Структура смешанных фторидов $Ca_{1-x}Sr_xF_2$ и $Sr_{1-x}Ba_xF_2$ и люминесценция иона Eu^{2+} в этих кристаллах

© А.Е. Никифоров, А.Ю. Захаров, В.А. Чернышев, М.Ю. Угрюмов, С.В. Котоманов

Уральский государственный университет, 620083 Екатеринбург, Россия

(Поступила в Редакцию 22 мая 2002 г. В окончательной редакции 9 сентября 2002 г.)

В рамках метода виртуального кристалла в оболочечной модели в приближении парных потенциалов рассчитана структура смешанных флюоритов $Ca_{1-x}Sr_xF_2$ и $Sr_{1-x}Ba_xF_2$, а также примесного центра Eu^{2+} в этих кристаллах. Получена феноменологическая зависимость положения нижнего уровня конфигурации $4f^65d$ иона Eu^{2+} от расстояния Eu^{2+} -лиганд. Для желтой люминесценции в $Sr_{1-x}Ba_xF_2:Eu^{2+}$ рассчитана зависимость величины стоксова сдвига и фактора Хуанга-Рис от *x*. Рассчитана величина *x* в $Sr_{1-x}Ba_xF_2:Eu^{2+}$, при которой нижний уровень $4f^65d$ иона Eu^{2+} окажется в зоне проводимости.

Работа выполнена при финансовой поддержке гранта REC 005 (CRDF).

Щелочноземельные фториды CaF2, SrF2, BaF2, а также смешанные кристаллы на их основе привлекают внимание исследователей уже более четырех десятилетий [1–5]. Оптические спектры редкоземельных (РЗМ) ионов в MeF_2 (Me = Ca, Sr, Ba) исследованы Каплянским и Феофиловым [4,5]. В последнее время исследуются спектры ионов РЗМ в смешанных кристаллах $Me_{1-x}Me'_{x}$ Fe (Me, Me' = Ca, Sr, Ba) [2,3]. Спектры иона Eu^{2+} в $Ca_{1-r}Sr_rF_2$: Eu^{2+} и $Sr_{1-r}Ba_rF_2$: Eu^{2+} качественно различаются. В $Ca_{1-x}Sr_xF_2: Eu^{2+}$ наблюдается голубая люминесценция, в спектре которой присутствует бесфононная линия (БФЛ), связанная с переходом между нижним уровнем конфигурации $4f^{6}5d$ и основным состоянием ${}^{8}S(4f^{7})$ иона Eu²⁺ [2,5]. В Sr_{1-x}Ba_xF₂ : Eu²⁺ при x > 0.2 появляется желтая люминесценция [3], соответствующая переходу между экситонным состоянием Eu²⁺, в котором электрон делокализован на ближайших ионах металла, и основным состоянием ${}^{8}S(4f^{7})$. При замене катионов Sr²⁺ на Ba²⁺ в кристалле-матрице происходит уменьшение кристаллического поля (КП) и $t_{2g} - e_g$ расщепления 5d уровня иона Eu²⁺, вследствие чего нижний уровень $4f^{7}5d$ оказывается выше уровня примесного экситона (рис. 1). При 0.2 < x < 0.5наблюдаются оба вида люминесценции [3], что можно объяснить различным катионным окружением ионов Eu²⁺. При x > 0.5 наблюдается только желтая люминесценция [3].

Первая часть данной работы связана с излучением влияния кристалла-матрицы на положение нижнего уровня $4f^{6}5d$ иона Eu^{2} в $Ca_{1-x}Sr_{x}F_{2}:Eu^{2+}$ и $Sr_{1-x}Ba_{x}F_{2}:Eu^{2+}$. Во второй части работы рассчитывается зависимость фактора Хуанга-Рис и стоксова сдвига желтой люминесценции от величины xв $Sr_{1-x}Ba_{x}F_{2}:Eu^{2+}$.

