Электронная структура и SK-спектры поглощения в хромсодержащих халькогенидных шпинелях Cd_{1-x}Cu_xCr₂S₄

© О.А. Лещева, Н.Ю. Сафонцева, И.Я. Никифоров

Донской государственный технический университет, 344010 Ростов-на-Дону, Россия E-mail: ngmarost@aaanet.ru

(Поступила в Редакцию 5 июня 2002 г.)

С использованием программы FEFF8 рассчитана электронная энергетическая структура и рентгеновские спектры поглощения серы в нормальных ферромагнитных шпинелях $Cd_{1-x}Cu_xCr_2S_4$ (где x = 0.05; 0.1; 0.15; 0.2). В данных расчетах при построении самосогласованного кристаллического потенциала использовалась частично нелокальная модель обменно-корреляционного потенциала, основанная на приближении Дирака-Фока для остовных и Хедина–Лунквиста для валентных электронов. Расчет SK-краев поглощения проводился в приближении полного многократного рассеяния на 27-атомном кластере. Сверх этого учитывались также одно-, двух- и трехсторонние пути рассеяния на кластерах из 981 атомов. Настоящий расчет показал, что уже незначительное появление в кластере $CdCr_2S_4$ атомов меди приводит к сдвигу в высокоэнергетическую область основных особенностей SK-краев поглощения, что можно связать с изменением рельефа ближайшего окружения поглощающего атома и активным участием ионов меди в образовании химической связи халькогенидных шпинелей.

Настоящая работа является продолжением исследования формы K-краев поглощения в соединениях со структурой шпинели, начатого ранее [1] на примере ферритов $Me(Mn, Mg, Ni, Zn)Fe_2O_4$. В данной работе в качестве объектов исследования выбраны твердые растворы системы CdCr₂S₄–CuCr₂S₄ со структурой нормальной шпинели, которым присуще ферромагнитное упорядочение магнитных моментов с температурой Кюри около 90 К.

Исследованные шпинели с хромом имеют общую формулу ACr_2X_4 (где X = S, Se), обычно создаваемую твердыми растворами типа $A_{1-x}A'_{x}Cr_{2}X_{4}$ во всей области концентраций иона А'. Однако для ряда с A' = Cu предельная растворимость встречается, если A = Zn, Cd, Mn. Например, для твердых растворов Cd_{1-x}Cu_xCr₂S₄ однородные соединения получены для концентрации меди как при $X \le 0.2$, так и при $X \ge 0.9$. Они являются нормальными ферримагнитными шпинелями с проводимостью *p*-типа для $X \leq 0.2$ и ферромагнитными шпинелями с проводимостью р-типа для $X \ge 0.9$. В случае же твердых растворов Cd_{1-x}Cu_xCr₂S₄, где CdCr₂S₄ — ферромагнетик с полупроводниковой проводимостью *p*-типа и CuCr₂S₄ — ферромагнетик с металлической проводимостью р-типа, можно получать однофазные соединения только для концентрации меди $X \leq 0.2$. Для шпинелей ряда Cd_{1-x}Cu_xCr₂S₄ наблюдаются ферримагнитное упорядочение магнитных моментов, локализованных на ионах хрома, и метамагнитные переходы.

Насколько нам известно, в настоящее время отсутствуют данные о рентгеновских спектрах испускания и поглощения атомов в твердых растворах $Cd_{1-x}Cu_xCr_2S_4$, поэтому для проверки достоверности получаемых результатов произведен расчет шпинелей указанного ряда при переходе от чистого $CdCr_2S_4$ к чистому CuCr₂S₄ с изменением концентрации меди в $Cd_{1-x}Cu_xCr_2S_4$. Ранее нами в работе [2] был проведен расчет спектров соединений CdCr₂S₄ и CuCr₂S₄ и показано хорошее соответствие основных особенностей экспериментальных и теоретических рентгеновских эмиссионных спектров и SK-краев поглощения с локальными парциальными плотностями электронных состояний.

1. Методика расчета

Кристаллическая структура шпинелей, имеющих пространственную симметрию $O_h^7 - F3dm$, представляет плотную гранецентрированную кубическую упаковку атомов аниона, образующих тетраэдрические и октаэдрические пустоты, частично занимаемые катионами.

