01,03,04,10

Коэффициенты усиления потока фононов в кристаллах с различным типом анизотропии упругой энергии

© И.Г. Кулеев, С.М. Бахарев

Институт физики металлов им. М.Н. Михеева, Екатеринбург, Россия E-mail: kuleev@imp.uran.ru

(Поступила в Редакцию 10 января 2018 г. В окончательной редакции 25 января 2018 г.)

Рассмотрено распространение фононных импульсов в кубических кристаллах с различным типом анизотропии упругой энергии. Получено замкнутое аналитическое выражение для коэффициента усиления потока фононов. Проанализированы особенности его зависимостей от типов кривизны изоэнергетических поверхностей для всех акустических мод, а также величины и знака параметров анизотропии.

Работа выполнена в рамках государственного задания по теме "Спин" АААА-А18-118020290104-2 и проекту № 32-1.1.3.5 Программы фундаментальных исследований Президиума РАН согласно контракту Минобрнауки № 14.Z50.31.0025).

DOI: 10.21883/FTT.2018.07.46107.004

1. Введение

При изучении распространения фононных импульсов в упруго анизотропных кристаллах была отмечена резкая анизотропия пространственного распределения потока энергии акустических колебаний различных поляризаций (см. [1-6]). Исследования, проведенные в [1], показали, что амплитуды фононных импульсов в кристаллах LiF и KCl сильно зависят от их поляризаций и направления распространения. Для кристалла LiF в направлении [100] интенсивность потока поперечных фононов оказалась в 100 раз больше чем для продольных фононов, тогда как в кристаллах KCl — наоборот: амплитуда импульса поперечных фононов оказалась в 7 раз меньше, чем для продольных фононов. Для количественного описания этих эффектов Марис в работе [2] воспользовался моделью изотропной среды, как системой сравнения, и ввел понятие коэффициента усиления потока фононов A^{λ} — "enhancement factor", который также известен [3,7,8], как "amplification factor". Согласно [2] коэффициент A^{λ} определяется как отношение потока фононов данной поляризации λ для выбранного направления волнового вектора к соответствующему потоку в изотропной среде. При первом знакомстве с работами [2-7,9] возникает впечатление, что "фактор усиления" имеет смысл коэффициента усиления плотности состояний фононов для упруго анизотропного кристалла относительно изотропной среды.

Однако, наличие конечных разрывов в коэффициентах усиления для поперечных мод в симметричных направлениях и обращение их в бесконечность в точках нулевой кривизны на изоэнергетической поверхности затрудняют использование этого метода для интерпретации экспериментальных данных по распространению фононных импульсов в упругоанизотропных кристаллах. Для устранения неоднозначности коэффициента усиления медленных оперечных мод в направлении [100] в работе [2] было проведено усреднение фононного потока по детектору в виде круга, а в работе [7] — по прямоугольному детектору для всех симметричных направлений. На примере кристалла GaAs было показано, что в зависимости от размера и формы детектора коэффициенты усиления поперечных фононов могут изменяться в несколько раз. Причем, для вырожденных направлений [100] и [111] даже для бесконечно малых размеров детектора результат зависит от его формы (см. [7] таблицы 4,6). Для устранения расходимости фактора усиления в точках нулевой кривизны на поверхности медленности в работах [5,10-12] плотность потока фононов усреднялась по площади детектора ΔS . Трудности таких расчетов, а также анализа связи величин коэффициентов усиления с кривизной изоэнергетических поверхностей, как показывают работы [2-5,7-16], обусловлены тем, что, хотя исходные выражения для них были сформулированы почти 50 лет назад, однако аналитического выражения не было получено. Нами решена эта задача: предложен новый метод расчета коэффициента A^{λ} и получены простые аналитические выражения для него.

Это позволило проанализировать качественные отличия коэффициентов усиления A^{λ} в кубических кристаллах с различным типом анизотропии упругой энергии. Исследована связь величин разрывов коэффициентов усиления поперечных мод с изменениями параметра анизотропии k - 1 ($k - 1 = (c_{12} + 2c_{44} - c_{11})/(c_{11} - c_{44})$, c_{ij} — упругие модули второго порядка). Проанализированы его зависимости от типов кривизны изоэнергетических поверхностей для всех акустических мод в кубических кристаллах с положительной k - 1 > 0 (Fe, Cu, MgO, InSb, GaAs, GaN, Ge, Si, алмаз, LiF) и отрицательной k - 1 < 0 (CaF₂, SrF₂

1261

и PbS) анизотропией упругих модулей второго порядка (см. [17], табл. 1). Так, например, для волновых векторов в плоскости грани куба спектр быстрых поперечных мод в кристаллах первого типа (k - 1 > 1) и медленных поперечных мод в кристаллах второго типа (k - 1 < 0) изотропен, и, казалось бы, коэффициенты усиления для них должны равнятся единице. Однако нами показано, что в полупроводниковых кристаллах первого типа для быстрых поперечных мод преобладают эффекты фокусировки, и их значения больше единицы. Во всех кристаллах второго типа (k - 1 < 0) для медленных поперечных мод преобладают эффекты фокусировки, и их значения больше единицы.

Коэффициент усиления потока фононов

Определим выражение для коэффициента А^λ согласно [2]. Пусть на одной из граней образца находится источник фононов (нагреватель), а на противополжной грани — детектор фононов. Они соединены вектором **R**. В изотропной среде волны, покидающие источник, будут достигать детектора в случае, если их волновые вектора лежат в телесном угле $\delta \Omega_q = \sin \theta d\theta d\phi$ ((θ, ϕ) угловые переменные вектора q) в окрестности направления **R** (см. рис 1, a). В случае анизотропной среды волна с волновым вектором q и поляризацией λ достигает центра детектора, если направления групповой скорости лежат в телесном угле $\delta \Omega_V$ в окрестности вектора **R**, т.е. (см. рис. 1, *b*): $\mathbf{V}_{p}^{\lambda} \parallel \mathbf{R}$. Из рис. 2 видно, что этому условию для поперечных мод может удовлетворять не одна волна, а по крайней мере, две или три волны в направлениях волновых векторов, соответствующих областям с отрицательной кривизной на изоэнергетической поверхности. В работе [2] показано, что коэффициент усиления может быть определен через отношение телесных углов для

Рис. 1. Схемаичное изображение телесных углов: $(a) - \delta \Omega_q$ в **q**-пространстве и $(b) - \delta \Omega_V$ в пространстве групповых скоростей.

Рис. 2. Сечения изоэнергетической поверхности (*a*) и волновой поверхности в пространстве групповых скоростей (*b*) плоскостью грани куба для медленной поперечной моды в кристалле кремния. Значения углов $\theta_i^{t^2}$ для плоскости грани куба определены в работе [18]. Вектора групповых скоростей $\mathbf{V}_{g1}^{t^2}$, $\mathbf{V}_{g2}^{t^2}$ и $\mathbf{V}_{g[110]}^{t^2}$ на рисунке (*a*) соответствуют векторам $\mathbf{V}_{g1}^{t^2}$, $\mathbf{V}_{g2}^{t^2}$ и $\mathbf{V}_{g[110]}^{t^2}$ на рисунке (*b*).

