Исследование методом спектроскопии фотоотражения слоев LT-GaAs, выращенных на подложках Si и GaAs

© Л.П. Авакянц¹, П.Ю. Боков^{1,¶}, И.П. Казаков², М.А. Базалевский², П.М. Деев¹, А.В. Червяков¹

¹ Московский государственный университет им. М.В. Ломоносова (физический факультет),

119991 Москва, Россия

² Физический институт им. П.Н. Лебедева Российской академии наук,

119991 Москва, Россия

[¶] E-mail: pavel_bokov@physics.msu.ru

(Получена 8 июня 2017 г. Принята к печати 19 июня 2017 г.)

Методом спектроскопии фотоотражения исследованы механические напряжения и плотности зарядовых состояний слоев LT-GaAs (LT — low temperature), выращенных методом молекулярно-пучковой эпитаксии на подложках Si(100) и GaAs(100). В спектрах фотоотражения структур Si/LT-GaAs присутствуют линии от фундаментального перехода GaAs (E_g) в окрестности значения энергии 1.37 эВ, связанные с переходом между дном зоны проводимости и спин-орбитально отщепленной подзоной валентной зоны ($E_g + \Delta_{SO}$) при 1.82 эВ. Обнаружено, что линия E_g сдвинута в область меньших энергий, а линия $E_g + \Delta_{SO}$ — в область больших энергий в сравнении с соответствующими линиями спектров образцов GaAs/LT-GaAs. Сравнительные исследования спектров Si/LT-GaAs и GaAs/LT-GaAs позволили оценить механические напряжения в слоях LT-GaAs, выращенных на Si (по величине сдвига спектральных линий) и плотность зарядовых состояний на гетероинтерфейсе GaAs/Si (по периоду осцилляций Франца–Келдыша).

DOI: 10.21883/FTP.2018.07.46039.8667

1. Введение

Арсенид галлия, выращенный при низких температурах — LT-GaAs (LT — low temperature), является одним из перспективных материалов для создания монолитноинтегрированных элементов оптической связи в кремниевых интегральных схемах и терагерцовой техники [1], поэтому исследования его оптических свойств представляют значительный интерес.

Исследование оптических свойств слоев LT-GaAs на Si методами спектроскопии поглощения или отражения сопряжено с определенными трудностями из-за невысокого кристаллического совершенства, связанного с дислокациями несоответствия, преципитатами As и термическими напряжениями [2,3], приводящими к уширению спектральных линий. Для исследований полупроводниковых структур со слабовыраженными особенностями в спектрах поглощения или отражения используют методы модуляционной спектроскопии, в числе которых метод спектроскопии фотоотражения (ФО) [4]. Авторам не известны опубликованные результаты применения метода спектроскопии ФО к исследованию в структуре Si/LT-GaAs.

В данной работе приведены результаты исследования методом спектроскопии ФО деформаций и плотности зарядовых состояний слоев LT-GaAs, выращенных при низких температурах методом молекулярно-пучковой эпитаксии (МПЭ) на арсенид галлиевых и кремниевых подложках с ориентацией поверхности (100).

2. Образцы и методика эксперимента

Для исследования была выбрана серия образцов LT-GaAs, выращенных на подложках кремния (образцы 481 и 505) и арсенида галлия (образцы 480 и 544).

Слои LT-GaAs выращивались методом молекулярнолучевой эпитаксии (МЛЭ) на установке ЦНА-25. При изготовлении образца 481 перед загрузкой в установку МПЭ поверхность подложки Si(100) травилась химически в смеси H₂SO₄:H₂O₂:H₂O (3:1:1), а затем пассивировалась в смеси HF:H₂O (1:6) [4]. В ростовой камере проводился отжиг подложки Si в парах As₄ при температуре $T_s = 700^{\circ}$ C в течение 10 мин. Затем температура T_s опускалась до 270°C, и выращивался слой LT-GaAs толщиной 0.5 мкм со скоростью 0.18 нм/с при эквивалентных давлениях паров Ga — $3 \cdot 10^{-7}$ T и As — $5 \cdot 10^{-6}$ T. После окончания роста температура T_s повышалась со скоростью 0.2°C/с, и производился отжиг структуры при температуре $T = 600^{\circ}$ C в течение 6 мин.

