлены цилиндрические образцы диаметром ~ 2 mm и высотой 2.25-3.30 mm. Противоположные концы цилиндров были отшлифованы и отполированы. Скорости продольных (V_L) и сдвиговых (V_T) ультразвуковых волн были измерены с использованием методов лазерного возбуждения (прибор УДЛ-2М, компания "ОК ВИНФИН", Россия) и акустической микроскопии (широкополосный акустический микроскоп WFAM, ИБХФ им. Н.М. Эммануэля РАН, Россия). Отметим, что обе методики позволяют возбуждать ультразвуковые волны и измерять их скорости локально с поверхности [11]. Из-за упругой неоднородности прошедших ВДВТ обработку образцов, измеренные значения усреднялись как для локальных измерений одного образца, так и для двух образцов, полученных при одинаковой температуре. Погрешность ультразвуковых измерений скорости упругих волн была не более 1.5%.

Плотность образцов измеряли методом Архимеда с помощью весов Kern-770-60 с приставкой для измерений плотности Sartorius YDK 01 LP. Погрешность измерений не превышала ± 0.1 g/cm³.

Упругие модули рассчитывались на основе соответствующих значений скоростей продольных и сдвиговых ультразвуковых волн и значений плотности образцов.

Результаты и обсуждение

Дифрактограммы образцов, полученных из смеси (31 wt.% B+69 wt.% $C_{60})$ при давлении 2.0 GPa и различных температурах, представлены на рис. 1. Их ана-

Рис. 1. Дифрактограммы образцов, полученных из смеси 31wt.% В + 69 wt.% С₆₀ при 2.0 GPa и различных температурах. Вертикальные линии обозначают дифракционные отражения графита, приведенные в базе данных PDF 00-041-1487, ICDD.

Рис. 2. Углеродная структурная составляющая образца, полученного из 31 wt.% B + 69 wt.% C_{60} при 2.0 GPa/1000°C, состоящая из изогнутых фрагментов с характерным размером менее 5 nm.

Рис. 3. Дифрактограммы образцов, полученных из смеси $31\% B + 69\% C_{60}$ при 7.7 GPa и различных температурах. Вертикальные линии обозначают дифракционные отражения графита, приведенные в базе данных PDF 00-041-1487, ICDD.

лиз позволяет сделать вывод, что повышение температуры приводит к превращениям фуллерита С₆₀ по схеме $C_{60} \rightarrow$ разупорядоченный углерод. При этом при температуре 800-1000°С фуллерит С₆₀ превращался в разупорядоченную углеродную фазу, которая имеет широкий дифракционный пик, смещенный в сторону меньших углов от положения 002 пика графита, и соответствующее среднее межплоскостное расстояние на 8-11% больше, чем у графита. Дальнейшее повышение температуры сужает пик и смещает его к 002 отражению графита, что свидетельствует об упорядочении структуры. На рис. 2 представлено ПЭМ изображение углеродной составляющей образца, полученного термобарической обработкой с параметрами 2.0 GPa/1000°C. Структура состоит из деформированных криволинейных областей с характерным размером менее 5 nm. Такую структуру, по-видимому, можно охарактеризовать как совокупность фуллереноподобных фрагментов [5] или как фуллереноподобную структуру [6].

На основании дифрактограмм (рис. 1) можно судить о взаимодействии бора и углерода при давлении 2.0 GPa. Начиная с температуры 800° C, наблюдается широкое гало в области $2\theta = 35 - 37^{\circ}$. При температуре 1200° C оно начинает трансформироваться в широкие дифракционные пики карбида бора, которые сужаются при более высоких температурах. При температуре 1800° C материал состоит из карбида бора B_4 C и относительно упорядоченного графитоподобного углерода.

Из анализа дифрактограмм, представленных на рис. 3, фуллерит C₆₀ при 7.7 GPa следует схеме превращения C₆₀ \rightarrow разупорядоченный углерод \rightarrow алмаз. При этом при температуре 800°C появляется фаза, которая имеет широкие дифракционные максимумы (рис. 3), первый из которых смещен в сторону больших углов по сравнению с пиком графита 002. По мере увеличения температуры синтеза эти пики перемещаются в "графитовые" позиции и сужаются. При \sim 1400°C на дифрактограммах появляется самый сильный пик 111 алмаза (рис. 3). При температуре 1600°C и выше преобладает алмазная углеродная фаза, хотя неалмазный углерод по-прежнему присутствует в незначительных количествах.

