11,16,19

Теплота плавления малых кластеров в модели потенциала с эффективной глубиной потенциальной ямы

© Г.А. Мельников

Юго-Западный государственный университет (ЮЗГУ), Курск, Россия E-mail: melnikovga@mail.ru

(Поступила в Редакцию 25 октября 2017 г. В окончательной редакции 27 ноября 2017 г.)

В рамках кластерной модели с использованием парного степенного потенциала взаимодействия Ми с эффективной глубиной потенциальной ямы, глубина которой определяется числом частиц в кластере, получено соотношение для расчета теплоты плавления кластерной системы. Полученное математическое соотношение не содержит эмпирических постоянных и показывает, что отношение теплоты плавления кластера к теплоте плавления макроскопического образца является универсальной функцией числа частиц в кластере и математически описывается квадратом гиперболического тангенса.

DOI: 10.21883/FTT.2018.05.45800.304

1. Введение

Физико-химические свойства кластерных систем и наночастиц, в том числе температура и теплота плавления, подвержены влиянию размерных эффектов. Такие эффекты в малых кластерных системах (РЭМКС) проявляются особенно ярко [1-10]. Для температуры плавления предложено более десятка формул, отображающих зависимость этой величины от размеров (обычно радиуса или диаметра наночастицы), в конечном счете они являются модификациями формулы Томсона [4,5]. В настоящее время фазовые переходы в кластерных системах исследуются теоретически и экспериментально довольно интенсивно. Следует отметить подробное изучение процессов плавления атомных и молекулярных кластеров в работах Смирнова [1-4], Берри (Berry) с сотрудниками [5-10], металлических кластеров в работах Ределя, Гафнера, Гафнера и др. [11–13], металлических и молекулярных кластеров Егорова, Урюпина, Иванова и др. [14,15]. В обзорной статье Макарова приводится обширный список публикаций по проблемам описания процессов плавления в кластерных системах и наночастицах [16]. Описание различных направлений в исследовании размерных эффектов в кластерных системах можно найти в цитируемой литературе работ [1-15]. В данной статье предложен метод расчета температуры и теплоты плавления малых кластеров на основе степенного потенциала взаимодействия между частицами с эффективной глубиной потенциальной ямы, зависящей от числа частиц в кластерной системе, применение которого позволило установить зависимость температуры и теплоты плавления кластера от числа частиц в его структуре.

Потенциал взаимодействия Ми с эффективной глубиной потенциальной ямы

Исследование кластерных систем одноатомных и органических веществ показало, что взаимодействие между частицами кластерной системы можно успешно описать парным степенным потенциалом Ми, однако недостаточно правильно выбрать значения параметров m, n, ε_0 и σ_0 в этом потенциале взаимодействия. Необходимо предположить, что глубина потенциальной ямы в потенциале зависит от числа частиц в кластерной системе и параметров состояния среды. В таком случае глубина потенциальной ямы является эффективной глубиной ε_{eff} и является функцией числа частиц в системе, плотности и температуры. К аналогичному выводу пришли авторы работ [17,18].

Степенной потенциал взаимодействия Густава Ми записывается в виде [19]

$$\varphi(r_{ij}) = \frac{\varepsilon_0}{n-m} \left(\frac{n^n}{m^m}\right)^{\frac{1}{n-m}} \left[\left(\frac{\sigma_0}{r_{ij}}\right)^n - \left(\frac{\sigma_0}{r_{ij}}\right)^m \right], \quad (1)$$

где ε_0 — глубина потенциальной ямы, σ_0 — эффективный диаметр взаимодействующих частиц, $n \ge m$ — целочисленные показатели степени, причем m = 6, n = 9-24.

