13;15 Микроволновый полосно-пропускающий фильтр на диэлектрических слоях с металлическими сетками

© Б.А. Беляев^{1,2}, В.В. Тюрнев^{1,2}, А.С. Волошин^{2,3}, Р.Г. Галеев^{3,4}

 ¹ Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, Россия
 ² Сибирский федеральный университет, Красноярск, Россия
 ³ Сибирский государственный университет науки и технологий им. акад. М.Ф. Решетнева, Красноярск, Россия
 ⁴ НПП "Радиосвязь", Красноярск, Россия
 E-mail: belyaev@iph.krasn.ru

Поступило в Редакцию 31 октября 2017 г.

Разработана конструкция полосно-пропускающего фильтра, состоящего из диэлектрических слоев с металлическими сетками на поверхностях. Диэлектрические слои являются полуволновыми резонаторами, сетки служат зеркалами с заданными отражательными свойствами, обеспечивающими оптимальные связи между резонаторами и оптимальные связи крайних резонаторов со свободным пространством. Изготовленный опытный образец синтезированного фильтра третьего порядка с центральной частотой полосы пропускания ~ 12 GHz и относительной ее шириной ~ 17% показал хорошее согласие теории и эксперимента. Конструкция может использоваться в качестве радиопрозрачных в заданной полосе частот панелей для укрытия микроволновых антенн.

DOI: 10.21883/PJTF.2018.10.46093.17102

В настоящее время исследователи активно изучают особенности распространения электромагнитных волн, падающих на слоистые кон-

3

струкции из диэлектрических пластин, на границах раздела которых сформированы периодические структуры из полосковых проводников (2D-решетки или сетки). Интерес к таким конструкциям обусловлен возможностью создания на их основе частотно-селективных поверхностей, служащих полосно-пропускающими фильтрами в диапазонах от субмикронных до дециметровых длин волн [1–4]. Полосковые элементарные ячейки, из которых состоит периодическая 2D-структура, например металлические квадраты или ячейки металлической сетки, являются резонаторами [5]. Именно поэтому, используя многослойные конструкции из таких структур, можно создавать различные полосно-пропускающие фильтры [5,6]. Важно отметить, что длина волны на центральной частоте полосы пропускания в таких фильтрах, которые нередко называют частотно-селективными поверхностями [7], не только много больше периода решеток, но и много больше толщины диэлектрических слоев.

Известно, что сопротивление проводников на высоких частотах растет из-за уменьшения толщины скин-слоя, что приводит с учетом шероховатости подложки к снижению собственной добротности полосковых резонаторов. Поэтому главным недостатком многослойных фильтров, использующих резонансные структуры из полосковых проводников, являются сравнительно большие потери мощности в полосе пропускания устройств. Более перспективными исследователи считают конструкции фильтров, в которых сами диэлектрические слои являются высокодобротными резонаторами, а 1D- или 2D-структуры из полосковых проводников на их поверхностях служат зеркалами с заданной отражательной способностью [8,9]. При этом период полосковых структур выбирается значительно меньше длины волны, чтобы их резонансные частоты находились как можно выше полосы пропускания фильтра. В работах [8,10] для таких конструкций получены формулы синтеза фильтров с заданной шириной полосы пропускания и заданным уровнем потерь на отражение в ней, которые позволяют определить оптимальные размеры полосковых проводников на поверхностях каждого из диэлектрических слоев.

В настоящей работе исследована разработанная конструкция полосно-пропускающего фильтра третьего порядка на диэлектрических слоях-резонаторах, разделенных металлическими сетками. Приведено сравнение расчетных и измеренных амплитудно-частотных характеристик (АЧХ) опытного образца фильтра.

Рис. 1. Конструкция полосно-пропускающего фильтра третьего порядка на диэлектрических слоях с металлическими сетками.

Конструкция исследуемого фильтра содержит две одинаковые параллельные диэлектрические пластины с относительной диэлектрической проницаемостью ε_1 и толщиной h_1 , разделенные диэлектрическим слоем, например воздухом, толщиной h_2 с диэлектрической проницаемостью ε_2 (рис. 1). На поверхностях диэлектрических пластин квадратные сетки из металлических проводников имеют одинаковый период T. При этом ширина полосковых проводников у наружных сеток равна w_1 , а у внутренних — w_2 . Очевидно, что в рассматриваемой конструкции каждая из диэлектрических пластин и воздушный зазор между ними являются взаимодействующими полуволновыми резонаторами, которые формируют полосу пропускания устройства.