При изготовлении образца 505 использовалась подложка Si(100) с отклонением на 4° в направлении (011), которая не подвергалась химической очистке. В установке "Катунь" производилась десорбция естественного окисла в парах Si при $T_s = 850^{\circ}$ С, а затем наращивался буферный слой Si толщиной 200 нм. После остывания наносился слой Sb, который предохранял поверхность Si от окисления при переносе образца в установку ЦНА-25. Затравливание слоя LT-GaAs производилось при $T_s = 270^{\circ}$ С импульсным осаждением по 1–2 моно-

709

слоя до толщины ~ 3 нм. Далее, при той же величине T_s , выращивался слой LT-GaAs толщиной 0.5 мкм и производился отжиг структуры при температуре $T_s = 600^{\circ}$ С в течение 10 мин.

Контрольные образцы 480 LT-GaAs и 544 LT-GaAs выращивались на подложке GaAs(100). После обычной процедуры десорбции окисла в образце 480 выращивался буферный слой GaAs при $T_s = 580^{\circ}$ C толщиной 200 нм, а затем — слой LT-GaAs при $T_s = 270^{\circ}$ C толщиной 0.5 мкм. Отжиг образца при повышенной температуре не проводился. Образец 544 выращивался аналогично, но толщина слоя LT-GaAs была 1 мкм, а после роста проводился отжиг при $T_s = 600^{\circ}$ C в течение 10 мин.

Спектры ФО регистрировались на автоматизированной установке с использованием двойного монохроматора [5]. В качестве источника зондирующего излучения использовалось излучение лампы накаливания (мощность 50 Вт). В качестве модулирующего — линия 532 нм DPSS-лазера (мощность 7 мВт) или 633 нм Не-Ne-лазера (мощность 7 мВт). Излучение с разными длинами волн применялось для зондирования по толщине структуры. Частота модуляции составляла 500 Гц. Ширина аппаратной функции спектрометра не превышала 1 мэВ. Регистрация спектров ФО осуществлялась при комнатной температуре.

3. Результаты и обсуждение

Спектры ФО исследуемых образцов приведены на рис. 1. Видно, что амплитуда сигнала ФО образцов 480 и 544 (выращены на GaAs) больше, а ширина линий ФО меньше в сравнении со спектрами образцов 481 и 505 (выращены на Si). Меньшая амплитуда и бо́льшая ширина линии ФО свидетельствуют о меньшем структурном совершенстве слоев Si/LT-GaAs. Во всех спектрах присутствуют линии в области энергий 1.37-1.43 эВ (E_g),

Рис. 1. Спектры ФО образцов 480 (LT-GaAs/GaAs), 544 (LT-GaAs/GaAs), 505, 481 (LT-GaAs/Si), зарегистрированные при модуляции излучением на длине волны 532 нм.

Физика и техника полупроводников, 2018, том 52, вып. 7

связанные с фундаментальным переходом GaAs, и линии в области энергий 1.7-1.8 эВ ($E_g + \Delta_{SO}$), связанные с переходом между дном зоны проводимости и спинорбитально отщепленной подзоной валентной зоны. При этом для образцов 481 и 505, выращенных на кремнии, амплитуда линий $E_g + \Delta_{SO}$ сопоставима с амплитудой линий E_g .

3.1. Деформационно-индуцированные изменения в спектрах ФО

Линия ФО в области фундаментального перехода E_g образцов 481 и 505 представляет собой осцилляции Франца—Келдыша. Для таких спектров существует простая асимптотика [6]:

$$\frac{\Delta R}{R}(E) \propto \cos\left[\frac{2}{3}\left(\frac{\hbar\omega - E_g}{\hbar\Omega}\right)^{3/2} + \frac{\pi(d-1)}{4}\right], \qquad (1)$$

где $\hbar\omega$ — энергия зондирующего излучения, E_g — энергия фундаментального перехода, $\hbar\omega$ — электрооптическая энергия:

$$\hbar\Omega = \left(\frac{e^2 E_s^2 \hbar^2}{8\mu}\right)^{1/3}.$$
 (2)

