11,13

Роль избыточного марганца в формировании структуры и транспортных свойств манганита $(Nd_{0.67}Sr_{0.33})_{1-x}Mn_{1+x}O_3$ (x = 0; 0.2), спеченного при 1273—1473 К

© А.А. Новохацкая, Г.Я. Акимов

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Киев, Украина

E-mail: switchgenom@gmail.com

(Поступила в Редакцию 10 января 2018 г.)

Манганит состава Nd_{0.67}Sr_{0.33}MnO₃ является материалом, имеющий перспективу в применении в качестве катода для среднетемпературных твердо оксидных топливных элементах. Высокая электропроводимость катода — это параметр, определяющий эффективность работы топливного элемента. В данном сообщении представлен впервые обнаруженный эффект влияния избыточного марганца на структуру и электропроводимость манганитовой керамики составов (Nd_{0.67}Sr_{0.33})_{1-x}Mn_{1+x}O_{3±Δ} (x = 0, 0.2), спеченной при температурах 1273–1673 К. Показано, что присутствие 20% избыточного марганца в исходном порошке манганита после спекания приводит к тому, что проводимость полученной керамики в диапазоне температур 823–1073 К в несколько раз превышает проводимость керамики без избытка марганца.

Pablications are based on the research provided by the grant support of the State Fund For Fundamental Research (project N F-71).

DOI: 10.21883/FTT.2018.07.46127.009

По данным литературы [1-3] именно легированный манганит неодима состава Nd_{0.67}Sr_{0.33}MnO₃ считается наиболее подходящим катодным материалом для средне температурных твердо оксидных топливных ячеек (773-1073 К), потому что материал именно этого состава имеет значение коэффициента термического расширения близкое к требуемым значениям YSZ-электролита, высокую электродную активность и высокую электропроводность при заданных температурах, что побудило интерес к исследованию свойств керамических образцов данного материала. Ранее в работах [4-8] было показано, что избыточный марганец оказывает огромное влияние на формирование структуры и магниторезистивных свойств манганитовой керамики и наноразмерных порошков. В предлагаемом сообщении приведены результаты исследования влияния избыточного марганца на формирование структуры и транспортные свойства манганитовой керамики составов $(Nd_{0.67}Sr_{0.33})_{1-x}Mn_{1+x}O_{3\pm\Delta}$ (x = 0, 0.2) (NSMO), cneченной при температурах 1273-1673,К.

Порошки были получены золь-гель методом и синтезированы при температуре 973 К. Рентгенофазовый анализ (РФА) показал, что они однофазные с искаженной перовскитоподобной структурой, которым соответствует пространственные группы *Pbnm* для NSMO, что хорошо согласуется с диаграммами состояния для данных составов. Фазовый состав одинаковый для обоих порошков [8]. Для получения керамики порошки обоих составов были сформированы в виде таблеток диаметром 6 mm, с помощью одноосного прессования давлением 200 MPa. Спекание проводилось при температурах 1273, 1473 и 1673 К в течение 3-х часов в атмосфере воздуха в режиме нагрева/охлаждения 100 К/h в автоматизированной печи 1600 VMK и 1200 VMK Linn High Term (Германия). Измерение плотности заготовок и спеченных образцов осуществлялось геометрическим способом. РФА всех образцов выполнялся на установке Ultima IV в Си K_{α} излучении (30 kV/30 mA) с изогнутым графитовым кристаллом-монохроматором фирмы Rigaku (Япония), в угловом интервале $2\theta = 10-100^{\circ}$, с шагом 0.04° и временем экспозиции в точке 3 s. Обработка данных этих измерений проводилась с использованием программы PowderCell 2.4. Для изучения микроструктуры спеченные образцы раскалывались и изучались поверхности сколов керамических образцов на сканирующем электронном микроскопе (СЭМ) РЭМ 106I.