При настройке фильтра необходимо учитывать, что центральная частота его полосы пропускания определяется толщиной диэлектрических слоев, а ширина полосы пропускания и заданный максимальный уровень отражений в ней — подбором ширины полосковых проводников у внутренних и наружных сеток. С увеличением w_2 и w_1 связь между соседними резонаторами и крайних резонаторов со свободным про-

странством уменьшается, что приводит к уменьшению ширины полосы пропускания фильтра, и наоборот. Заметим, что металлические сетки понижают резонансные частоты резонаторов, причем тем сильнее, чем больше связь между ними.

Наиболее просто расчет АЧХ рассматриваемого фильтра при нормальном падении электромагнитной волны может быть выполнен в квазистатическом приближении матричным методом. Для всего фильтра *ABCD*-матрица (классическая матрица передачи) может быть рассчитана как произведение *ABCD*-матриц каждого компонента конструкции [11], т.е. каждого слоя и каждой сетки. Для определенности будем предполагать, что временная зависимость компонент электромагнитного поля описывается множителем $\exp(-i\omega t)$. В этом случае нормированная *ABCD*-матрица для каждого диэлектрического слоя может быть рассчитана по формуле [11]

$$\begin{pmatrix} A_{1,2}^d & B_{1,2}^d \\ C_{1,2}^d & D_{1,2}^d \end{pmatrix} = \begin{pmatrix} \cos\theta_{1,2} & -i\frac{\sin\theta_{1,2}}{n_{1,2}} \\ -in_{1,2}\sin\theta_{1,2} & \cos\theta_{1,2} \end{pmatrix},$$

где $n_{1,2} = \sqrt{\varepsilon_{1,2}}$ — показатели преломления слоев, а $\theta_{1,2} = \frac{\omega}{c} n_{1,2} h_{1,2}$ — фазовые толщины слоев. Здесь верхний индекс *d* указывает на то, что *ABCD*-матрица относится к слою диэлектрика.

Матрица рассеяния бесконечно тонкой идеально проводящей металлической сетки, расположенной на границе сред с показателями n_1 и n_2 , выражается формулами [12]

$$\begin{pmatrix} S_{11}^{m} & S_{12}^{m} \\ S_{21}^{m} & S_{22}^{m} \end{pmatrix} = \begin{pmatrix} \frac{n_1 - n_2 - iZ_0Y_{1,2}}{n_2 + n_1 + iZ_0Y_{1,2}} & \frac{2\sqrt{n_2n_1}}{n_2 + n_1 + iZ_0Y_{1,2}} \\ \frac{2\sqrt{n_2n_1}}{n_2 + n_1 + iZ_0Y_{1,2}} & \frac{n_2 - n_1 - iZ_0Y_{1,2}}{n_2 + n_1 + iZ_0Y_{1,2}} \end{pmatrix}$$

$$Y_{1,2} = \frac{2\pi}{\omega\mu_0(T - w_{1,2})\ln\left(\operatorname{cosec}\left(\frac{\pi w_{1,2}}{2T}\right)\right)} \\ - \omega\varepsilon_0T \frac{n_1^2 + n_2^2}{\pi}\ln\left(\operatorname{sec}\left(\frac{\pi w_{1,2}}{2T}\right)\right),$$

полученными в квазистатическом приближении, где индекс m указывает на металл, а Z_0 , μ_0 и ε_0 — характеристическое сопротивление, абсолютная магнитная и абсолютная диэлектрическая проницаемости

свободного пространства соответственно. Отсюда элементы нормированной *ABCD*-матрицы металлической сетки могут быть вычислены по формулам [11]

$$\begin{aligned} A^{m} &= \left(1 + S_{11}^{m} - S_{22}^{m} - \det[S_{ik}^{m}]\right) n_{2} / \left(2S_{21}^{m}n_{1}\right), \\ B^{m} &= \left(1 + S_{11}^{m} + S_{22}^{m} + \det[S_{ik}^{m}]\right) n_{2} / \left(2S_{21}^{m}n_{1}n_{2}\right), \\ C^{m} &= \left(1 - S_{11}^{m} - S_{22}^{m} + \det[S_{ik}^{m}]\right) n_{1}n_{2} / \left(2S_{21}^{m}n_{1}n_{2}\right), \\ D^{m} &= \left(1 - S_{11}^{m} + S_{22}^{m} - \det[S_{ik}^{m}]\right) / \left(2S_{21}^{m}n_{1}n_{2}\right). \end{aligned}$$

Перемножив *ABCD*-матрицы каждого компонента структуры, можно вычислить матричные элементы *A*, *B*, *C* и *D* матрицы передачи всей конструкции рассматриваемого фильтра.