В предложенной авторами модели классический степенной потенциал Ми (1) необходимо изменить, заменив величину ε_0 на эффективную глубину потенциальной ямы [20]

$$\varepsilon_{\rm eff} = \varepsilon_0 \left[1 + \left(\frac{Z-1}{Z+1} \right)^2 \left(\frac{kT}{\varepsilon_0} \right) \right],$$
(2)

тогда модернизированный степенной парный потенциал Ми запишется в виде

$$\varphi(r_{ij}) = C_{ij}\varepsilon_0 \left[1 + \left(\frac{Z-1}{Z+1}\right)^2 \frac{kT}{\varepsilon_0} \right] \left[\left(\frac{\sigma_0}{r_{ij}}\right)^n - \left(\frac{\sigma_0}{r_{ij}}\right)^m \right],$$
$$C_{ij} = \frac{n}{(n-m)} \left(\frac{n}{m}\right)^{\frac{m}{n-m}}, \quad \sigma_0 = \left(\frac{m}{n}\right)^{\frac{1}{n-m}} R_1, \quad (3)$$

где Z — число частиц в кластерной системе.

Для макроскопических образцов установлено эмпирическое правило, согласно которому температура плавления вещества пропорциональна глубине потенциальной ямы парного потенциала взаимодействия [1–4]. В первом приближении это правило выполняется для кластерных систем и наночастиц [21]. С условием модернизации потенциала Ми для кластерных систем можно предположить, что температура плавления такой системы пропорциональна эффективной глубине потенциальной ямы потенциала взаимодействия: $T_m(Z) = c \varepsilon_{\text{eff}}$, c = const.

Эмпирическая постоянная c определится по предельному переходу. Для макроскопического образца при $Z \to \infty$, $T_m(Z) \to T_m(\infty)$, т.е. температура плавления кластерной системы стремится к температуре плавления макроскопического образца. Для эмпирической постоянной получено значение

$$c = \frac{2}{3}(\Phi - 1) = 0.412\dots$$
 (4)

С учетом найденного значения эмпирической постоянной (4) соотношение для расчета температуры плавления кластера, содержащего Z частиц, запишется в виде формулы

$$T_m(Z) = 0.56(56)\dots(\Phi-1)\varepsilon_0\left[1 + \left(\frac{Z-1}{Z+1}\right)^2\right],$$
 (5)

где $\Phi = 1.6180339...$ — "золотое" сечение, которое определяет критерий Линдемана при плавлении кластерных систем [22].

Глубина потенциальной ямы парного потенциала взаимодействия в формуле (5) зависит от вида выбранного потенциала или определяется на основе эмпирических соотношений, поэтому прогнозирование температуры плавления кластерных систем по этой формуле обладает неопределенностью.

Формулу (5) удобно записать так

$$T_m(Z) = \frac{1}{2} T_m(\infty) \left[1 + \left(\frac{Z-1}{Z+1} \right)^2 \right],$$
 (6)

где $T_m(\infty)$ — температура плавления соответствующего объемного образца, которую можно определить экспериментально с хорошей точностью.

Для кластерных систем с конечным числом частиц температура плавления, приведенная к температуре плавления соответствующего макроскопического образца, является универсальной функцией числа частиц в их структуре.

Используя определение гиперболического тангенса заметим, что его квадрат совпадает с поправкой на учет много частичного взаимодействия в формуле для глубины эффективной потенциальной ямы (2), поэтому запишем

$$\tanh^2 x = \left[\frac{\exp(2x) - 1}{\exp(2x) + 1}\right]^2 = \left(\frac{Z - 1}{Z + 1}\right)^2.$$
(7)

Если под числом частиц в структуре кластера понимаем величину $Z = \exp(2x)$, то получим универсальную гиперболическую функцию

$$\frac{2T_m(x)}{T_m(\infty)} = 1 + \tanh^2 x. \tag{8}$$

Полученное соотношение для расчета температуры плавления кластерных систем (8) не содержит эмпирических постоянных, удовлетворяет предельным переходам и согласуется с экспериментальными данными, полученными различными методами.

3. Теплота плавления малых кластерных систем

Для макроскопических образцов их теплота плавления пропорциональна температуре плавления, по крайней мере это хорошо выполняется для кристаллов благородных газов, органических веществ и металлов. Зависимость теплоты плавления нанокластеров от их размера для золота, меди, алюминия и кобальта подробно проведено в работе [23] путем моделирования методом Монте-Карло с использованием многочастичного потенциала Гупта и показано, что зависимости температуры $T_m(R)$ и теплоты плавления $\Delta H_m(R)$ близки к линейным в координатах $T_m(R)$, $\Delta H_m(R) = f[R^{-1}, Z^{1/3}]$.