Здесь μ — приведенная межзонная эффективная масса, E_s — напряженность встроенного электрического поля полупроводника, d — размерность критической точки (в рассматриваемом случае (d = 3)). Положения экстремумов осцилляций Франца–Келдыша ($\hbar\omega$)_{*j*} даются выражением

$$(\hbar\omega)_j = \hbar\Omega(F_j) + E_g, \quad j = 1, 2, 3,$$
 (3)

где

$$F_j = \left[3\pi \, \frac{j - 1/2}{2}\right]^{2/3}.\tag{4}$$

Как видно из (1)-(4), зависимость $(\hbar\omega)_j$ от F_j представляет собой прямую с наклоном $\hbar\Omega$ и точкой пересечения оси ординат, равной E_g . Для образцов 481 и 505 было сделано построение зависимости $(\hbar\omega)_j$ от F_j . Результат построения приведен на рис. 2. МНК-анализ графика показывает, что линия E_g сдвинута в область меньших энергий, до 1.36 эВ.

Линия в области 1.82 эВ представляет собой структуру с двумя экстремумами разных знаков, такие линии ФО принято описывать в рамках модели Аспнеса [7]:

$$\frac{\Delta R}{R}(E) = \operatorname{Re}\left(Ae^{i\varphi}(E - E_0 + i\Gamma)^{-n}\right),\tag{5}$$

где E_0 — энергия перехода, Γ — феноменологический параметр уширения, A и φ — амплитудный и фазовый параметры соответственно, E — энергия зондирующего излучения, n — параметр, определяемый видом критической точки, в окрестности которой осуществляется электронно-дырочный переход (в нашем случае n = 2 [7]).

Рис. 2. Зависимость $\hbar \omega_j(F_j)$, круги — образец 481, квадраты — образец 505, прямые — результат МНК-аппроксимации.

Из МНК-аппроксимации в рамках модели Аспнеса обнаружено, что линия $E_g + \Delta_{SO}$ сдвинута в область больших энергий, до 1.81 эВ.

Указанные сдвиги линий характерны для слоев GaAs, подверженных деформациям сжатия [8,9]. Деформационно-индуцированные сдвиги зоны проводимости ΔE_c и подзон тяжелых $\Delta E_{\nu l}$ и легких ΔE_{hl} дырок валентной зоны в центре зоны Бриллюэна определяются из соотношений [8,9]:

$$\varepsilon = \frac{a_1 - a_2}{a_1},\tag{6}$$

$$\Delta(E_g) = A_1 \varepsilon, \tag{7}$$

$$\Delta(E_g + \Delta_{SO}) = A_3\varepsilon, \tag{8}$$

$$A_1 = -2a \, \frac{C_{11} - C_{12}}{C_{11}} + b \, \frac{C_{11} + 2C_{12}}{C_{11}},\tag{9}$$

$$A_3 = -2a \, \frac{C_{11} - C_{12}}{C_{11}}.\tag{10}$$

Здесь ε — относительная деформация слоя, a_1, a_2 — постоянные кристаллической решетки слоев GaAs и Si, a — гидростатический деформационный потенциал для зоны проводимости, b — потенциал одноосных деформаций, C_{11}, C_{12} — упругие постоянные. Используемые в моделировании параметры приведены в таблице.

В рамках модели (6)–(10) с учетом наблюдаемых сдвигов спектральных линий оценены относительные деформации слоев LT-GaAs. Они составили $\varepsilon(E_g + \Delta_{SO}) = 0.0085 \pm 0.0017$, $\varepsilon(E_g) = 0.0066 \pm 0.0011$

$a_1, Å(GaAs)$	$a_2, \text{Å}(Si)$	<i>a</i> _v , эВ	<i>b</i> , эВ	<i>C</i> ₁₁ , Па	C ₁₂ , Па
5.6533	5.4311	-8.3	-1.7	$11.9\cdot10^{11}$	$5.38\cdot10^{11}$

Примечание. Параметры, используемые нами в моделировании (6)-(10), взяты из работы [13].