В результате взаимодействия бора и углерода при давлении 7.7 GPa и температуре 1200° C на дифрактограмме появляется гало в области $2\theta = 35-37^{\circ}$. При более высоких температурах ~ 1400° C в этой области появляются пики карбида бора B₄C. Количество B₄C увеличивается с дальнейшим увеличением температуры. При 1800°C материал состоит из матрицы B₄C с внедренными в нее частицами алмаза с размером менее 1 μ m, часть из которых находится в виде друз (рис. 4). Разупорядоченная (графитоподобная) углеродная фаза тем не менее также присутствует в незначительных количествах.

Результаты измерений плотности и упругих модулей образцов, полученных из смеси (31 wt.% B + + 69 wt.% C₆₀) при 2.0 GPa, представлены в табл. 1. Плотность постепенно увеличивается с 1.96 до 2.31 g/cm³ при повышении температуры синтеза от 600 до 1800°C. Значения упругих модулей имеют максимумы при 800–1000°C: объемный модуль B = 75.3-84.0 GPa, модуль Юнга E = 108-119 GPa и модуль сдвига G = 43-47 GPa.

Результаты измерений упругих свойств образцов, полученных из смеси $(31 \text{ wt.}\% \text{ B} + 69 \text{ wt.}\% \text{ C}_{60})$ при более

Рис. 4. СЭМ изображение поверхности скола образца, полученного из $31 \text{ wt.}\% \text{ B} + 69 \text{ wt.}\% \text{ C}_{60}$ при 7.7 GPa/1800°C.

Температура синтеза, °С	$ ho \ (\pm 0.005), \ { m g/cm^3}$	$V_L \ (\pm 0.06),$ km/s	$V_T \ (\pm 0.03),$ km/s	<i>B</i> (±0.8), GPa	E (±0.8), GPa	$C_{44} = G \ (\pm 0.4),$ GPa	σ (±0.004)
600	1.96	4.70	2.58	26	33.6	13.1	0.284
800	2.04	8.47	4.8	84	119	47.1	0.263
1000	2.14	7.87	4.48	75.3	108.4	43.0	0.261
1200	2.19	7.32	4.25	64.6	98.6	39.6	0.245
1400	2.26	6.92	3.68	67.5	102	30.6	0.248
1600	2.28	6.74	4.00	55.1	89.8	36.5	0.230
1800	2.31	5.28	3.20	32.8	57.3	23.7	0.209

Таблица 1. Плотность ρ , скорости звука V_L и V_T , объемный модуль B, модуль Юнга E, модуль сдвига G, коэффициент Пуассона σ -образцов, полученных из 31% В + 69% С₆₀ при 2.0 GPa

Таблица 2. Плотность ρ , скорости звука V_L и V_T , объемный модуль B, модуль Юнга E, модуль сдвига G, коэффициент Пуассона σ -образцов, полученных из 31% В + 69% С₆₀ при 7.7 GPa

Температура синтеза, °С	$ ho \ (\pm 0.03), \ { m g/cm^3}$	$V_L \ (\pm 0.06),$ km/s	$V_T \ (\pm 0.03),$ km/s	<i>B</i> (±1), GPa	<i>E</i> (±1), GPa	$C_{44} = G \ (\pm 0.4),$ GPa	σ (±0.004)	
600	Материал не удалось скомпактировать							
800	Материал не удалось скомпактировать							
1000	2.19	6.10	3.5	45.8	67.5	26.9	0.254	
1200	2.32	6.23	3.4	54.2	69.0	26.8	0.288	
1400	2.36	6.40	3.5	58.2	74.6	29.0	0.286	
1600	2.85	6.54	4.0	61.1	109.5	45.6	0.201	
1800	3.12	8.2	4.6	121.9	167.9	66.1	0.270	

Таблица 3. Плотность ρ , скорости звука V_L и V_T , объемный модуль B, модуль Юнга E, модуль сдвига G, коэффициент Пуассона σ образцов, полученных из C₆₀ при 2.0 GPa