волновых векторов и групповых скоростей

$$A^{\lambda}(\theta, \varphi) = \delta \Omega_q / \delta \Omega_V^{\lambda}. \tag{1}$$

Поскольку распределение волновых векторов, в отличие от групповых скоростей, изотропно в кристалле, то плотность потока фононов будет увеличиваться или уменьшаться на величину $A^{\lambda}(\theta, \varphi)$ по отношению к изотропной среде. Поэтому задача сводится к вычислению отношения телесного угла в **q**-пространстве к телесному углу в пространстве групповых скоростей. В **q**-пространстве из точки *O* под углом $\delta\Omega_q$ виден параллелограмм *ABCD* (см. рис. 1, *a*). Вектора **q** = *q***n**,

 $\delta q_1 = q \mathbf{n}_1$ и $\delta q_2 = q \mathbf{n}_2$ образуют тройку взаимно ортогональных векторов [19]. Тогда для изотропной среды имеем

$$\delta\Omega_q = (\delta q/q)^2. \tag{2}$$

Соответствующий телесный угол для тех же вариаций волновых векторов ($\delta \mathbf{q}_1$ и $\delta \mathbf{q}_2$) в пространстве групповых скоростей $\delta \Omega_V$ есть угол, под которым виден параллелограмм A'B'C'D' (см. рис. 1, *b*), где

$$\delta V_{q1i}^{\lambda} = V_{gi}^{\lambda} (\mathbf{q} + \delta \mathbf{q}_1) - V_{gi}^{\lambda} (\mathbf{q}) = \partial V_{gi}^{\lambda} / \partial \mathbf{q} \cdot \delta \mathbf{q}_1,$$

$$\delta V_{q2i}^{\lambda} = V_{gi}^{\lambda} (\mathbf{q} + \delta \mathbf{q}_2) - V_{gi}^{\lambda} (\mathbf{q}) = \partial V_{gi}^{\lambda} / \partial \mathbf{q} \cdot \delta \mathbf{q}_2, \qquad (3)$$

где V_{gi}^{λ} — *i*-ая компонента групповой скорости в ортогональной системе координат. Тогда телесный угол $\delta \Omega_V^{\lambda}$ в пространстве групповых скоростей примет вид [2]

$$\delta\Omega_{V}^{\lambda} = \delta S_{V}^{\perp} / \left(V_{g}^{\lambda}\right)^{2} = \left| \left(\left[\delta \mathbf{V}_{g1}^{\lambda} \times \delta \mathbf{V}_{g2}^{\lambda} \right] \cdot \mathbf{V}_{g}^{\lambda} \right) / \left(V_{g}^{\lambda}\right)^{3} \right|.$$
(4)

А коэффициент усиления $A^{\lambda}(\theta, \varphi)$ был представлен в виде [2]

$$(A^{\lambda}(\theta, \varphi))^{-1} = \frac{\delta \Omega_{V}^{\lambda}}{\delta \Omega_{q}}$$

$$= \frac{q^{2}}{(V_{g}^{\lambda})^{3}} \left| \left(\left[\left\{ \mathbf{n}_{1} \cdot \frac{\partial \mathbf{V}_{g1}^{\lambda}}{\partial \mathbf{q}} \right\} \times \left\{ \mathbf{n}_{2} \cdot \frac{\partial \mathbf{V}_{g2}^{\lambda}}{\partial \mathbf{q}} \right\} \right] \cdot \mathbf{V}_{g}^{\lambda} \right| .$$
(5)

Далее мы покажем, что при вычислении коэффициента $A^{\lambda}(\theta, \phi)$ следует пользоваться сферической системой координат ($\mathbf{n}_1 = \mathbf{e}_{\theta}, \mathbf{n}_2 = \mathbf{e}_{\phi}$). Это позволяет получить для него аналитическое выражение. Вектора групповой скорости и производная $\partial V_{gi}^{\lambda}/\partial \mathbf{q}$ в сферической системе координат могут быть представлены в виде

$$\mathbf{V}_{g}^{\lambda}(\theta,\varphi) = S^{\lambda}(\theta,\varphi)\mathbf{V}_{g}^{\lambda}(\theta,\varphi), \quad \mathbf{V}_{g}^{\lambda}(\theta,\varphi) = \mathbf{n} + S_{\theta}^{\lambda}\mathbf{e}_{\theta} + S_{\varphi}^{\lambda}\mathbf{e}_{\varphi},$$
$$S_{\theta}^{\lambda}(\theta,\varphi) = \left(\frac{1}{S^{\lambda}}\right)\frac{\partial S^{\lambda}}{\partial \theta}, \quad S_{\varphi}^{\lambda}(\theta,\varphi) = \frac{1}{\sin\theta}\left(\frac{1}{S^{\lambda}}\right)\frac{\partial S^{\lambda}}{\partial \varphi}, \quad (6)$$

Здесь фазовая скорость $S^{\lambda}(\theta, \varphi)$ в модели анизотропного континуума определена в работах [17,20], а вектора **n**, \mathbf{e}_{θ} и \mathbf{e}_{φ} образуют взаимно ортогональную тройку единичных векторов: $\mathbf{n} = \mathbf{q}/q =$ = $(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ — единичный волновой вектор фонона, $\mathbf{e}_{\theta} = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta), \mathbf{e}_{\varphi} =$ = $(-\sin \varphi, \cos \varphi, 0)$ (см. [18,20]). Из формул (3–4) для векторов $\delta \mathbf{V}_{g_1}^{\lambda}$ и $\delta \mathbf{V}_{g_2}^{\lambda}$ в получим

$$\delta V_{g1i}^{\lambda} = \left(\frac{\partial V_{gi}^{\lambda}}{\partial \mathbf{q}} \cdot \delta \mathbf{q}_{1} \right) = \left(\mathbf{e}_{\theta} \frac{\partial V_{gi}^{\lambda}}{\partial \mathbf{q}} \right) \cdot \delta q$$
$$= \left(\frac{\delta q}{q} \right) \cdot \left(\frac{\partial V_{gi}^{\lambda}}{\partial \theta} \right),$$
$$\delta V_{g2i}^{\lambda} = \left(\frac{\partial V_{gi}^{\lambda}}{\partial \mathbf{q}} \cdot \delta \mathbf{q}_{2} \right) = \left(\mathbf{e}_{\theta} \frac{\partial V_{gi}^{\lambda}}{\partial \mathbf{q}} \right) \cdot \delta q$$
$$= \left(\frac{\delta q}{q} \sin \theta \right) \cdot \left(\frac{\partial V_{gi}^{\lambda}}{\partial \phi} \right). \tag{7}$$

Из формул (3)–(6) получим выражение для $\delta \mathbf{S}_{V} = [\delta \mathbf{V}_{gi}^{\lambda} \times \delta \mathbf{V}_{g2}^{\lambda}].$ Как видно из рисунка 1, *b*,

площадка $\delta \mathbf{S}_V$ не ортогональна вектору групповой скорости \mathbf{V}_g^{λ} . Поэтому спроектируем ее на поверхность перпендикулярную единичному вектору групповой скорости: $\delta S_V^{\perp} = (\delta \mathbf{S}_V \cdot \mathbf{V}_g^{\lambda}) / V_g^{\lambda}$ (см. затемненную область на рис. 1, *b*). Тогда коэффициент $A^{\lambda}(\theta, \varphi)$ в сферической системе координат можно представить в виде

$$(A^{\lambda}(\theta, \varphi))^{-1} = \frac{\partial \Omega_{V}^{\lambda}}{\partial \Omega_{q}}$$

$$= \frac{1}{(V_{g}^{\lambda})^{3} \sin \theta} \times \left| \left(\left[\frac{\partial \mathbf{V}_{g}^{\lambda}}{\partial \theta} \times \frac{\partial \mathbf{V}_{g}^{\lambda}}{\partial \varphi} \right] \cdot \mathbf{V}_{g}^{\lambda} \right) \right|.$$
(8)