для образца 481 и $\varepsilon(E_g + \Delta_{SO}) = 0.0086 \pm 0.0017$, $\varepsilon(E_g) = 0.0065 \pm 0.0011$ для образца 505, что коррелирует с литературными данными [10].

3.2. Плотность поверхностных состояний на гетероинтерфейсе GaAs/Si

Наклон зависимостей $(\hbar\omega)_j$ от F_j (рис. 2) позволил оценить значения электрооптической энергии и напряженности встроенных электрических полей в образцах. Последние составили (0.21 ± 0.07) MB/см для образца 481 и (0.14 ± 0.03) MB/см для образца 505.

Для установления источника сигнала ФО с осцилляциями была проведена регистрация спектров при модуляции излучением DPSS- и He–Ne-лазеров на длинах волн 532 и 633 нм соответственно. В качестве примера на рис. 3 приведены спектры ФО образца 505. Видно, что модуляции на большей длине волны (т.е. с большей глубиной проникновения в образец) соответствуют спектры с большей амплитудой сигнала ФО в области фундаментального перехода. Различие амплитуд сигналов ФО указывает на то, что его источником является область гетероперехода GaAs-Si — область, в которой возникают механические напряжения, обусловленные различием постоянных решетки [10].

Источником электрического поля в структурах 481 и 505 являются, по-видимому, заряды, сформированные в результате взаимного легирования гетероперехода Si-GaAs при отжиге. О таком взаимном легировании упоминается, например, в работе по вольтфарадному профилированию структур типа GaAs/Ge [11] и GaAs/InGaAs [12]. Как и в [11,12], можно предположить, что взаимное легирование происходит на толщинах в несколько постоянных решетки, т. е. оно аналогично δ -легированию. Согласно электростатической теореме Гаусса, по напряженности электростатического

Рис. 3. Спектры ФО образца 505, полученные при модуляции излучением с длинами волн 532 нм (круги) и 633 нм (треугольники).

Физика и техника полупроводников, 2018, том 52, вып. 7

711

поля можно оценить поверхностную плотность зарядов σ на гетеропереходе:

$$\sigma = 2\varepsilon\varepsilon_0 E_s,\tag{11}$$

где $\varepsilon = 12.6$ — статическая диэлектрическая постоянная GaAs, ε_0 — электрическая постоянная [13]. Для образцов 481 и 505 поверхностная плотность зарядов на гетероинтерфейсе составила $(2.9 \pm 0.9) \cdot 10^{12}$ и $(2.0 \pm 0.4) \cdot 10^{12}$ см⁻² соответственно.

Таким образом, в случае образца 505, для которого применялась технология импульсного роста на начальном этапе, и механические напряжения, и поверхностная плотность зарядов на гетероинтерфейсе GaAs-Si оказываются меньшими в сравнении с образцом 481. Метод спектроскопии ФО оказывается чувствительным к различию процессов роста и последующего отжига образцов Si/LT-GaAs.

4. Заключение

Методом спектроскопии ФО исследованы структуры LT-GaAs, выращенные при низких температурах на подложках кремния и арсенида галлия. В спектрах ФО слоев LT-GaAs/Si обнаружены осцилляции Франца–Келдыша в области фундаментального перехода E_g и сигнал от $E_g + \Delta_{SO}$. Показано, что источником сигнала ФО является область гетероинтерфейса LT-GaAs/Si.

По периоду осцилляций Франца—Келдыша определены напряженности электрических полей в образцах 481 и 505. Они составили соответственно (0.14 ± 0.03) и (0.21 ± 0.07) МВ/см. С использованием электростатической теоремы Гаусса оценены поверхностные плотности зарядов, они составили $(2.9 \pm 0.9) \cdot 10^{12}$ и $(2.0 \pm 0.4) \cdot 10^{12}$ см⁻².