Селективные свойства любого фильтра характеризуют частотной зависимостью матричных элементов его матрицы рассеяния **S**. Коэффициентами отражения являются матричные элементы S_{11} и S_{22} , а коэффициентами прохождения — элементы S_{21} и S_{12} . Рассматриваемая конструкция является симметричным и взаимным четырехполюсником [11]. Поэтому выполняются равенства $|S_{11}| = |S_{22}|$, $S_{21} = S_{12}$. Вычислив элементы *ABCD*-матрицы фильтра, значения коэффициентов отражения и прохождения несложно получить по формулам [11]

$$S_{11} = \frac{A+B-C-D}{A+B+C+D}, \quad S_{21} = \frac{2}{A+B+C+D}.$$

Здесь предполагается, что фильтр окружает среда с показателем преломления *n* = 1.

На основе полученных формул была написана компьютерная программа численного анализа рассмотренной конструкции фильтра третьего порядка (рис. 1). С помощью этой программы был проведен параметрический синтез конструктивных параметров фильтра, в котором диэлектрические слои и сетки на их поверхностях изготовлены из металлизированных пластин ТММЗ корпорации Rogers, имеющих толщину $h_1 = 5.08$ mm, относительную диэлектрическую проницаемость $\varepsilon_1 = 3.41$ и толщину слоев из меди 17.5 μ m. Заметим, что частота полуволнового резонанса ($\lambda_1/2 = h_1$) в таком диэлектрическом слое равна $f_1 \approx 15.96$ GHz. Однако из-за присутствия сеток в фильтре центральная частота его полосы пропускания f_0 , очевидно, будет ниже частоты f_1 .

Рис. 2. АЧХ фильтра третьего порядка на диэлектрических слоях с металлическими сетками. Сплошная линия — квазистатический расчет, штриховая линия — электродинамический анализ 3D-модели, пунктир — эксперимент.

Учитывая тот факт, что период сеток должен быть меньше $\lambda_1/2$ [12], в исследуемом фильтре зафиксируем T = 3 mm. Пусть для определенности максимумы отражений в полосе пропускания не превышают -14 dB. Очевидно, оптимальным величинам соответствующих связей резонаторов друг с другом и со свободным пространством будут отвечать определенные значения w_1 и w_2 . Для простоты анализа исследуемой конструкции зафиксируем в ней ширину полосковых проводников наружных сеток $w_1 = 0.1$ mm.

Таким образом, учитывая все перечисленные выше условия, при параметрическом синтезе фильтра потребуется подобрать лишь два параметра конструкции: ширину полосковых проводников внутренних сеток и толщину воздушного зазора между диэлектрическими пластинами. По результатам синтеза эти параметры принимают соответственно следующие значения: $w_2 = 0.58$ mm и $h_2 = 11.15$ mm. AUX прямых потерь $S_{21}(f)$ синтезированного фильтра показана сплошной линией на рис. 2. Фильтр имеет центральную частоту полосы пропускания $f_0 = 12.44$ GHz и относительную ширину полосы пропускания, измеренную по уровню -3 dB от уровня минимальных потерь, $\Delta f/f_0 = 16.7\%$.

Рис. 3. Фотография опытного образца фильтра третьего порядка на диэлектрических слоях с металлическими сетками (a) и увеличенные фрагменты его наружных (b) и внутренних (c) сеток.

Для проверки точности полученных формул нами в электродинамическом пакете CST Місгоwave Studio были рассчитаны амплитудно-частотные характеристики 3D-модели фильтра, показанные штриховыми линиями на рис. 2. Учет омических потерь в проводниках сеток увеличил минимальные потери в полосе пропускания фильтра от 0 до 0.32 dB, однако зависимости $S_{21}(f)$ и $S_{11}(f)$ при этом почти не изменились. Центральная частота полосы пропускания фильтра $f_0 = 12.41$ GHz, а относительная ширина полосы пропускания, измеренная по уровню -3 dB от уровня минимальных потерь, $\Delta f/f_0 = 16.8\%$.