Использование декартовой системы координат приводит к результату

$$\begin{split} \left(A^{\lambda}(\theta,\varphi)\right)^{-1} &= \frac{1}{\left(V_{g}^{\lambda}\right)^{3} \sin \theta} \cdot \left| \left(\frac{\partial V_{gy}^{\lambda}}{\partial \theta} \frac{\partial V_{gz}^{\lambda}}{\partial \varphi} - \frac{\partial V_{gz}^{\lambda}}{\partial \theta} \frac{\partial V_{gy}^{\lambda}}{\partial \varphi}\right) V_{gx}^{\lambda} \right. \\ &+ \left(\frac{\partial V_{gz}^{\lambda}}{\partial \theta} \frac{\partial V_{gx}^{\lambda}}{\partial \varphi} - \frac{\partial V_{gx}^{\lambda}}{\partial \theta} \frac{\partial V_{gz}^{\lambda}}{\partial \varphi}\right) V_{gy}^{\lambda} \\ &+ \left(\frac{\partial V_{gx}^{\lambda}}{\partial \theta} \frac{\partial V_{gy}^{\lambda}}{\partial \varphi} - \frac{\partial V_{gy}^{\lambda}}{\partial \theta} \frac{\partial V_{gy}^{\lambda}}{\partial \varphi}\right) V_{gz}^{\lambda} \bigg|.$$

$$\end{split}$$

Здесь $V_{gx}^{\lambda}(\theta, \varphi), V_{gy}^{\lambda}(\theta, \varphi), V_{gz}^{\lambda}(\theta, \varphi)$ — компоненты групповой скорости фононов с поляризацией λ в декартовой системе координат

$$\begin{split} V_{gx}^{\lambda}(\theta,\varphi) &= S^{\lambda}(\theta,\varphi) \big\{ \sin\theta\cos\varphi + S_{\theta}^{\lambda}(\theta,\varphi)\cos\theta\cos\varphi \\ &- S_{\varphi}^{\lambda}(\theta,\varphi)\sin\varphi \big\}, \\ V_{gy}^{\lambda}(\theta,\varphi) &= S^{\lambda}(\theta,\varphi) \big\{ \sin\theta\sin\varphi + S_{\theta}^{\lambda}(\theta,\varphi)\cos\theta\sin\varphi \\ &+ S_{\varphi}^{\lambda}(\theta,\varphi)\cos\varphi \big\}, \end{split}$$

$$V_{gz}^{\lambda}(\theta,\varphi) = S^{\lambda}(\theta,\varphi) \{\cos\theta - S^{\lambda}(\theta,\varphi)\sin\theta\}.$$
 (10)

Выражение (9) для коэффициента усиления при использовании декартовой системы координат содержит более 300 членов и является слишком громоздким для анализа.

В работах [10,11] предложен другой способ вычисления коэффициента усиления через производные углов групповой скорости θ_V^{λ} и φ_V^{λ} , определяющих направление вектора \mathbf{V}_g^{λ} . Согласно определению (1) $A^{\lambda}(\theta, \varphi)$ можно записать в виде

$$\left(A^{\lambda}(\theta,\varphi)\right)^{-1} = \frac{\delta\Omega_{V}^{\lambda}}{\delta\Omega_{q}^{\lambda}} = \frac{d\left(\cos\theta_{V}^{\lambda}\right)d\varphi_{V}^{\lambda}}{d\left(\cos\theta\right)d\varphi}.$$
 (11)

Здесь $\delta\Omega_q = d(\cos\theta)d\varphi$ — телесный угол в **q**-пространстве под которым видна площадка $|\delta\mathbf{S}_q| = |\delta\mathbf{q}_1 \times \mathbf{q}_2|$, образованная векторами $\delta\mathbf{q}_1$ и $\delta\mathbf{q}_2$, а $\delta\Omega_V^{\lambda} = d(\cos\theta_V^{\lambda})d\varphi_V^{\lambda}$ соответсвующий ему телесный угол в пространстве групповых скоростей под которым видна площадка $|\delta \mathbf{S}_V \cdot \mathbf{V}_g^{\lambda}/V_g^{\lambda}|$, образованная векторами $\delta \mathbf{V}_{g1}^{\lambda}$ и $\delta \mathbf{V}_{g2}^{\lambda}$ (см. рис. 1). Тогда коэффицент усиления можно записать через якобиан перехода от переменных ($\theta_V^{\lambda}, \varphi_V^{\lambda}$) к переменным (θ, φ) [10,11]

$$(A^{\lambda}(\theta,\varphi))^{-1} = \begin{vmatrix} \partial(\cos\theta_{V}^{\lambda})/\partial(\cos\theta) & \partial(\cos\theta_{V}^{\lambda})/\partial\varphi \\ \partial\varphi_{V}^{\lambda}/\partial(\cos\theta) & \partial\varphi_{V}^{\lambda}/\partial\varphi \end{vmatrix}$$

$$= \frac{1}{\sin\theta} \left| \frac{\partial(\cos\theta_{V}^{\lambda})}{\partial\theta} \frac{\partial\varphi_{V}^{\lambda}}{\partial\varphi} - \frac{\partial(\cos\theta_{V}^{\lambda})}{\partial\varphi} \frac{\partial\varphi_{V}^{\lambda}}{\partial\theta} \right|.$$
(12)

Для нахождения зависимостей $\theta_V^{\lambda}(\theta, \varphi)$ и $\varphi_V^{\lambda}(\theta, \varphi)$ в работах [10,11] опять использовались выражения для групповой скорости в декартовой системе координат

$$\mathbf{V}_{g}^{\lambda} = V_{g}^{\lambda} \left(\sin \theta_{V}^{\lambda} \cos_{V}^{\lambda} \mathbf{i} + \sin \theta_{V}^{\lambda} \sin \varphi_{V}^{\lambda} \mathbf{j} + \cos \theta_{V}^{\lambda} \mathbf{k} \right).$$
(13)

В результате получено

$$\cos \theta_{V}^{\lambda}(\theta, \varphi) = \frac{V_{gz}^{\lambda}(\theta, \varphi)}{V_{g}^{\lambda}(\theta, \varphi)} \quad \text{и} \quad \varphi_{V}^{\lambda}(\theta, \varphi) = \operatorname{arctg} \, \frac{V_{gy}^{\lambda}(\theta, \varphi)}{V_{gx}^{\lambda}(\theta, \varphi)}.$$
(14)

Хотя формулы (12)-(14) значительно упрощают численный анализ коэффициента усиления, по сравнению с использованием выражений (9)-(10), однако его расчет в декартовой системе координат остается достаточно громоздким. При этом формулы (12)-(14) не дают замкнутого аналитического выражения для коэффициента $A^{\lambda}(\theta, \varphi)$.