Деформационно-индуцированные сдвиги линий E_g и $E_g + \Delta_{SO}$ в спектрах ФО соответствуют деформациям сжатия GaAs. Оцененные значения относительных деформаций составили $\varepsilon(E_g + \Delta_{SO}) = 0.0085 \pm 0.0017$, $\varepsilon(E_g) = 0.0066 \pm 0.0011$ для образца 481 и $\varepsilon(E_g + \Delta_{SO}) = 0.0086 \pm 0.0017$, $\varepsilon(E_g) = 0.0065 \pm 0.0011$ для образца 505.

Таким образом, в случае образца 505, для которого применялась технология импульсного роста на начальном этапе, механические напряжения и поверхностная плотность зарядов на гетеропереходе оказываются меньшими. Это свидетельствует о большем структурном совершенстве образца 505 в сравнении с образцом 481.

Работа выполнена при частичной поддержке фонда РФФИ (гранты № 18-0200842 и № 16-29-03352 офи-м).

Список литературы

 Д.В. Лаврухин, А.Э. Ячменев, А.С. Бугаев, Г.Б. Галиев, Е.А. Климов, Р.А. Хабибуллин, Д.С. Пономарев, П.П. Мальцев. ФТП, 49, 932 (2015).

- [2] Д.А. Винокуров, В.М. Лантратов, М.А. Синицын, В.П Улин, Н.Н Фалеев, О.М. Федорова, Я.Л Шайович, Б.С Явич. ФТП, 25, 1022 (1991).
- [3] Wu-Yih Uen, T. Ohori, T. Nishinaga. J. Cryst. Growth, 156, 133 (1995).
- [4] J. Misiewicz, P. Sitarek, G. Sek, R. Kudrawiec. Mater. Sci., 21, 263 (2003).
- [5] Л.П. Авакянц, П.Ю. Боков, А.В. Червяков. ЖТФ, 75, 66 (2005).
- [6] D.E. Aspnes, A.A. Studna. Phys. Rev. B, 7, 4605 (1973).
- [7] D.E. Aspnes. Surf. Sci., **37**, 418 (1973).
- [8] X. Zhang, K. Onabe, Y. Nitta, B. Zhang, S. Fukatsu, Y. Shraki, R. Ito. Jpn. J. Appl. Phys., **30**, L1631 (1991).
- [9] Л.П. Авакянц, П.Ю. Боков, Т.П. Колмакова, А.В. Червяков. ФТП, 38, 1429 (2004).
- [10] Р.В. Кузьменко, А.В. Ганжа, О.В. Бочурова, Э.П. Домашевская, Й. Шрайбер, С. Хильдебрандт, Ш. Мо, Э. Пайнер, А. Шлахетцкий. ФТП, **34**, 73 (2000).
- [11] M.K. Hudait, S.B. Krupanidhi. J. Vac. Sci. Technol. B, 17, 1003 (1999).
- [12] А.Н. Петровская, В.И. Зубков. ФТП, 43, 1368 (2009).
- [13] S.C. Jain, M. Willander, H. Maes. Semicond. Sci. Technol., 11, 641 (1996).

Редактор Г.А. Оганесян

Photoreflectance study of LT-GaAs layers grown on Si and GaAs

L.P. Avakyants¹, P.Yu. Bokov¹, I.P. Kazakov², M.A. Bazalevsky², P.M. Deev¹, A.V. Chervyakov¹

¹ Faculty of Physics Moscow State University,
119991 Moscow, Russia
² Lebedev Physical Institute
Russian Academy of the Sciences,
119991 Moscow, Russia

Abstract The mechanical stresses and densities of the charge states in LT-GaAs (LT — low temperature) layers grown by molecular-beam epitaxy on Si(100) and GaAs(100) substrates have been studied by photoreflectance. In the photoreflectance spectra of the GaAs grown on Si are presented lines from the E_g of GaAs at value 1.37 eV and from $E_g + \Delta_{SO}$ at value of 1.82 eV. These lines are shifted due to mechanical stresses. Comparative studies of the Si/LT-GaAs and GaAs/LT-GaAs allow to estimate the mechanical stresses in LT-GaAs layers grown on Si (in terms of the spectral lines shift) and the density of charge states on the GaAs/Si heterointerface (through of the period of Franz–Keldysh oscillations).