1. Модель расчета энергии кристалла

Согласно экспериментальным данным [1], двухкомпонентные системы CaF_2 -SrF₂ и SrF₂-BaF₂ образуют твердые растворы при любом соотношении компонентов. Постоянная решетки этих систем экспериментально определена с точностью 0.001-0.002 Å и удовлетворяет закону аддитивности [1]. Как следует из рентгеноструктурного анализа, системы CaF2-SrF2 и SrF2-BaF2 являются твердыми растворами кубической симметрии с неупорядоченной решеткой [1]. В данном случае происходит изовалентное замещение катионов с подобной электронной структурой, катионы разделены анионной подрешеткой. Наличие узких бесфононных линий в спектрах люминесценции Eu²⁺ в смешанных кристаллах [2] говорит о равновероятном распределении катионов разного вида в решетке. Эти факты позволяют применить к описанию таких систем метод виртуального кристалла, который был реализован нами в рамках оболочечной модели, в приближении парных потенциалов. Модельное выражение для энергии кристалла и применение модели к чистым флюоритам рассматривалось в предыдущих работах [6-8]. Смешанные кристаллы Ca_{1-x}Sr_xF₂ и Sr_{1-x}Ba_xF₂ отличаются от чистых флюоритов только близкодействующим взаимодействием $Me^{2+}-F^-$ (близкодействующее взаимодействие $Me^{2+}-Me^{2+}$ в наших расчетах не учитывается из-за достаточно большого расстояния катион-катион). Параметры потенциалов близкодействующего взаимодействия для смешанного кристалла получены следующим образом. Для каждого вида близкодействующего взаимодействия рассчитывается сумма соответствующих близкодействующих взаимодействий $Me_1^{2+}-{
m F}^-$ и $Me_2^{2+}-{
m F}^-$ (где Me_1 и Me_2 разные катионы) на заданном расстоянии R, причем каждое слагаемое входит в сумму пропорционально концентрации соответствующего катиона в кристалле

$$V_{\rm sum}(R) = (1-x)V_{Me_1}(R) + xV_{Me_2}(R), \qquad (1)$$

где $V_{Me_1}(R)$ — близкодействующее взаимодействие на расстоянии R, рассчитанное с параметрами взаимодействия для катиона, концентрация которого 1 - x, $V_{Me_2}(R)$ — близкодействующее взаимодействие на расстоянии R, рассчитанное с параметрами взаимодействия для катиона, концентрация которого x. Изменяя R в пределах характерного расстояния катион—анион (в данном

Рис. 1. Схема конфигурационных кривых, описывающих механизм голубой и желтой люминесценции в SrF₂ : Eu²⁺ и BaF₂ : Eu²⁺ [14].

случае расстояние варьировалось от 3 до 16 а.u.), получаем набор точек $V_{sum}(R)$. Полученный набор точек аппроксимируется зависимостью, соответствующей данному виду близкодействующего взаимодействия. Таким образом находятся параметры всех вкладов близкодействующего взаимодействия. Методы расчета структуры примесного центра рассмотрены в работе [8].

Расчет структуры смешанных кристаллов Ca_{1-x}Sr_xF₂ и Sr_{1-x}Ba_xF₂

В рамках приближения виртуального кристалла получены зависимости постоянных решетки $Ca_{1-x}Sr_xF_2$ и $Sr_{1-x}Ba_xF_2$ от x. Экспериментальная зависимость постоянной решетки $Sr_{1-x}Ba_xF_2$ от x аппроксимируется прямой a = kx + b, где k = 0.41 Å, b = 5.80 Å, $x \in [0, 1]$ [1]. Расчет дает k = 0.44 Å, b = 5.81 Å. Расчетная зависимость согласуется с правилом Вегарда. Аналогичная зависимость получена нами для $Ca_{1-x}Sr_xF_2$.

3. Примесный ион Eu^{2+} в кристаллах $Ca_{1-x}Sr_xF_2$ и $Sr_{1-x}Ba_xF_2$

Спектры поглощения и люминесценции Eu²⁺ в MeF_2 (Me = Ca, Sr, Ba) исследованы Каплянским и Феофиловым [5], Каплянским и Пржевуским [9], спектры Eu² в Ca_{1-x}Sr_xF₂, Sr_{1-x}Ba_xF₂ исследовались Dujardin и др. [10] и Каwano и др. [2,3]. Спектры поглощения и люминесценции Eu²⁺ связаны с межконфигурационными переходами между основным состоянием ⁸S(4 f^7) и нижними возбужденными уровнями ⁸4 f^65d [5,9]. В спектрах поглощения наблюдаются две широких полосы. Ион Eu²⁺ находится в центре куба из восьми ионов F⁻. В кубическом КП расщепление основного состояния ⁸S(4 f^7) мало и не превышает 0.2 cm^{-1} [11]. В возбужденной $4f^{6}5d$ конфигурации 5d электрон относительно слабо связан с $4f^{6}$ остатком [9], поэтому нижние состояния конфигурации $4f^{6}5d$ могут быть построены из нижнего состояния $4f^{6}$ остатка (уровень $^{7}F_{0}$ мультиплета ^{7}F) и подуровней конфигурации 5d. В кубическом КП 5d уровень расщепляется на подуровни t_{2g} и e_{g} . Величина 10Dq достигает $12-16 \cdot 10^{3} \text{ cm}^{-1}$ [5], что значительно превышает спин-орбитальное взаимодействие в состоянии t_{2g} — около 1000 cm^{-1} [12], определяющее структуру коротковолнового пика поглощения. Мультиплетное расщепление $4f^{6}$ остатка (^{7}F -терма) составляет около 5000 cm⁻¹ [12] и определяет ширину длинноволнового пика поглощения.