Проведенный нами анализ показал, что использование сферической системы координат для векторов групповых скоростей и их производных позволяет получить точное аналитическое решение для коэффициента усиления $A^{\lambda}(\theta, \varphi)$ и провести детальный анализ его особенностей. Для этого воспользуемся формулами (3)–(6) и вычислим скалярное произведение $([\partial \mathbf{V}_{g}^{\lambda}/\partial\theta \times \partial \mathbf{V}_{g}^{\lambda}/\partial\varphi] \cdot \mathbf{V}_{g}^{\lambda})$ в сферической системе координат. Тогда получим выражение для $A^{\lambda}(\theta, \varphi)$ через угловые компоненты групповой скорости $S^{\lambda}_{\theta}, S^{\lambda}_{\varphi}$ и их производные

$$\begin{aligned} A^{\lambda}(\theta,\varphi) &= \left(\tilde{V}_{g}^{\lambda}\right)^{3} \left| \left(1 + \left(S_{\theta}^{\lambda}\right)^{2} + \frac{\partial S_{\theta}^{\lambda}}{\partial \theta}\right) \right. \\ &\times \left(1 + S_{\theta}^{\lambda} \frac{\cos\theta}{\sin\theta} + \left(S_{\varphi}^{\lambda}\right)^{2} + \frac{1}{\sin\theta} \frac{\partial S_{\varphi}^{\lambda}}{\partial \varphi}\right) \\ &- \left(\frac{1}{\sin\theta} \frac{\partial S_{\theta}^{\lambda}}{\partial \varphi} + S_{\varphi}^{\lambda} \left(S_{\theta}^{\lambda} - \frac{\cos\theta}{\sin\theta}\right)\right)^{2} \right|^{-1}. \end{aligned}$$
(15)

Очевидно, что для модели изотропной среды угловые производные S^{λ}_{θ} , S^{λ}_{φ} равны нулю, а коэффициент усиления равен единице. Для дальнейшего анализа особенностей распространения потока фононов в упруго

анизотропных кристаллах мы будем пользоваться аналитическим выражением (15).

Спектр упругих волн и групповые скорости реальных кристаллов имеют достаточно сложный вид. Чтобы наглядно представить телесный угол $\delta\Omega_q$ в **q**-пространстве и соответствующий ему угол $\delta\Omega_V$ в пространстве групповых скоростей, обратимся к рис. 2. На нем изображены сечения изоэнергетической поверхности и волновой поверхности в пространстве групповых скоростей плоскостью грани куба для медленной поперечной моды в кристалле кремния (рис. 2). Волновая поверхность — это геометрическое место концов векторов групповой скорости для всевозможных направлений волновых векторов в кристалле [21]. Согласно ([21] см. уравнение (24.13)), ее можно определить выражением

$$\left(\mathbf{n} \cdot V_{g}^{\lambda}\right) / S^{\lambda}(\theta, \varphi) = 1.$$
 (16)

Волновую поверхность можно также задать параметрически, взяв в качестве праметров углы волнового вектора θ и φ . Для сечения {010} она имеет вид

$$\begin{cases} V_{gx}^{\lambda} = V_{gx}^{\lambda}(\theta, 0), \\ V_{gy}^{\lambda} = 0, \\ V_{gz}^{\lambda} = V_{gz}^{\lambda}(\theta, 0). \end{cases}$$
(17)

Здесь компоненты групповой скорости $V_g^{\lambda}(\theta, \varphi)$ определены формулами (10). В окрестности направления [110] телесный угол $\delta\Omega_V^{(1)}$ соответствует углу $\delta\Omega_q^{(1)}$ (см. рис. 2). В этом случае непосредственный расчет дает значения коэффициент $A_{[110]}^{t2} < 1$, т. е. $\delta\Omega_V^{(1)} > \delta\Omega_q^{(1)}$, и медленная поперечная мода для этого направления дефокусируется (см. рис. 2 и 3).

В окрестности направления [100] телесный угол $\delta \Omega_V^{(2)}$ (см. рис. 2, b) соответствует трем различным значениям телесного угла $\delta \Omega_q^{(2)}$ (см. рис. 2, *a*). Поэтому полное отношение $\delta\Omega_q/\delta\Omega_V$ для направления [100] будет гораздо больше единицы, что указывает на большое усиление потока фононов в окрестности направления фокусировки. Рассмотрим более подробно изоэнергетическую поверхность для моды t2. В работе [18] показано, что в окрестности направлений [100] в интервале углов $- heta_1 \leq heta \leq heta_1$ функция $heta_g^{t2}(heta) < 0$, а при $heta_2 = 0.21$ она имеет локальный минимум. Углы $\pm \hat{\theta_2}$ определяют направления векторов групповой скорости \mathbf{V}_{g2}^{t2} на рис. 2, *b* к границам складок на волновой поверхности в пространстве групповых скоростей. Эти же углы определяют направления волновых векторов к точкам нулевой кривизны на изоэнергетической поверхности [18]. В этих точках происходит переход от выпуклых к вогнутым областям, и кривизна обращается в ноль. Положения точек нулевой кривизны обозначены кружочками на рис. 2. В трехмерном случае эти точки образуют линии нулевой кривизны на изоэнергетической поверхности. Поскольку фононный поток ортогонален этой поверхности и обратно пропорционален ее кривизне в данной точке [2–4], то

Рис. 3. Угловые зависимости коэффициентов усиления $A^{\lambda}(\theta, \varphi)$ в кристаллах Si (a), (b) и CaF₂ (c), (d) для волновых векторов в плоскости грани куба (a), (c) и диагональной плоскости (b), (d). Штриховые линии 1 соответствуют модели изотропной среды, кривые 2 — продольным фононам, кривые 3 — быстрой поперечной моде t_1 , кривые 4 — медленной поперечной моде t_2 .

точки нулевой кривизны математически соответствуют бесконечному потоку фононов от точечного источника тепла вдоль соответствующего направления групповой скорости.

Анализ угловых зависимостей коэффициента усиления

Воспользуемся (15) и проанализируем угловые зависимости коэффициента усиления в кристаллах кремния (см. рис. 3, *a*). В модели изотропной среды коэффициент $A^{\lambda}(\theta, 0) = 1$. Поэтому интервалы углов, в которых выполняется неравенство $A^{\lambda}(\theta, 0) > 1$, можно отнести к области фокусировки фононов, а интервалы, в которых выполняется обратное неравенство — к области дефокусировки фононов. Очевидно, что в точках нулевой кривизны ($\theta = \theta_2^{\mu^2}$) на изоэнергетической поверхности коэффициент усиления поперечной моды t_2 обращается в бесконечность (см. рис. 3, *a*, кривая 4). Минимального значения он достигает в направлении дефокусировки [110]: для Si $A_{[110]}^{t2} = 0.23$. Продольные фононы фокусируются и дефокусируются в направлениях [111] и [100] соответственно, и в этих случаях для Si $A_{[111]}^L = 2.20$ и $A_{[100]}^L = 0.27$. В направлении [110] для них имеет место локальный максимум фокусировки, и $A_{[110]}^L = 1.42$. В кристалле второго типа CaF₂ коэффициент усиления быстрой поперечной моды в точках нулевой кривизны (при $\theta = \theta_2^{(t1)}$) на изоэнергетической поверхности обращается в бесконечность (см. рис. 3, *b*, кривая 3). Для продольных фононов в направлении [100] имеет место фокусировка, и коэффициент усиления $A_{[110]}^L = 3.21$, а в направлении [110] они дефокусируются, и коэффициент $A_{[110]}^L = 0.78$.