В первом приближении размерные зависимости для теплоты плавления и температуры плавления для нанокластеров должны совпадать по функциональному виду [23]. Это подтверждается в рамках приближения "скин-слоя" для размерного эффекта, в котором зависимость теплоты плавления от размеров кластера определяется формулой [24]

$$\frac{\Delta H_m(R)}{\Delta H_m(\infty)} = \left[1 - \left((R+\delta)/R_0 - 1\right)^{-1}\right],\tag{9}$$

где δ — величина скин-слоя, $R_0 = (3 - d)a$ — характерный размер объекта, d, a — размерность и эффективный диаметр объекта.

Опираясь на положение о тождественной функциональной зависимости температуры и теплоты плавления кластерных систем от их размера и численного состава,

N₂	Substance	$\Delta H_m(\infty)$		Потенциал Леннард-Джонса [26,27]		$\Delta H_m(13)$		
		J/mole	Κ	σ_0, A	$\varepsilon_0/k, { m K}$	J/mole	K	$\Delta H_m(13)/\varepsilon_0$
1	Neon [27]	335	40.3	3.090	35.6	290.5	35.0	1.00
				2.775	36.8 [30]			0.95
				2.91(*)	44.3			0.79
2	Argon [27]	1177	141.7	3.405	119.8	1021	122	1.02
				3.401	116.8 [30]			1.04
				4.05	122.5			1.00
3	Krypton [27]	1638	197.1	3.600	171.0	1232	148	0.87
				3.601	164.6 [30]			0.90
				4.12	188.8			0.78
4	Xenon [27]	2900	276.8	4.020	243.4	2515	303	1.24
				4.055	218.2 [30]			1.39
				4.79	225.9			1.34
5	Oxygen [27]	445	53.5	3.880	118.0	335	40.3	0.34
				3.72	158.6			0.25
6	Nitrogen [27]	720	86.6	3.613	103.8	624	75.1	0.73
				4.42	96.0			0.78
7	Benzene [28]	9910	1193	5.26	531	8594	1034	1.95
				2.926	888 [29]			1.16
8	Toluene [28]	6633	798	5.64	575	5753	692	1.20

Теплота плавления кластера Z(13) для некоторых веществ

(*) Примечание. Третья строка в разделе потенциал Леннард-Джонса относится к параметрам потенциала Морзе [27], для бензола — вторая строка к параметрам потенциала Кихары [29].

на основе соотношения (8) для теплоты плавления получим формулу

$$\frac{\Delta H_m(x)}{\Delta H_m(\infty)} = \frac{1}{2} \left(1 + \tanh^2 x \right), \tag{10}$$

где $x = \frac{1}{2} \ln(Z)$ — параметр плавления, определяющий теплоту плавления кластерной системы, содержащей Z частиц.

Таким образом, согласно полученному соотношению (10) теплота плавления кластерной системы определяется числом частиц в такой системе и свойствами гиперболического тангенса. В частности для кластера из трех частиц (Z = 3), т. е. тримера вещества, для теплоты плавления тримера получим

$$\Delta H_m(Z=3) = \frac{5}{8} \Delta H_m(\infty) \approx \frac{1}{\Phi} \Delta H_m(\infty).$$
(11)

Теплота плавления макроскопических кристаллов $\Delta H_m(\infty)$ определяется экспериментально с хорошей точность, что позволяет оценить теплоту плавления тримера вещества $\Delta H_m(Z = 3)$ согласно формуле (11) так же с приемлемой точностью и сравнить с результатами машинного моделирования [25].