Энергетический спектр примесного иона существенным образом определяется расстоянием примесный ионлиганд. Мы рассчитали в нашей модели расстояние $Eu^{2+}-F^-$ в данных кристаллах и построили феноменологическую зависимость положения уровней e_g и t_{2g} Eu^{2+} от этого расстояния. Положение БФЛ в $Ca_{1-x}Sr_xF_2$: Eu^{2+} , соответствующее межконфигурационному переходу с e_g -уровня в основное состояние ${}^8S(4f^7)$, описывается зависимостью

$$v(r) = C + A/r^n - B/r^k, \qquad (2)$$

где n = 12, k = 5. Первое слагаемое определяет положение вырожденного 5*d* уровня в свободном ионе Eu²⁺, второе — сдвиг этого уровня при помещении иона в кристалл, третье связано с влиянием КП на величину расщепления $t_{2g} - e_g$. Параметры *A*, *B*, *C* получены из подгонки данной формулы по положениям БФЛ в CaF₂ и SrF₂ [2] и величине 10*Dq* в CaF₂, SrF₂, BaF₂ [3,5] (расстояние Eu²⁺-F⁻ бралось из наших расчетов). Полученные величины параметров: $A = 439.7 \cdot 10^6$ cm⁻¹ · Å¹²,

Рис. 2. Зависимость положения БФЛ и уровня t_{2g} от концентрации x в кристалле $Ca_{1-x}Sr_xF_2$: Eu^{2+} . Квадратами показаны экспериментальные результаты [2].

 $B = 280 \cdot 10^5 \,\mathrm{cm}^{-1} \cdot \mathrm{\AA}^5$, $C = 36\,940 \,\mathrm{cm}^{-1}$. Рассчитав расстояние $Eu^{2+}-F^-$ в $Ca_{1-x}Sr_xF_2$: Eu^{2+} при различных x, можно получить зависимость положения БФЛ от х (рис. 2). Результаты расчета согласуются с экспериментальными данными. Таким образом, зависимость (2) позволяет достаточно хорошо описать положение нижнего уровня $4f^{6}5d$ в кубическом КП флюоритов. С помощью (2) можно также оценить положение t_{2g} уровня, если учесть, что совокупность первых двух слагаемых в этом выражении определяет положение вырожденного 5d-уровня в кристалле, а третье слагаемое описывает положение eg-уровня относительно него. Результаты расчетов приведены на рис. 2. Различие результатов расчета положения t2g-уровня с положением коротковолнового пика поглощения может быть связано со стоксовым сдвигом в поглощении.

В спектрах люминесценции Eu^{2+} в $Sr_{1-x}Ba_xF_2:Eu^{2+}$ при x > 0.2 появляется желтая люминесценция [3], в спектрах которой отсутствуют БФЛ. При 0.2 < x < 0.5 в Sr_{1-x}Ba_xF₂ присутствуют оба типа люминесценции: голубая в интервале 430-450 nm и желтая в интервале 500–580 nm. При x > 0.5 наблюдается только желтая люминесценция. Желтой люминесценции соответствует широкий пик, который при увеличении концентрации Ва²⁺ линейно смещается в длинноволновую сторону и в BaF_2 : Eu^{2+} находится около 580 nm [3]. Желтая люминесценция связана с межконфигурационными переходами между состояниями примесного экситона (который образуется при переходе электрона к близлежащим двенадцати катионам) и основным состоянием ${}^{8}S(4f^{7})$ [3,10]. Схема соответствующих конфигурационных кривых приведена на рис. 1. При увеличении концентрации Ba^{2+} в кристалле $Sr_{1-x}Ba_xF_2$: Eu^{2+} нижний уровень $4f^{6}5d$ движется вверх, и его положение можно рассчитать по формуле (2). В SrF_2 и BaF_2 поток