Поверхности сколов образцов, спеченных при 1473–1673 К, термически травились при температуре 1273 К в течение 5–6 h. Для исследования электрических свойств из спеченных таблеток вырезались прямоугольные образцы длиной ≈ 5 mm и плоскостью поперечного сечения ≈ 5 mm². Измерение температурной зависимости электросопротивления проводилось с использованием 4-зондового метода Ван-дер Пау на цифровом приборе Keithley 6430 в кварцевой трубчатой печи диаметром 30 mm. В качестве электродов была использована серебряная паста марки Pelco (R) Colloidal Silver.

В таблице представлены результаты исследования физических свойств полученных керамических образцов и их СЭМ-изображения поверхностей сколов на рис. 1. Из приведенных данных видно, что с ростом температуры спекания в зависимости от содержания избыточного марганца эволюция формирования микроструктуры керамики различна. На рис. 1, *a*, *b* видно,

Рис. 1. СЭМ-изображения поверхностей сколов NSMO керамических образцов, спеченных при температурах 1273 (a, b), 1473 (c, d), 1673 К (e, f), с различным содержанием избыточного марганца x = 0 (a, c, e) и 0.2 (b, d, f).

что в образце с x = 0.2 уже при 1273 К наблюдается наличие перешейков между частицами, в отличие от образца с x = 0, который остается порошм. Так же, спекание при 1473 и 1673 К (рис. 1, *d*, *f*) приводит к выделению избыточного марганца в виде Mn₃O₄ фазы на границах зерен, что является естественным, поскольку избыточный марганец изначально в наноразмерном порошке находится в приповерхностном слое кристаллитов [8]. Различия наблюдаются так же в динамике роста зерна и плотности образцов в зависимости от x (таблица). Согласно данным РФА было установлено, что с ростом температуры спекания объем решетки уменьшается у образца с x = 0, в отличие от образца с x = 0.2, где параметры решетки остаются практически неизменными (таблица). Кроме того, в образце с x = 0, спеченного при 1673 К, зафиксировано появление новой манганитовой фазы (рис. 2), которая отличается более низкой сингонией Ітта и, конечно же, иной структурой. Очевидно, такое поведение связано с неравномерным распределеРезультаты измерений плотности образцов ρ , среднего размера зерна D, элементарного объема решетки V, расчетные параметры b и E_a из температурной зависимости электропроводимости для керамических образцов с различным x, спеченные при разных температурах T_{cn} .

x	T_{cn}, \mathbf{K}	ρ , g/cm ³	D, µm	<i>V</i> , Å ³	$B \cdot 10^{-6}, \\ \Omega \cdot \text{cm/K}$	E_a , eV
0	1273	3.12	0.08	226.63	12.30	0.16
	1473	4.32	1.2	224.40	10.86	0.11
	1673	5.59	5.4	178.10	20.45	0.07
0.2	1273	3.43	0.2	231.22	6.30	0.12
	1473	5.50	1.7	231.70	2.97	0.15
	1673	5.01	5.6	229.20	6.33	0.13

нием легирующего элемента Sr в зерне керамики с x = 0, что приводит к возникновению большего количества центров микронапряжений, которые увеличивают деформации решетки и тем самым уменьшается ее объем.

На рис. 3 приведены результаты измерений температурной зависимости удельной проводимости исследуемых образцов при температурах эксплуатации топливного элемента 823-1073 К. Прежде всего, из рис. 3 видно, что при всех температурах спекания значения величины проводимости образцов манганита с избытком марганца (x = 0.2) в 3-4 раза выше проводимости образцов манганита без избытка марганца (x = 0). Аппроксимация экспериментальных данных хорошо согласуется с уравнением зависимости проводимости σ для прыжковой модели поляронов малого радиуса [9]