Экспериментальная проверка расчетов была проведена на опытном образце фильтра, изготовленном из диэлектрических пластин ТММЗ корпорации Rogers, имеющих толщину $h_1 = 5.08$ mm и размеры 300×300 mm. Фотография слоистого фильтра представлена на рис. 3, *a*, а увеличенные фрагменты его наружных и внутренних сеток показаны на рис. 3, *b* и *c* соответственно. После изготовления медные сетки были покрыты серебром для защиты от окисления. В фильтре пластины скреплялись параллельно друг другу на расстоянии $h_2 = 11.15$ mm дву-

мя парами небольших тефлоновых держателей. АЧХ опытного образца фильтра, представленная пунктиром на рис. 2, регистрировалась на векторном анализаторе цепей ZVK фирмы Rohde & Schwarz (Германия) с помощью широкополосных измерительных антенн. Относительная ширина полосы пропускания экспериментального фильтра, измеренная по уровню $-3 \, dB$ от уровня минимальных потерь, $\Delta f / f_0 = 16.5\%$, ее центральная частота $f_0 = 12.29 \, \text{GHz}$, а минимальные потери в полосе пропускания 1.15 dB.

Таким образом, предложенная конструкция, состоящая из диэлектрических слоев, разделенных металлическими сетками, может служить полосно-пропускающим фильтром. Важно отметить, что слои могут изготавливаться как из одного, так и из разных материалов. Очевидно, что из панелей, изготовленных на основе таких слоистых структур, можно конструировать радиопрозрачные поверхности для защиты параболических антенн и антенных решеток [13].

Работа выполнена при поддержке Министерства образования и науки РФ (соглашение № 14.575.21.0142, уникальный идентификатор проекта RFMEFI57517X0142).

Список литературы

- Melo A.M., Kornberg M.A., Kaufman P., Piazzettaet M.H., Bortoluccial E.C., Zakia M.B., Bauer O.H., Poglitsch A., Alves da Silva A.M.P. // Appl. Opt. 2008. V. 47. N 32. P. 6064–6069.
- [2] Garcia-Vidal F.J., Martin-Moreno L., Ebbesen T.W., Kuipers L. // Rev. Mod. Phys. 2010. V. 82. N 1. P. 729–788.
- [3] Tomasek P. // Int. J. Circ. Syst. Signal Proc. 2014. V. 8. P. 594–599.
- [4] Oh S., Lee H., Jung J.-H., Lee G.-Y. // Int. J. Microwave Sci. Technol. 2014.
 V. 2014. P. 857582 (1–5).
- [5] Ade P.A.R., Pisano G., Tucker C., Weaver S. // Proc. SPIE. 2006. V. 6275.
 P. 62750U-1.
- [6] Zhou H, Qu S.-B., Wang J.-F., Lin B.-Q., Ma H., Xu Z., Bai P., Peng W.-D. // Electron. Lett. 2012. V. 48. N 1. P. 11–12.
- [7] Munk B.A. Frequency selective surfaces: theory and design. N.Y.: Wiley-Interscience, 2000. 410 p.
- [8] Belyaev B.A., Tyurnev V.V. // Opt. Lett. 2015. V. 40. N 18. P. 4333-4335.
- [9] Abadi S.M.A.M.H., Behdad N. // IEEE Transact. Antennas Propagation. 2015. V. 63. N 11. P. 4766–4774.

- [10] Belyaev B.A., Tyurnev V.V. // Opt. Lett. 2016. V. 41. N 3. P. 536-539.
- [11] *Гупта К., Гардж Р., Чадха Р.* Машинное проектирование СВЧ устройств. М.: Радио и связь, 1987. 104 с.
- [12] Беляев Б.А., Тюрнев В.В. // РЭ. 2017. Т. 62. № 7. С. 642–650.
- [13] Mainwaring А., Умнов А.Л., Шуралев М.О., Ельцов А.Ю. // Письма в ЖТФ. 2011. Т. 37. В. 4. С. 68–75.