Соединения $Cd_{1-x}Cu_xCr_2S_4$ имеют структуру нормальной шпинели, так как катионы кадмия или меди располагаются в тетраэдрических, а катионы хрома — в октаэдрических позициях. Таким образом, на формульную единицу ACr_2S_4 приходится один катион Me(Cd, Cu) в тетраузле и два катиона хрома в октаузле [3]. Положения атомов в кластере шпинели определялись с помощью формул для длин тетраэдрических l_m и октаэдрических связей l_o катион-анион [4]

$$l_m = \sqrt{3(1/8 + \delta)}a$$
 и $l_o = (1/4 - \delta)a$,

где *а* — параметр кубической элементарной ячейки шпинели, состоящей из 56 атомов, 32 из которой анионы серы, образующие ГЦК решетку; $\delta \equiv u - 3/8$, *u* — анионный параметр, определяющий положение атомов серы и учитывающий их смещения из идеальных позиций в направлении [111]. В данной работе *a* = 10.242 Å, *u* = 0.39 для CdCr₂S₄; *a* = 9.814 Å, *u* = 0.384 для CuCr₂S₄ [4]. Шпинели нестехиометрического состава $Cd_{1-x}Cu_xCr_2S_4$, где x = 0.05, 0.1, 0.15, 0.2, представляют собой упорядоченную подрешетку атомов серы, в октаэдрических пустотах которой размещаются катионы хрома, а в тетраэдрических позициях некоторая часть катионов Cd случайным образом замещается катионами Cu в соответствии с атомной концентрацией меди в соединении (5, 10, 15 и 20%) [5].

В настоящей работе для теоретического расчета электронной структуры и SK-краев поглощения использовалась программа FEFF8, авторами которой являются Рер, Альберс и Анкудинов [6]. Эта программа основана на приближении многократного рассеяния высокого порядка, в котором рассчитывается сечение рентгеновского фотопоглощения.

Расчет формы SK-спектров исследуемых шпинелей проводились в рамках единой модели, предложенной ранее [1,2]. Однако в данном случае при построении самосогласованного кристаллического потенциала использовалась модель нелокального обменно-корреляционного потенциала, основанная на приближении Дирака–Фока для остовных, а Хедина–Лунквиста только для валентных электронов, причем процедура самогласования кристаллического потенциала также проводилась на кластере до 30 атомов, а число итераций достигало 10.

2. Результаты расчета и их обсуждение

На рисунке представлены теоретические SK-края поглощения тройных соединений CdCr₂S₄ и CuCr₂S₄, а также их твердых растворов $Cd_{1-x}Cu_xCr_2Se_4$, где x = 0.05, 0.1, 0.15, 0.2. Совмещение теоретических и экспериментальных [7] SK-краев поглощения проводилось в единой энергетической шкале, на нуль которой принято положение основного максимума *а* SK-края. Сравнение XANES расчета SK-края поглощения и локальных парциальных плотностей состояний показывает, что дно зоны проводимости в CdCr₂S₄ образуют смешанные свободные *p*-состояния серы и *s*- и *p*-состояния кадмия и хрома. Максимум b экспериментального SK-края поглощения связан с гибридизацией р-состояний серы и s-состояний кадмия. Особенности c' и c', не выявленные данным расчетом, но существующие на экспериментальном SK-крае, вырождаются в один максимум с, который также связан с гибридизацией р-состояний серы с р-состояниями хрома и кадмия, а также с s-состояниями хрома.

Аналогичное сравнение в CuCr₂S₄ показывает, что дно зоны проводимости здесь образует сильно смешанные свободные *p*-состояния серы, *s*- и *p*-состояния меди, а также *s*- и *p*-состояния хрома. "Наплыв" *b* экспериментального SK-края поглощения, выявленный настоящим расчетом, можно интерпретировать как примесь *s*-состояний меди и *p*-состояний хрома к свободным *p*-состояниям серы. Особенности c' и c'', существующие

Теоретические SK-края поглощения в $Cd_{1-x}Cu_xCr_2S_4$ и экспериментальные SK-края поглощения в $CdCr_2S_4$ и $CuCr_2S_4$ [7].