В таблице приведены результаты расчета теплоты плавления для кластеров благородных газов и некоторых углеводородов. В стандартных теплофизических измерениях можно зафиксировать изменение температуры объекта порядка 0.05°, следовательно согласно формуле (6) для кластеров аргона (температура плавления 83.78 К) размерный эффект по температуре можно

зафиксировать экспериментально в кластерах, содержащих порядка 3000 атомов. Радиус кластера составляет порядка 20 nm, что в настоящее время является пределом в получении наночастиц такого размера.

Анализ таблицы показывает, что теплота плавления кластера с числом частиц Z = 13, отнесенная к глубине потенциальной ямы потенциала Леннард-Джонса для благородных газов лежит в пределах 0.87-1.24, однако параметры потенциала Леннард-Джонса, полученные различными методами, значительно разнятся. В работе [26] приводятся данные для параметров потенциала Леннард-Джонса для благородных газов, метана и азота, которые показывают, что различные источники приводят значения для параметров потенциала с разбросом в десятки процентов. Например, для криптона глубина потенциальной ямы принимает значения от 158.0 К до 191.4 К (различие составляет порядка 20%), для аргона это различие еще больше от 93.3 К до 141.2 К (различие составляет порядка 50%), поэтому отношение $\Delta H_m(13)/\varepsilon_0$ можно принять равным единице с погрешностью порядка 20%. Одной из особенностей кластера с числом частиц Z = 13 заключается в том, что теплота плавления такого кластера равна глубине потенциальной ямы парного степенного потенциала взаимодействия для благородных газов.

В работе [2] приводятся данные для энергий нижних конфигурационных состояний леннард-джонсовского кластера с Z = 13, из которых следует, что переход кластера из твердого состояния в жидкое сопровождается выделением энергии $\Delta H_m(13) = 0.56 - 0.94$ в единицах

глубины потенциальной ямы, что согласуется с представленными в работе вычислениями.

Для органических жидкостей применение потенциала Леннард-Джонса не совсем корректно, поэтому для бензола были взяты кроме параметров этого потенциала значение параметров потенциала Кихары [29], тогда $\Delta H_m(13)/\varepsilon_{\text{Kich.}} = 1.16$ в единицах глубины потенциальной ямы потенциала Кихары.

Полученное соотношение (8) может служить независимым методом для оценке теплоты плавления кластерных систем различного состава.

4. Заключение

В литературе имеется обширный теоретический и экспериментальный материал по исследованию размерного эффекта для различных физических характеристик кластерных систем и наночастиц. Одним из важных выводов таких исследований является установление факта, что температура и теплота плавления кластеров определяется глубиной потенциальной ямы потенциала взаимодействия между частицами, поэтому остается важнейшей задачей физики кластерных систем поиск реальных потенциалов взаимодействия между одноатомными частицами и сложными молекулами. Применение сложных потенциалов, например потенциала сглаженных коллапсирующих сфер с отрицательной кривизной в области отталкивания объясняет существование фазовых переходов и описывает аномальное поведение кластерной системы, однако можно с успехом использовать более простые двухчастичные потенциалы с меняющейся глубиной потенциальной ямы.

Глубину потенциальной ямы парного потенциала взаимодействия необходимо считать функцией либо параметров состояния системы, либо функцией числа частиц в структуре кластеров. В этом случае температура и теплота плавления становится функцией числа частиц в кластерной системе. Удачно найденная функция, задающая эффективную глубину потенциальной ямы парного потенциала взаимодействия от числа частиц в кластере с учетом предельного перехода к макроскопическим образцам, позволяет получить универсальное математическое соотношение, не содержащее эмпирических постоянных и описывающее размерные эффекты в кластерных системах.

Сложная процедура описания взаимодействия между частицами в кластерах с помощью многочастичных потенциалов может быть заменена описанием посредством двухчастичного потенциала взаимодействия с эффективной глубиной потенциальной ямы. Наиболее общим двухчастичным степенным потенциалом взаимодействия является потенциал Ми, позволяющий так же варьировать показатель степени в отталкивающей части в широких пределах, поэтому применение модифицированного потенциала Ми для описания кластерных систем вполне оправдано. Автор выражает благодарность Н.М. Игнатенко за полезные обсуждения материала и ценные замечания.