валентной зоны образован 2р-состояниями фтора, дно зоны проводимости — s-состояниями катиона, ширина запрещенной зоны в этих кристаллах измерена экспериментально [13]. При замене Sr^{2+} на Ba^{2+} в $Sr_{1-x}Ba_xF_2$ дно зоны проводимости движется вниз. Расстояние от нижнего уровня $4f^{6}5d$ Eu²⁺ до дна зоны проводимости в SrF₂: Eu²⁺ взято из работы [14]. Если предположить, что положение 2*p*-состояний фтора не изменяется при замене катионов Sr^{2+} на Ba^{2+} в $Sr_{1-x}Ba_xF_2$, можно рассчитать изменение положения дна зоны проводимости как функцию от х, поскольку ширина запрещенной зоны в ряду CaF₂, SrF₂, BaF₂ уменьшается практически линейно с увеличением постоянной решетки [13], а зависимость постоянной решетки $Sr_{1-x}Ba_xF_2$ от x получена нами из расчетов. Таким образом можно рассчитать, как уменьшается расстояние между дном зоны проводимости и e_g -уровнем Eu²⁺ при увеличении концентрации Ba^{2+} в $Sr_{1-x}Ba_xF_2$: Eu^{2+} . Согласно расчетам, при x = 0.2 в Sr_{1-x}Ba_xF₂ : Eu²⁺ нижний уровень 4 $f^{6}5d$ окажется в зоне проводимости. При этой концентрации, как следует из работы [3], в $Sr_{1-r}Ba_rF_2$: Eu^{2+} начинается желтая люминесценция.

В рамках нашей модели также можно получить конфигурационные кривые относительно полносимметричной координаты, рассчитав зависимость энергии кристалла Е от расстояния Eu²⁺-F⁻, сжимая или увеличивая относительно расновесного размера куб из восьми ионов F⁻, окружающих Eu²⁺. Симметризованная координата *Q* в данном случае равна с неким коэффициентом изменению расстояния Eu²⁺-F⁻. Полученные зависимости E(Q) для Sr_{1-x}Ba_xF₂ : Eu²⁺ близки к параболическим $1/2k \cdot Q^2$. Проводя расчеты для различных x, мы получаем зависимость коэффициента k конфигурационной кривой от концентрации х. Далее моделируем экситонное состояние, увеличив заряд Eu²⁺ на единицу и уменьшив заряд каждого из двенадцати близлежащих ионов Me^{2+} на 1/12. Затем аналогичным образом рассчитываем зависимость коэффициента k конфигурационной кривой экситонного состояния от х. Полученные зависимости представляют собой прямые: $k_{\rm ES} = 33.95 - 5.26x$, $k_{
m GS} = 21.18 - 4.61 x$, где $x \in [0, 1]$, все коэффициенты выражены в $eV \cdot Å^{-2}$. Из этих расчетов следует, что конфигурационная кривая экситонного состояния в $\operatorname{Sr}_{1-x}\operatorname{Ba}_{x}\operatorname{F}_{2}$: Eu²⁺ имеет больший коэффициент *k*, чем конфигурационная кривая основного состояния. При увеличении концентрации Ba^{2+} коэффициенты k_{ES} и $k_{\rm GS}$ уменьшаются; это согласуется с тем, что упругие модули BaF2 меньше, чем SrF2. При образовании экситонного состояния куб из восьми ионов Fиспытывает сжатие, величина которого меняется от 0.14 в SrF₂ : Eu²⁺ до 0.2 Å в BaF₂ : Eu²⁺. В кристалле $Sr_{1-r}Ba_rF_2$: Eu²⁺ величина сжатия ΔR линейно зависит от *x*: $\Delta R = 0.143 + 0.036x$ (коэффициенты в Å). Зная коэффициент конфигурационной кривой основного состояния $k_{\rm GS}$ и изменение расстояния (ΔR) Eu²⁺-F⁻ при переходе из экситонного состояния в основное, получаем величину стоксова сдвига (СС) желтой люминесценции, а проведя расчет при ряде концентраций x, находим зависимость СС от *x*. Согласно расчетам, в Sr_{1-x}Ba_xF₂ : Eu²⁺ при увеличении *x* стоксов сдвиг возрастает: $E_S = 1090x + 5011$ (коэффициенты в сm⁻¹). Желтая люминесценция в Sr_{1-x}Ba_xF₂ : Eu²⁺ наблюдается при *x* от 0.2 до 1, причем при увеличении *x* ее пик смещается в длинноволновую сторону [3]. На данном интервале, согласно расчетам, СС возрастает примерно на 800 сm⁻¹. Далее оценим частоту A_{1g} колебаний куба из восьми ионов F⁻