на экспериментальном SK-крае, вырождаются в один наплыв c на теоретическом крае поглощения, который можно связать с гибридизацией p-состояний серы с sи p-состояниями хрома и меди, что подтверждается соответствующими максимумами кривых парциальных плотностей состояний меди и хрома. Аналогично особенности d' и d'' на теоретическом крае поглощения вырождаются в один наплыв d, который интерпретируется как примесь к p-состояниям серы p-состояний хрома и меди.

После введения в кластер CdCr₂S₄ атомов меди соответствующей процентной концентрации особенности теоретических SK-краев поглощения b, c и d смещаются в низкоэнергетическую область. Так, для твердого раствора Cd_{1-x}Cu_xCr₂S₄, где x = 5%, сдвиг максимума bсоставляет 0.01 eV, максимума c - 0.09 eV (см. таблицу). С увеличением концентрации меди в кластере особенности теоретических SK-краев поглощения еще больше смещаются в низкоэнергетическую область и для 20% концентрации меди видно, что максимум bсмещен на 0.4 eV, максимум c - на 0.26 eV и максимум d - на 0.48 eV относительно их расположения в чистом соединении CdCr₂S₄. Поскольку во всем диапазоне изменения концентрации меди от 5 до 20% заметна

Кристалл	b	С	d
CdCr ₂ S ₄ , эксперимент [7]	4.25	4.84	
CdCr ₂ S ₄ , FEFF8	4.25	4.77	5.98
$Cd_{0.95}Cu_{0.05}Cr_{2}S_{4}$	4.25	4.68	5.85
$Cd_{0.9}Cu_{0.1}Cr_2S_4$	4.24	4.68	5.84
$Cd_{0.85}Cu_{0.15}Cr_2S_4$	4.22	4.57	5.58
$Cd_{0.8}Cu_{0.2}Cr_2S_4$	4.21	4.56	5.54
CuCr ₂ S ₄ , FEFF8	4.08	4.57	5.17
$CuCr_2S_4$, эксперимент [7]	4.12	4.55	5.05

Энергетическое расположение основных особенностей SK-краев поглощения в $Cd_{1-x}Cu_xCr_2S_4$

Примечание. За нуль отсчета принято положение главного максимума поглощения a (eV).

тенденция смещения основных максимумов b, c и d в низкоэнергетическую область, можно предположить, что дальнейшее увеличение числа атомов меди в кластере CdCr₂S₄ приведет к дальнейшему смещению, и при полной замене атомов кадмия атомами меди — к SK-краю поглощения CuCr₂S₄, особенности b, c и d которого лежат ниже по энергии, чем соответствующие особености на экспериментальном SK-крае поглощения CdCr₂S₄. Смещение в низкоэнергетическую область основных особенностей теоретических SK-краев поглощения по мере увеличения концентрации меди в Cd_{1-x}Cu_xCr₂S₄ можно объяснить более глубоким расположением максимумов плотностей состояний меди по сравнению с состояниями кадмия, которое, согласно модели Лотгеринга [8], связано со смещением уровня Ферми в CuCr₂S₄ относительно его положения в CdCr₂S₄, что приводит также различному типу проводимости этих соединений.

Список литературы

- [1] Н.Ю. Сафонцева, И.Я. Никифоров. ФТТ 43, 1, 61 (2001).
- [2] Н.Ю. Сафонцева, И.Я. Никифоров, О.А. Лещева. Химическая физика и мезоскопия 2, 2, 234 (2001).
- [3] Е.В. Гортер. УФН 57, 2, 279 (1955).
- [4] В.М. Таланов. Энергетическая кристаллохимия многоподрешеточных кристаллов. Изд-во РГУ, Ростов-на-Дону (1986). 157 с.
- [5] J. Krok-Kowalski, T. Gron, J. Warczewski, T. Mydlarz, I. Okonska-Kozlowska. Magnetism and Magnetic Materials 168, 129 (1997).
- [6] A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson. Phys. Rev. B 58, 2, 7565 (1998).
- [7] Yu.V. Sukhetsky, A.V. Soldatov, A.N. Gusatinskii. Physica B 176, 219 (1992).
- [8] З. Метфессель, Д. Маттис. Магнитные полупроводники. Мир, М. (1972). 405 с.