Проведенный нами анализ коэффициентов усиления для быстрой поперечной моды в кристаллах первого и медленной поперечной моды в кристаллах второго типа позволил обнаружить интересную особенность. Дело в том, что для волновых векторов в плоскости грани куба спектр обеих поперечных мод в кубических кристаллах является изотропным (см. рис. 1 работы [17]), и следовало ожидать, что коэффициент $A^{\lambda}(\theta, 0)$ будет равен единице, как и в модели изотропной среды. Однако непосредственный расчет с использованием выражений (15) дал для него величину, которая в кристаллах кремния значительно больше единицы — $A^{t1} = 5.74$ (см. рис. 3, *a*, кривая 3), а для кристалла второго типа CaF₂ заметно меньше единицы — (см. рис. 3, с, кривая 4). Поскольку ранее на эту особенность коэффициента усиления не обращалось внимание, то мы проанализируем ее для кристаллов с различным типом анизотропии упругой энергии более детально. Для этого разложим фазовую скорость быстрой поперечной моды в кристаллах первого типа из уравнения (4) работы [17] вблизи плоскости грани куба при $\phi \ll 1$

$$S^{t1}(\theta, \varphi) \approx \sqrt{\frac{c_{44}}{\rho}} \left(1 - \frac{\delta}{2} \varphi^2 \sin^2 \theta \right),$$

$$\delta = \left[\frac{c_{11} - c_{44}}{c_{44}} \right] \frac{(k-1)(2k+1)}{(k+1)}.$$
 (18)

Из (18) видно, что в кристаллах первого типа $S^{t1}(\theta, 0)$ имеет максимальное значение. Из выражения (15) в случае $\varphi \to 0$ следует, что вклад в коэффициент усиления моды t_1 дает только вторая производная фазовой скорости $\partial^2 S^{t1}/\partial \varphi^2$

$$A^{t1}(\theta,0) = \left|1 + \frac{1}{\sin^2\theta} \frac{\partial^2 S^{t1}}{\partial \varphi^2} \sqrt{\frac{\rho}{c_{44}}}\right|^{-1} = \left|\frac{1}{1-\delta}\right|.$$
 (19)

Для больщинства полупроводниковых кристаллов первого типа значения параметра δ лежит в интервале $0 \le \delta \le 2$, и коэффициент усиления быстрой поперечной моды может значительно превосходить единицу. Однако для металлических кристаллов первого типа Na, K, Li и Cu параметр $\delta > 2$, и коэффициент усиления быстрой поперечной моды оказывается меньшим единицы (см. табл. 1). Как видно из табл. 1, корреляция между значениями коэффициента $A^{t1}(\theta, 0)$ и величинами параметра анизотропии (k-1) отсутствует. Так, например, для кристаллов ҮАС параметр анизотропии мал $(k - 1 \approx 0.03)$, и коэффициент усиления близок к единице: $A^{t1}(\theta, 0) = 1.08$. Для кристаллов HgSe параметр анизотропии в 20 раз больше, однако коэффициент усиления $A^{t1}(\theta, 0) = 1.02$ оказывается меньше, чем для кристаллов YAG. Для кристаллов GaN параметр k – 1 имеет максимальное значение, однако коэффициент усиления оказывается таким же. как для кристаллов YAG (см. табл. 1). Из рассмотренных кристаллов первого типа коэффициент усиления достигает максимального значения для MgO ($A^{t1}(\theta, 0) \approx 16.11$), у которого параметр анизотропии k-1=0.7 мало отличается от значения для HgSe (см. табл. 1). Минимальное значение коэффициент $A^{t1}(\theta, 0) = 0.4$ достигает для щелочного

Таблица 1. Значения параметров $k - 1$, δ и коэффициентов
усиления $A^{t1}(\theta, 0)$ для быстрой поперечной моды в кубических
кристаллах первого типа

Кристалл	k-1	δ	A^{t1}
Fe	1.15	1.91	1.09
Cu	1.12	2.31	0.76
GaAs	0.9	1.49	2.04
InSb	0.81	1.63	1.58
MgO	0.7	1.06	16.11
GaSb	0.85	1.47	2.14
Ge	0.87	1.32	3.13
GaN	1.28	1.92	1.08
LiF	0.78	1.2	4.89
Si	0.67	1.17	5.74
HgSe	0.61	1.98	1.02
Алмаз	0.4	0.55	2.22
YAG	0.03	0.076	1.08
Na	45.1	3.47	0.40
Li	4.83	3.31	0.43
Κ	2.28	2.98	0.51

Таблица 2. Значения параметров k - 1, δ и коэффициентов усиления $A^{\prime 2}$ в кристаллах второго типа для медленной поперечной моды и волновых векторов в плоскости грани куба

Кристалл	KCl	NaCl	PbS	CaF ₂	SrF ₂	YIG
$k-1 \over \delta$	$-0.63 \\ -4.29$	$-0.48 \\ -2.12$	$-0.466 \\ -2.59$	$-0.33 \\ -1.80$	$-0.204 \\ -0.88$	$-0.04 \\ -0.17$
A^{t2}	0.19	0.320	0.28	0.36	0.53	0.86

металла Na, у которого параметр анизотропии упругой энергии имеет максимальное значение: k - 1 = 45.1.

В кристаллах второго типа (k – 1 < 0) для волновых векторов в плоскости грани куба фазовая скорость медленной поперечной моды t2, принимает минимальные значения. Для нее спектр фононов при $\phi \ll 1$ определяется уравнением (18), и коэффициент усиления $A^{t2}(\theta, 0)$ совпадает с выражением (19). Поскольку во всех кристаллах второго типа параметр $\delta < 0$, то коэффициент усиления для них оказывается меньше единицы (см. табл. 2 и рис. 3). Как видно из табл. 2, для кристаллов второго типа величины коэффициента усиления обратно пропорциональны параметру анизотропии. Максимальное значение коэффициент усиления $A_{[100]}^{t2} \approx 0.86$ принимает для кристалла YIG, у которого параметр анизотропии имеет минимальное значение: k - 1 = -0.04. Минимальное значение коэффициент усиления $A_{[100]}^{t2} \approx 0.19$ достигает для наиболее анизотропного кристалла KCl с параметром анизотропии k - 1 = -0.63. Таким образом, в коэффициентах усиления медленной поперечной моды для всех кристаллов второго типа преобладают эффекты дефокусировки фононов, поэтому для волновых векторов в плоскости грани куба они меньше единицы.

Из рис. З видно, что коэффициент усиления медленной поперечной моды при $\theta \to 0$ в окрестности направления [100] претерпевает конечный разрыв. Для кристаллов Si этот коэффициент при $\theta \to 0$ имеет различные значения при $\phi = 0$ и $\pi/4$: при $\phi = 0$ он оказывается значительно больше единицы $A^{t2}(0, 0) \approx 4.4$, а при $\pi/4$ — меньше единицы $A^{t2}(0, \pi/4) = 0.72$. Этот результат оставался физически странным и до сих пор не был объяснен. Как видно из рис. 1 работы [18], в направлении [100] медленная поперечная мода фокусируется, как в плоскости грани куба ($\phi = 0$), так и в диагональной плоскости ($\pi/4$). Поэтому коэффициент усиления в обоих случаях дожен превышать единицу. Для объяснения этого парадокса требуется детальный анализ поведения коэффициента $A^{t2}(\theta, \varphi)$, исходя из формул (15), при малых значениях угла θ . Дело в том, что при анализе плотности фононных состояний и рассмотрении сечений изоэнергетической поверхности для $\phi = 0$ и $\pi/4$ в работе [18], мы зафиксировали угол ϕ и учитывали только производные фазовой скорости по θ . Тогда как при вычислении коэффициента $A^{\lambda}(\theta, \phi)$ учитываются производные по обоим углам. Коэффициент усиления характеризует изоэнергетическую поверхность и обратно пропорционален ее гауссовой кривизне $A \sim 1/K[11]$. В зависимости от ее кривизны возможны различные типы особенностей: (а) типа "седло", (b) типа "вогнутый лепесток" [11]. Тип особенностей на трехмерной поверхности определяется гауссовой кривизной К [22]. Она может быть представлена в виде произведения главных кривизн поверхности: $K = K_1 K_2$. В работе [11] показано, что при K < 0 (K_1 и K_2 имеют разные знаки) поверхность имеет особенность типа седловой точки; если оба значения К1 и К2 отрицательны, то поверхность вогнутая ("вогнутый лепесток"); если оба значения К₁ и К₂ положительны, то поверхность выпуклая.