Список литературы

- [1] Б.М. Смирнов. УФН 164, 11, 1165 (1994).
- [2] Р.С. Берри, Б.М. Смирнов. УФН 175, 4, 367 (2005).
- [3] Р.С. Берри, Б.М. Смирнов. УФН 179, 2, 147 (2009).
- [4] Р.С. Берри, Б.М. Смирнов. УФН 183, 10, 1029 (2013).
- [5] R.S. Berry, J. Jellinek, G. Natanson. Phys. Rev. A 30, 2, 919 (1984).
- [6] R.S. Berry. Chem. Rev. 93, 7, 2379 (1993).
- [7] R.S. Berry. Nature **393**, 212 (1998).
- [8] R.S. Berry. Theory of Atomic and Molecular Clusters. (Springer Berlin) (1999).
- [9] R.S. Berry, B.M. Smirnov. ЖЭТФ 125, 2, 414 (2004).
- [10] J. Jellinek, T.L. Beck, R.S. Berry. J. Chem. Phys. 84, 5, 2783 (1986).
- [11] Л.В. Редель, Ю.Я. Гафнер, С.Л. Гафнер. ФТТ 57, 10, 2061 (2015).
- [12] С.Л. Гафнер, Л.В. Редель, Ю.Я. Гафнер. ЖЭТФ 141, 3, 488 (2012).
- [13] Ж.В. Головенько, С.Л. Гафнер, Л.В. Редель, Ю.Я. Гафнер. Изв. вузов. Физика 1–2, 178 (2011).
- [14] В.М. Егоров, О.Н. Урюпин, Ю.В. Иванов. ФТТ 57, 9, 1798 (2015).
- [15] В.М. Егоров, В.А. Марихин, Л.П. Мясникова. ФТТ 50, 1, 123 (2008).
- [16] Г.Н. Макаров. УФН 180, 2, 185 (2010).
- [17] Hong-Chul Park, Ki-Taek Byun, Ho-Young Kwak. Chem. Eng. Sci. 60, 7, 1809 (2005).
- [18] A. Kh. Al-Matar, A.H. Tobgy, I.A. Sulieman. Mol. Simulation 34, 3, 289 (2008).
- [19] G. Mie. Ann. Phys. 11, 8, 657 (1903).
- [20] G.A. Melnikov. IOP Conf. Ser. Mater. Sci. Eng. 168, 012020 (2017).
- [21] S.Yu. Davydov. Semicond. Phys. Technology 49, 1683 (2015).
- [22] G.A. Melnikov, Н.М. Игнатенко, В.Г. Мельников, Е.Н. Черкасов, О.А. Манжос. Моделирование структур, строение вещества, нанотехнологии. Сб. материалов III Межд. научн. конф. Тула (2016). С. 49–54.
- [23] Н.Ю. Сдобняков, П.В. Комаров, А.Ю. Колосов, Н.В. Новожилов, Д.Н. Соколов, Д.А. Кульпин. Конденсированные среды и межфазные границы 15, 3, 337 (2013).
- [24] Q. Jiang, H.X. Shi, M. Zhao. J. Chem. Phys. 111, 5, 2176 (1999).
- [25] D.J. Wales, J.P.K. Doye, A. Dullweber, M.P. Hodges, F.Y. Naumkin, F. Calvo, J. Hernández-Rojas, T.F. Middleton. The Cambridge Cluster Database (2012). http://www-wales.ch.cam.ac.uk/CCD.html
- [26] F. Cuadros, I. Cachadina. Mol. Eng. 6, 319 (1996).
- [27] A. Matsumoto. Verlag der Zeitschrift für Naturforschung, T'ubingen. http://znaturforsch.com (2011).
- [28] G.J. Graziano. Phys. Chem. B 109, 2, 981 (2005).
- [29] C. Vega, S. Lago, R. Pospisil, S. Labik, A. Malijevsky. J. Phys. Chem. 96, 1895 (1992).
- [30] Oh. Seung-Kyo. J. Thermodynamics ID 828620, 29 (2013).