Температура синтеза, °С	$ ho \ (\pm 0.03), \ { m g/cm^3}$	$V_L \ (\pm 0.06),$ km/s	$V_T \ (\pm 0.03),$ km/s	<i>B</i> (±1), GPa	<i>E</i> (±1), GPa	$C_{44} = G \ (\pm 0.4),$ GPa	σ (±0.004)
600	1.85	5.84	3.52	32.5	55.8	23.0	0.213
800	1.86	6.52	3.88	41.8	68.8	28.1	0.224
1000	2.02	6.47	3.95	42.6	75.6	31.4	0.204
1200	2.08	6.52	3.90	46.3	77.2	31.6	0.222
1400	2.14	6.22	3.72	43.4	72.55	29.7	0.221
1600	2.19	6.25	3.85	42.1	77.5	32.5	0.192
1800	2.19	6.32	3.94	42.1	80.4	34.0	0.182

высоком (7.7 GPa) давлении, представлены в табл. 2. Плотность увеличивается с увеличением температуры синтеза с 2.19 g/cm³ при 1000°C до 3.12 g/cm³ при 1800°C. Упругие модули растут и достигают следующих значений: $B \approx 122$ GPa, $E \approx 167$ GPa, $G \approx 66$ GPa при параметрах 7.7 GPa/1800°C. Такое монотонное поведение модулей можно объяснить постепенным увеличением содержания алмазной фазы с увеличением температуры синтеза.

Как уже упоминалось, упругие модули для образцов, полученных из смеси (31 wt.% B + 69 wt.% C₆₀) при давлении 2.0 GPa, достигают максимальных значений при температуре 800–1000°С. При дальнейшем повышении температуры их значения снижаются (табл. 1). В то же время эти образцы, полученные при параметрах 2.0 GPa/1000°C, имеют более высокие значения модулей относительно образцов, полученных при 7.7 GPa/1000°C (табл. 2). Это, вероятно, обусловлено влиянием на модули дисперсной и/или рентгеноаморфной фазы карбида бора, которая проявляется широким $2\theta = 35-37^{\circ}$ гало на дифрактограммах. Эта рентгеноаморфная фаза, обладая высокими значениями упругих модулей, повышает механические характеристики всего композита. При этом она взаимодействует с углеродной составляющей, которая при 2.0 GPa имеет первый дифракционный пик, смещенный в сторону меньших углов относительно пика 002 графита, а при 7.7 GPa этот пик смещен в сторону больших углов.

Результаты, приведенные далее (табл. 3), свидетельствуют, что при обработке фуллерита C_{60} при 2.0 GPa

упругие модули непрерывно растут по мере повышения температуры с 600 до 1800°С, при этом максимум при 800-1000°С отсутствует. Следует отметить, что значения упругих модулей, полученные для обработанного при давлении 2.0 GPa фуллерита С₆₀, коррелируют с результатами других авторов [12].

Заключение

Исследование трансформаций системы аморфный бор-фуллерит (31 wt.% В + 69 wt.% C_{60}) проведено при давлениях 2.0 и 7.7 GPa в диапазоне температур 600–1800°C, т.е. в областях, где алмаз соответственно термодинамически неустойчив и устойчив.

Показано, что при относительно низких параметрах (≈ 2.0 GPa и в области 1000°C) может быть получен нанокомпозит с достаточно высокими значениями упругих модулей: модуль объемного сжатия $B \approx 75.3-84.0$ GPa, модуль Юнга $E \approx 108-119$ GPa, модуль сдвига $G \approx 43-47$ GPa, при плотности ≈ 2.2 g/cm³. Такой набор характеристик, полученных при относительно низких параметрах синтеза, перспективен с точки зрения практического применения.

Установлено, что превращение фуллерита C_{60} при давлении 2.0 GPa и повышении температуры с 600 до 1800°C происходит по схеме $C_{60} \rightarrow$ разупорядоченный углерод, а при давлении 7.7 GPa по схеме $C_{60} \rightarrow$ разупорядоченный углерод \rightarrow алмаз. Одновременно при соответствующих температурах углерод взаимодействует с бором, образуя карбид бора B_4C .

При давлении 2.0 GPa и начиная с ~ 800°С фуллерит C_{60} в системе (31 wt.% B + 69 wt.%C₆₀) превращается в разупорядоченный (фуллереноподобный) углерод со средним межплоскостным расстоянием на 8–11% больше, чем у графита. Эта фаза упорядочивается с повышением температуры до 1800°С. А также при температуре ~ 800°С появляется рентгеноаморфная фаза B₄C. При температуре ~ 1200°С на дифрактограммах появляются пики кристаллического B₄C. При температуре 1800°С материал состоит из относительно упорядоченных графитоподобного углерода и карбида B₄C.