Для того чтобы проанализировать тип возникающих особенностей в окрестности направления [100] для различных значений угла φ , разложим выражение для фазовой скорости медленной моды t_2 при $\theta \ll 1$. Тогда получим

$$S^{t2}(\theta, \varphi) \approx \sqrt{\frac{c_{44}}{\rho}} \left(1 - \theta^2 \Delta_{t2}(\varphi)\right),$$
$$\Delta_{t2}(\varphi) = \frac{c_{11} - c_{44}}{4c_{44}} \left(k - 1\right) \\ \times \left[\sqrt{(1 + 2k)\cos^2 2\varphi + k^2} + k + 1\right].$$
(20)

В кристаллах первого типа фазовая скорость медленных поперечных фононов в направлении [100] имеет абсолютный максимум. Для плоскости грани куба вторые производные по θ и φ имеют разные знаки $(\partial^2 S'^2/\partial \theta^2 < 0, \ \partial^2 S'^2/\partial \varphi^2 > 0)$, поэтому в окрестности грани куба при в кристаллах Si реализуется особенность типа седловой точки. Для диагональной плоскости вторая производная $\partial^2 S'^2/\partial \theta^2$ остается отрицательной, а

 $\partial^2 S'^2 / \partial \varphi^2$ становится отрицательной. Поэтому в окрестности диагональной плоскости поверхность становится вогнутой ("вогнутый лепесток").

В предельном случае $\theta \ll 1$ из выражения (15) следует, что зависимость коэффициента усиления медленной поперечной моды от угла φ , которую при $\varphi = 0$ и $\varphi = \pi/4$ можно представить в виде произведения двух множителей

$$A^{t^2}(0^+,\varphi) = \frac{1}{|1 - 2\Delta_{t^2}(\varphi)|} \frac{1}{|1 - 2\Delta_{t^2}(\varphi) - \Delta_{t^2}^{\prime\prime}\varphi|}, \quad (21)$$

где

$$\Delta_{t2}^{\prime\prime}(\varphi) = \frac{d^2 \Delta_{t2}(\varphi)}{d\varphi^2} = -\frac{c_{11} - c_{44}}{4c_{44}}(k-1)(1+2k)$$
$$\times \left\{ \frac{4\cos 4\varphi}{\sqrt{(1+2k)\cos^2 2\varphi + k^2}} + \frac{(1+2k)\sin^2 4\varphi}{\left(\sqrt{(1+2k)\cos^2 2\varphi + k^2}\right)^3} \right\}$$

Для кристаллов Si при углах $\varphi = 0$ и $\pi/4$ имеем:

12 . ()

$$\Delta_{t2}(0) = \frac{c_{11} - c_{44}}{2c_{44}} (k^2 - 1) = 0.96,$$

$$(1 - 2\Delta_{t2}(0))^{-1} = -1.09$$

$$\Delta_{t2}^{\prime\prime}(0) = -\frac{c_{11} - c_{44}}{c_{44}} \frac{(k - 1)(1 + 2k)}{(k + 1)} = -1.17,$$

$$(1 - 2\Delta_{t2}(0) - \Delta^{\prime\prime}(0))^{-1} = 4,$$

$$\Delta_{t2}(\pi/4) = \frac{c_{11} - c_{44}}{4c_{44}} (k - 1)(2k + 1) = 0.78,$$

$$(1 - 2\Delta_{t2}(\pi/4))^{-1} = -1.79,$$

$$\Delta_{t2}^{\prime\prime}(\pi/4) = \frac{c_{11} - c_{44}}{c_{44}} \frac{(k - 1)(1 + 2k)}{k} = 1.88$$

$$(1 - 2\Delta_{t2}(\pi/4) - \Delta_{t2}^{\prime\prime}(\pi/4))^{-1} = -0.41.$$
(22)

Из приведенных выше значений следует: $A^{t2}(0,0) = 4.36$ и $A^{t2}(0, \pi/4) = 0.72$. Как видно из оценок (22), главную роль в выполнении неравенств $A^{t2}(0,0) > 1$, а $A^{t2}(0,\pi/4) < 1$ играет их зависимость от значения производной $\partial^2 S^{t2}/\partial \varphi^2$. За счет изменения параметра $\Delta_{t2}^{\prime\prime}(\varphi)$ множители $||1 - 2\Delta_{t2}(0)| - |\Delta_{t2}^{\prime\prime}(0)||^{-1} = 4$ и $(|1 - 2\Delta_{t2}(\pi/4)| + |\Delta_{t2}^{\prime\prime}(\pi/4)|)^{-1} = 0.41$, входящие в коэффициенты $A^{t2}(0,0)$ и $A^{t2}(0,\pi/4)$, отличаются друг от друга на порядок величины. При этом величины $|1 - 2\Delta_{t2}(\varphi)|$ при переходе от плоскости грани куба к диагональной плоскости изменяются не столь существенно. Из (21) следует, что для плоскостей $\varphi = 0$ и $\varphi = \pi/4$

$$\begin{aligned} K_1^{t2}(0,\varphi) &= S_{[100]}^t \tilde{K}_1^2(0,\varphi), \quad \tilde{K}_1^{t2}(0,\varphi) = 1 - 2\Delta_{t2}(\varphi), \\ K_2^{t2}(0,\varphi) &= S_{[100]}^t \tilde{K}_2^2(0,\varphi), \\ \tilde{K}_2^{t2}(0,\varphi) &= 1 - 2\Delta_{t2}(\varphi) - \Delta_{t2}^{\prime\prime}(\varphi). \end{aligned}$$
(23)

Для кристаллов первого типа с малой упругой анизотропией (таких, как YAG) изоэнергетическая поверхность

Рис. 4. Графики зависимости c_{11}/c_{44} от параметра k-1, определяющие пять областей с различной кривизной изоэнергетических поверхностей для медленных поперечных фононов в кубических кристаллах первого типа. Области I, II, III, IV, V ограничены кривыми 1, 2, 3, 4, 5, уравнения для которых задаются неравенствами (24), (26), (27), (28) и (29) соответственно. Сплошные кривые — результаты нашего анализа, штриховые кривые — результаты расчета Эвери [11]. Символами обозначены значения параметров для кристаллов первого типа.