$$\rho = \frac{1}{\sigma} = BT \exp(E_a/k_B T), \qquad (1)$$

где E_a — энергия активации возбуждения носителей заряда и прыжкового механизма, B — остаточное сопротивление, которое обратно пропорционально концентрации носителей заряда, k_B — постоянная Больцмана. Рассчитанные параметры из экспериментальных кривых представлены в таблице. Для образцов с x = 0 с увеличением температуры спекания наблюдается уменьшение значения E_a , которое связано с ростом размера зерна, что приводит к увеличению взаимосвязи между зернами, которые увеличивают возможность электронам проводимости прыгать на соседние участки [10]. Однако увеличение значения остаточного сопротивления B говорит об обратном эффекте роста зерна, которое приводит к не сохранению фазового состава (рис. 2), а следовательно и снижению проводимости.

Совершенно иная картина для образцов с избыточным марганцем (x = 0.2) (см. таблицу). Как видно, с ростом температуры спекания значение величины E_a для образцов с x = 0.2 практически не изменяется, а величина B на порядок меньше чем в образцах с x = 0, что указывает на большие значения концентрации носителей заряда.

Такое поведение в образцах с избыточным марганцем может быть объяснено, во-первых, сохранением фазового состава манганитовой фазы с ростом температуры спекания, и во-вторых, вероятным формированием наноразмерной субструктуры зерна, форма и размеры которой зависит от количества избытка марганца и температуры спекания [6,7].

Таким образом показано, что присутствие 20% избыточного марганца в исхолном порошке $(Nd_{0.67}Sr_{0.33})_{1-x}Mn_{1+x}O_{3\pm\Delta}$ (x = 0.2) манганита после спекания при температурах 1273-1673 К приводит к сохранению фазового состава манганитовой фазы параметров элементарной решетки. И Впервые обнаружено, что значение удельной проводимости полученной керамики с избытком марганца (x = 0.2) в диапазоне температур 823-1073 К в несколько раз превышает по сравнению с проводимостью керамики без

Рис. 2. Рентгенограммы NSMO керамических образцов (x = 0; 0.2), спеченных при температуре 1673 К.

Рис. 3. Температурные зависимости удельной проводимости NSMO образцов с x = 0 и 0.2, спеченных при температурах 1273 (1, 4), 1473 (2, 5), 1673 К (3, 6).

избытка марганца (x = 0). Установлено, что присутствие 20% избыточного марганца в исходном порошке (Nd_{0.67}Sr_{0.33})_{1-x}Mn_{1+x}O_{3±Δ} (x = 0.2) манганита приводит к формированию микроструктуры и транспортных свойств, необходимых для использования данной керамики в качестве катода для среднетемпературных керамических топливных ячеек.

Список литературы

- S.T. Aruna, M. Muthuraman, K.C. Patil. Solid State Ionics 120, 275 (1999).
- [2] N.Q. Minh. J. Am. Ceram. Soc. 76, 3, 563 (1993).
- [3] N.Q. Minh. Solid State Ionics 174 1-4, 271 (2004).
- [4] Г.Я. Акимов, А.А. Новохацкая, С.Ю. Прилипко, Ю.Ф. Ревенко. ФТТ 54, 1878 (2012).
- [5] Г.Я. Акимов, А.А. Новохацкая, А.В. Жебель, Ю.Ф. Ревенко. ФТТ 55, 2359 (2013).
- [6] A. Novokhatska, G. Akimov, S. Prylypko, Yu. Revenko, V. Burkhovetsky. J. Appl. Phys. 113, 206101, 1–3 (2013).
- [7] Г.Я. Акимов, А.А. Новохацкая, Ю.Ф. Ревенко. ФТТ 56, 1822 (2014).
- [8] Г.Я. Акимов, А.А. Новохацкая. ФТТ
 ${\bf 58},\,1173\,\,(2016)$
- [9] D. Emin, T. Holstein. Phys. Rev. Lett. 36, 323 (1976).
- [10] A. Petric, P. Huang, F. Tietz. Solid State Ionics 135, 719 (2000).

Редактор Т.Н. Василевская