При давлении 7.7 GPa и начиная с ~ 800°C фуллерит C_{60} в системе (31 wt.% B + 69 wt.% C_{60}) превращается в разупорядоченный углерод, который имеет среднее межплоскостное расстояние несколько меньшее, чем у графита. При ~ 1400°C на дифрактограммах появляется самый сильный пик 111 алмаза. Содержание алмаза растет с увеличением температуры синтеза. В результате взаимодействия бора и углерода при 1200°C появляется гало в области $2\theta = 35-37^{\circ}$. При более высоких температурах ~ 1400°C в этой области появляются пики карбида бора B₄C. При температуре 1800°C материал состоит из матрицы B₄C со встроенными в нее алмазами с размером частиц менее 1 μ m, часть из которых находится в виде друз. В то же время по-прежнему

присутствует небольшое количество относительно упорядоченного графитоподобного углерода.

В композитах (31 wt.% В + 69 wt.% C₆₀), полученных при 2.0 GPa, максимальные значения упругих модулей наблюдались при температурах синтеза в области $800-1000^{\circ}$ С. Это совпадает с формированием разупорядоченной фазы углерода, которая имеет фуллереноподобное строение, а также с образованием рентгеноаморфного соединения бора и углерода.

При более высоких давлениях (7.7 GPa), при наличии в структуре алмазной углеродной составляющей упругие модули композита напрямую зависят от содержания алмаза в композите.

Работа выполнена с использованием оборудования ЦКП "Исследования наноструктурных, углеродных и сверхтвердых материалов" (ЦКП ФГБНУ ТИСНУМ), поддержанного Минобрнауки России в рамках выполнения соглашения № 14.593.21.0007 от 28.08.2017, ID RFMEFI59317X0007. Авторы благодарят В.В. Аксененкова, Л.А. Иванова, И.А. Пережогина и Б.А. Кульницкого за помощь при проведении настоящей работы.

Список литературы

- Carbon Alloys. Novel concept to development carbon science and technology / Ed. by E. Yasuda, M. Inagaki, K. Kaneko, M. Endo, A. Oya, Y. Tanabe. Elsevier Science, 2003. 584 p.
- [2] Blank V.D., Buga S.G., Serebryanaya N.R., Dubitsky G.A., Mavrin B.N., Popov M.Yu., Bagramov R.H., Prokhorov V.M., Sulyanov S.N., Kulnitskiy B.A., Tatyanin Ye.V. // Carbon. 1998. Vol. 36. P. 665–670.
- [3] Talyzin A.V., Dubrovinsky L.S., Oden M., Jansson U. // Diamond Relat. Mater. 2001. Vol. 10. P. 2044–2048.
- [4] Chernogorova O., Drozdova E., Ovchinnikova I., Soldatov A.V., Ekimov E. // J. Appl. Phys. 2012. Vol. 111. P. 112601–5.
- [5] Bagramov R., Serebryanaya N., Kulnitskiy B., Blank V. // Fullerenes Nanot. Carbon Nanostruct. 2016. Vol. 24. P. 20– 24.
- [6] Harris P.J.F. // Philos. Mag. 2004. Vol. 84. P. 3159-3167.
- [7] Khvostantsev L.G., Slesarev V.N., Brazhkin V.V. // High Pressure Research. 2004. Vol. 24. P. 371–383.
- [8] Thevenot F. // J. Eur. Ceram. Soc. 1990. Vol. 6. P. 205–225.
- [9] Bundy F.P., Bassett W.A., Weathers M.S., Hemley R.J., Mao H.K., Goncharov A.F. // Carbon. 1996. Vol. 34. P. 141– 153.
- [10] Decker D.L., Bassett W.A., Merrill L., Hall H.T., Barnett J.D. // J. Phys. Chem. Ref. Data. 1972. Vol. 1. P. 1–79.
- [11] Prokhorov V.M., Bagramov R.H., Blank V.D., Pivovarov G.I. // Ultrasonics. 2008. Vol. 48. P. 578–582.
- [12] Brazhkin V.V., Lyapin A.G. // J. Superhard Mater. 2012. Vol. 34. P. 400–423.