моды t_2 является всюду выпуклой, а обе главные кривизны поверхности K_1 и K_2 положительны (см. табл. 3). Из условий $K_1 > 0$, $K_2 > 0$ и выражений (22) следуют неравенства в которой изоэнергетическая поверхность остается выпуклой (см. рис. 4)

$$1 < \frac{c_{11}}{c_{44}} < 1 + \frac{2k}{(k-1)(k+2)(2k+1)}.$$
 (24)

Как следует из (24), эта область ограничена кривой 1

$$c_{11}/c_{44} = 1 + 2k/\{(k-1)(k+2)(2k+1)\}.$$
 (25)

Следует отметить, что для всех кристаллов второго типа $(k-1 \le 0)$ величины K_1 и K_2 положительны. Поэтому поверхности постоянной энергии поперечных фононов для них при $\theta \ll 1$ являются выпуклыми (см. табл. 3).

С увеличением параметра анизотропии (k-1) мы пересекаем кривую l и попадаем во вторую область, для которой при $\theta \ll 1$ в окрестности плоскости грани куба поверхность постоянной энергии медленных поперечных фононов является выпуклой $(K_1 > 0 \text{ и } K_2 > 0)$, а в окрестности диагональной плоскости реализуется особенность типа седловой точки: $(K_1 > 0, K_2 < 0,$ см. табл. 3). Из системы неравенств $K_1(0, 0) > 0$, $K_2(0, 0) > 0$ при $\varphi = 0$ и $K_1(0, \pi/4) > 0, K_2(0, \pi/4) < 0$ при $\varphi = \pi/4$ для второй области получим

$$1 + \frac{2k}{(k-1)(k+2)(2k+1)} < \frac{c_{11}}{c_{44}} < 1 + \frac{1}{k^2 - 1}.$$
 (26)

2* Физика твердого тела, 2018, том 60, вып. 7

Она ограничена кривыми I и 2, последняя определяется выражением $c_{11}/c_{44} = 1 + 1/(k^2 - 1)$. Из рассмотренных кристаллов в эту область параметров попадает алмаз (см. рис. 4). В третьей области главные кривизны имеют разные знаки в обеих плоскостях: в плоскости грани куба $K_1 < 0$, $K_2 > 0$, а в диагональной плоскости $K_1 > 0$, $K_2 < 0$. Поэтому для обеих плоскостей на изоэнергетической поверхности образуются особенности типа седловых точек. Эта область расположена между кривыми 2 и 3 и определяется неравенствами

1267

$$1 + \frac{1}{k^2 - 1} < \frac{c_{11}}{c_{44}} < 1 + \frac{2}{(k - 1)(2k + 1)}.$$
 (27)

Однако ни один из рассмотренных в табл. 3 кристаллов в эту область не попал.

Дальнейшее увеличение параметра анизотропии (k-1) приводит к появлению следующих особенностей на изоэнергетической поверхности при $\theta \ll 1$: в окрестности плоскости грани куба для моды t_2 появляется особенность типа седловой точки $(K_1(0,0) < 0, K_2(0,0) > 0)$, а в окрестности диагональной плоскости изоэнергетическая поверхность становится вогнутой $(K_1(0, \pi/4) < 0, K_2(0, \pi/4) < 0)$. Эти неравенства определяют четвертую область, которая ограничена кривыми 3 и 4 (см. рис. 4)

$$1 + \frac{2}{(k-1)(2k+1)} < \frac{c_{11}}{c_{44}} < 1 + \frac{k+1}{k^2(k-1)}.$$
 (28)

В нее входят такие кристаллы, как Si, MgO, Ge, LiF (см. рис. 4). При дальнейшем увеличении параметра анизотропии k - 1 мы пересекаем кривую (4) и попадаем в пятую область, в которой при $\theta \ll 1$ поверхность постоянной энергии для моды t_2 становится вогнутой для произвольного значения угла φ : обе кривизны K_1 и K_2 становятся отрицательными (см. табл. 3). Из выражений (22) и условия $c_{11} > c_{12}$ для пятой области получаем соотношения, определяющие кривые 4 и 5

$$1 + \frac{k+1}{k^2(k-1)} < \frac{c_{11}}{c_{44}} < 1 + \frac{2}{k-1}.$$
 (29)

В пятую область попали кристаллы Fe, Cu, K, Li, Na, GaN с максимальной анизотропией упругой энергией (см. рис. 4).

В работе [11] Эвери провел численный анализ кривизны изоэнергетических поверхностей для кубических кристаллов, исходя из формул (12)–(14), в координатах c_{11}/c_{44} и c_{12}/c_{44} без введения параметра анизотропии k - 1. Он получил соотношения для модулей упругости, которые разделяют кристаллы с различным типом изоэнергетических поверхностей. Как видно из рис. 4, в координатах c_{11}/c_{44} и k - 1 наши результаты (сплошные линии), согласуются с анализом, проведенным в [11] (штриховые линии).

В отличие от анализа [11] основное внимание нами уделено исследованию связи величин разрывов коэффициентов усиления поперечных мод в окрестности

Кристалл	c_{11}/c_{44}	$1/\tilde{K}_{1}^{t2}(0,0)$	$1/\tilde{K}_2^{t2}(0,0)$	$1/\tilde{K}_{1}^{t2}(0, \pi/4)$	$1/ ilde{K}_{2}^{t2}(0,\pi/4)$	$A^{t^2}(0,0)$	$A^{t2}(0,\pi/4)$
Fe	1.99	-0.39	-1.49	0.50	-0.21	0.57	0.10
Cu	2.23	-0.3	-1.03	-0.38	-0.17	0.31	0.064
GaAs	2.00	-0.62	-8.31	-0.86	-0.29	5.16	0.25
InSb	2.23	-0.56	-6.37	-0.77	-0.26	3.56	0.20
MgO	1.94	-1.32	3.26	-2.33	-0.47	4.32	1.10
Ge	1.92	-0.77	50	-1.11	-0.34	38.5	0.38
LiF	1.92	-0.94	7.14	-1.47	-0.39	6.74	0.58
Na	1.04	-0.01	-0.01	-0.01	-0.01	0.0002	0.0002
Li	1.37	-0.09	-0.13	-0.1	-0.07	0.011	0.007
K	1.74	-0.16	-0.31	-0.19	-0.11	0.05	0.02
GaN	1.89	-0.37	-1.25	-0.47	-0.2	0.46	0.096
Si	2.09	-1.09	4.0	-1.79	-0.41	4.36	0.72
Алмаз	1.87	6.25	1.41	2.94	-1.67	8.80	4.90
YaG	2.89	1.11	1.03	1.08	1.29	1.14	1.40
Кристалл	c_{11}/c_{44}	$1/\tilde{K}_{1}^{t1}(0,0)$	$1/ ilde{K}_{2}^{t1}(0,0)$	$1/ ilde{K}_{1}^{t1}(0, \pi/4)$	$1/ ilde{K}_{2}^{t1}(0,\pi/4)$	$A^{t1}(0,0)$	$A^{t1}(0,\pi/4)$
YIG	3.52	0.84	0.95	0.87	0.69	0.8	0.6
SrF_2	4.0	0.48	0.82	0.56	0.26	0.39	0.15
CaF ₂	4.74	0.33	0.75	0.41	0.15	0.25	0.06
PbS	5.12	0.25	0.74	0.33	0.1	0.19	0.03
NaCl	4.33	0.29	0.78	0.38	0.11	0.23	0.04
KCl	6.37	0.18	0.75	0.25	0.05	0.13	0.01