$$\nu_{A_{1g}} = \frac{1}{2\pi} \sqrt{\frac{k_{\rm GS}}{m_F}},\tag{3}$$

где m_F — масса ионов фтора. Частота меняется от 547 в SrF₂ до 484 cm⁻¹ в BaF₂, ее изменение хорошо описывается зависимостью v = 547-63x, где v измеряется в cm⁻¹. Зная СС и частоту колебаний кластера, получаем величину фактора Хуанга-Рис для желтой люминесценции. Согласно расчетам, при изменении xот 0 до 1 в Sr_{1-x}Ba_xF₂ : Eu²⁺ он возрастает от 9 до 12 (по закону 3.38x + 9.133).

Таким образом, метод виртуального кристалла, реализованный в оболочечной модели в приближении парных потенциалов, позволяет достаточно хорошо описать структуру смешанных флюоритов $Ca_{1-x}Sr_xF_2$ и $Sr_{1-x}Ba_xF_2$ и воспроизвести постоянную решетки. В допированных смешанных кристаллах $Ca_{1-x}Sr_xF_2$: Eu^{2+} и $Sr_{1-x}Ba_xF_2$: Eu^{2+} в рамках данного метода можно рассчитать расстояние Eu^{2+} – F^- . Положение нижнего уровня возбужденной конфигурации $4f^{6}5d$ иона Eu^{2+} в этих кристаллах описывается феноменологической зависимостью от расстояния Eu^{2+} – F^- .

Для желтой люминесценции Eu²⁺ в Sr_{1-x}Ba_xF₂ : Eu²⁺, связанной с переходами из экситонного состояния в основное, рассчитана зависимость величины стоксова сдвига и фактора Хуанга–Рис от концентрации *x*. Согласно расчетам, при изменении *x* от 0 до 1 стоксов сдвиг возрастает на 1000 сm⁻¹, фактор Хуанга–Рис увеличивается с 9 до 12. Это согласуется с экспериментальными данными [3], согласно которым пик желтой люминесценции при увеличении *x* смещается в длинноволновую сторону. Как следует из наших расчетов, в кристаллах Sr_{1-x}Ba_xF₂ : Eu²⁺ при $x \ge 0.2$ нижний уровень $4f^65d$ иона Eu²⁺ будет находиться в зоне проводимости.

Список литературы

- [1] Э.Г. Чернавская, Г.В. Ананьева. ФТТ 8, 1, 216 (1966).
- [2] R. Nakata, H. Satoh, J. Tominaga, K. Kawano, M. Sumita. J. Phys. C3, 5903 (1991).
- [3] K. Kawano, K. Katoh, R. Nakata. J. Phys. Soc. Jpn. 66, 6, 1803 (1997).
- [4] П.П. Феофилов. Спектроскопия кристаллов. Наука, М. (1966). С. 87.
- [5] А.А. Каплянский, П.П. Феофилов. Оптика и спектроскопия 13, 2, 235 (1962).
- [6] А.Е. Никифоров, С.Ю. Шашкин. Спектроскопия кристаллов. Наука, Л. (1989). С. 274.

- [7] V.A. Chernyshev, A.D. Gorlov, A.A. Mekhonoshin, A.E. Nikiforov, A.I. Rokeakh, S.Yu. Shahkin, A.Yu. Zaharov. Appl. Magn. Reson. 14, 1, 37 (1998).
- [8] А.Д. Горлов, В.Б. Гусева, А.Ю. Захаров, А.Е. Никифоров, А.И. Рокеах, В.А. Чернышев, С.Ю. Шашкин. ФТТ 40, 12, 2172 (1998).
- [9] А.А. Каплянский, А.К. Пржевуский. Оптика и спектроскопия **19**, *4*, 235 (1965).
- [10] D. Dujardin, B. Moine, C. Pedrini. J. Lumin. 54, 259 (1993).
- [11] C. Ryter. Helv. Phys. Acta 30, 353 (1957).
- [12] З. Метфессель, Д. Маттис. Магнитные полупроводники. Мир, М. (1972). С. 157.
- [13] G.W. Rubloff. Phys. Rev. B 5, 2, 663 (1972).
- [14] D.S. McClure. In Tenth Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth Transitional-Metal Ions / Ed. by A.I. Ryskin, V.F. Masterov. Proc. SPIE 2706 (1996). P. 315.