Таблица 3. Значения коэффициентов усиления $A^{\prime 2}(0^+, \varphi)$ и $A^{\prime 1}(0^+, \varphi)$ и параметров, характеризующих кривизну изоэнергетических поверхностей для кристаллов первого и второго типа при $\theta \ll 1$

направления [100] с изменениями параметра анизотропии и кривизны изоэнергетических поверхностей. Из табл. З видно, что в окрестности направления [100] при $\varphi = 0$ и $\pi/4$ для всех кристаллов коэффициенты $A^{t2}(0, \phi)$ имеют различные значения, т.е. претерпевают конечные разрывы. Как показал проведенный выше анализ, эти разрывы обусловлены различной кривизной изоэнергетических поверхностей для волновых векторов в плоскостях грани куба и диагональных плоскостях. Причем, в кристаллах первого типа при переходе от плоскости грани куба к диагональной плоскости меняются не только величины главных кривизн для медленных поперечных мод, но и их знак (тип кривизн) (см. табл. 3). Однако для кристаллов второго типа изоэнергетические поверхности для быстрых поперечных мод остаются выпуклыми, изменяется только величины кривизн при $\varphi = 0$ и $\pi/4$ (см. табл. 3). Максимальные величины разрывов коэффициенты $A^{t2}(0, \phi)$ достигают в кристаллах первого типа, входящих в четвертую область. Так, например, для Ge при $\theta \to 0$ коэффициенты $A^{t2}(0,0) \cong 38$ и $A^{t2}(0, \pi/4) \cong 0.4$ отличаются на два порядка величины. Следует отметить, что для кристаллов первого типа нет корреляции между значением параметра анизотропии *k* – 1 и величиной разрыва в коэффициентах усиления. Однако такая корреляция ясно прослеживается для кристаллов второго типа: чем выше обсолютное значение параметра анизотропии |k-1|, тем больше относительная величина разрывов в коэффициентах усиления в наравлениях типа [100] (см. табл. 3). Поскольку для них

величины коэффициентов усиления меньше единицы, то абсолютные величины разрывов $A^{t1}(0, \varphi)$ малы.

4. Заключение

Основные результаты работы могут быть сформулированы следующим образом:

1. Рассмотрены особенности распространения фононных импульсов в кубических кристаллах с различным типом анизотропии упругой энергии. Получено замкнутое аналитическое выражение для коэффициента усиления потока фононов. Проанализированы особенности его зависимостей от типов кривизны изоэнергетических поверхностей для всех акустических мод, а также от величины и знака параметров анизотропии.

2. Показано, что для волновых векторов в плоскости грани куба в коэффициентах усиления быстрой поперечной моды в полупроводниковых кристаллах первого типа преобладают эффекты фокусировки, и их значения больше единицы. Однако для металлических кристаллов первого типа Na, K, Li и Cu с максимальным значением параметра анизотропии (k - 1 > 1), коэффициенты усиления быстрой поперечной моды оказываются меньше единицы. Во всех кристаллах второго типа (k - 1 < 0) для медленной поперечной моды преобладают эффекты дефокусировки, и коэффициенты усиления оказываются меньше единицы.

3. Исследована связь величин разрывов коэффициентов усиления поперечных мод в окрестности направления [100] с изменениями параметра анизотропии и кривизны изоэнергетических поверхностей. Показано, что в кристаллах первого типа при переходе от плоскости грани куба к диагональной плоскости меняются не только величины главных кривизн для медленных поперечных мод, но и их знак (тип кривизн). Однако для кристаллов второго типа изоэнергетические поверхности для быстрых поперечных мод остаются выпуклыми изменяется только величины кривизн.

Подводя итог анализу влияния фокусировки на распространение фононных мод в упруго анизотропных кристаллах, можно утверждать, что подход, основанный на коэффициенте усиления [5-12], не позволяет пока сделать количественные оценки для плотностей состояний квазипоперечных мод. Однако он находит широкое применение при анализе баллистического транспорта фононов и построения фононных изображений [5-12]. С другой стороны в работах [18,20] нами предложен простой и наглядный способ оценки средних плотностей состояний (ПФС) для областей фокусировки и дефокусировки фононов, в котором изотропная среда также использовалась в качестве системы сравнения. Он дает достаточно грубую оценку влияния фокусировки на ПФС, но он свободен от отмеченных выше недостатков коэффициента усиления. Весомым аргументом в пользу развитого в работах [18,20] метода оценки средних ПФС является хорошее согласие угловых зависимостей ПФС и длин свободного пробега: сектора максимумов обоих величин соответствуют областям фокусировки, а минимумов — областям дефокусировки фононов. Поэтому в дальнейшем при анализе влияния фокусировки поперечных фононов на фононный транспорт мы будем использовать этот метод.

Список литературы

- B. Taylor, H.J. Maris, C. Elbaum. Phys. Rev. Letter 23, 416 (1969).
- [2] H.J. Maris. J. Acoust. Soc. Am. 50, 812 (1971).
- [3] J.P. Wolfe. Imaging Phonons Acoustic Wave Propagation in Solids, Cambridge University Press, New York (1998), 411 p.
 [4] D. Taular, Phys. Rev. D 2, 1462 (1971)
- [4] B. Taylor. Phys. Rev. B, 3, 1462 (1971).
- [5] Cz. Jasiukiewicz, T. Paszkiewicz, D. Lehmann. Z. Phys. B, 96, 213 (1994).
- [6] E. Held, W. Klein, R.P. Huebener. Zeitschrift fur Physik B: Condensed Matter **75**, 17 (1989).
- [7] M. Lax, V. Narayanamurti. Phys. Rev. B, 22, 10, 4876 (1980).
- [8] G.A. Northrop, J.P. Wolfe. Phys. Rev. B, 22, 12, 6196 (1980).
- [9] J.A. Shields, J.P. Wolfe, S.I. Tamura. Z. Phys. B, **76**, 295 (1989).
- [10] J. Philip, K.S. Viswanathan. Phys. Rev. B, 17, 12, 4969 (1978).
- [11] A.G. Every. Phys. Rev. B, 24, 6, 3456 (1981).
- [12] C. Jasiukiewicz, T. Paszkiewicz. Acta physica polonica series A, 84, 459 (1993).
- [13] A.G. Every, A.A. Maznev. Physics Letters A378, 3372 (2014).
- [14] R. Anufriev, A. Ramiere, J. Maire, M. Nomura. Nature Communications 15505 (2017).

- [15] L. Wang. The Journal of the Acoustical Society of America 123, 4140 (2008).
- [16] I.A. Veres, D.M. Profunser, A.A. Maznev, A.G. Every. New Journal of Physics 14, 123015 (2012).
- [17] И.Г. Кулеев, И.И. Кулеев. ФТТ 49, 3, 422 (2007).
- [18] I.I. Kuleyev, S.M. Bakharev, I.G. Kuleyev, V.V. Ustinov. Phys. Status. Solidi. C, 14, 3–4, 1600263 (2017).
- [19] I.G. Kuleyev, I.I. Kuleyev, I.Yu. Arapova. J. Phys.: Condens. Matter 22, 9, 095403 (2010).
- [20] И.И. Кулеев, С.М. Бахарев, И.Г. Кулеев, В.В. Устинов. ФММ 118, 1, 12 (2017).
- [21] Ф.И. Федоров. Теория упругих волн в кристаллах. М.: Наука (1965), 386 с.
- [22] А.В. Погорелов. Дифференциальная геометрия (6-е издание). М.: Наука (1974), 176 с.

Редактор Т.Н. Василевская