03,11

Новая возможная структура силицида Mg₂Si под давлением

© Ю.В. Луняков

Институт автоматики и процессов управления ДВО РАН, Владивосток, Россия E-mail: luniakov@mail.ru

(Поступила в Редакцию 2 июля 2017 г. В окончательной редакции 20 ноября 2017 г.)

В результате эволюционного поиска, выполненного на основе теории функционала плотности, была обнаружена новая низкосимметричная структура силицида Mg₂Si под давлением. Эта структура может существовать наряду с известными структурами симметрии Pnma и P63/mmc и является стабильной под давлением около 20 GPa. Параметры решетки обнаруженной структуры лучше согласуются с экспериментальными значениями, чем параметры решетки известных структур. Работа была выполнена с использованием оборудования ЦКП Дальневосточный вычислительный ресурс и суперкомпьютерного комплекса МГУ им. М.В. Ломоносова при финансовой поддержке ведущих научных школ, грант президента РФ № НШ-6889.2016.2, и программы фундаментальных исследований ДВО РАН Дальний Восток, грант № 0262-2015-0132.

DOI: 10.21883/FTT.2018.05.45778.243

1. Введение

Силицид магния Mg₂Si представляет собой один из полупроводниковых силицидов, который является экологически чистым термоэлектрическим полупроводником с шириной запрещенной зоны около 0.6 eV для непрямых переходов [1,2]. Высокий КПД теплоЭДС делает его достаточно перспективным материалом для полупроводниковой технологии с плотностью потока энергии 2.5–3 kW/m² и достаточно большой термической проводимостью — около 7.9 W/m · K [3]. Известно также успешное применение этого силицида в ультракрасных детекторах, работающих в диапазонах длин волн 1.2–1.8 mm [4].

Силицид Mg₂Si имеет такую же атомную структуру, как и оксиды и сульфиды щелочных металлов Li₂O, Na₂S, K₂S, Li₂S и Rb₂S. При обычных условиях он кристаллизуется в кубической решетке типа антифлюорит [5], пространственная группа симметрии 225, или Fm3m. При высоких давлениях Mg₂Si претерпевает следующие фазовые переходы: антифлюорит — анти-коттунит (пространственная группа симметрии 62, или Pnma) → структура типа Ni₂In (пространственная группа симметрии 194, или Р6₃/mmc). В 1964 г. была обнаружена новая гексагональная структура Mg₂Si под давлением выше 2.5 GPa и при температуре выше 900°С [6]. В 2008 г. были обнаружены еще два фазовых перехода — кроме известного фазового перехода из кубической структуры в структуру антифлюорита под давлением $P \sim 7.5 \,\mathrm{GPa}$ наблюдался фазовый переход из структуры антифлюорита в гексагональную структуру типа Ni₂In под давлением $P \sim 21.3$ GPa [7]. В одной из работ [8] под давлением 11.1-37 GPa была обнаружена моноклинная структура силицида Mg₂Si. Расчеты из первых принципов позволяют объяснить наблюдаемые

фазовые переходы, однако параметры решетки рассчитанных структур при высоких давлениях P > 10 GPa сильно отличаются от экспериментальных. Так, например, расчеты в работе [9], выполненные на основе теории функционала плотности (ТФП), дают следующие параметры решетки: a = 6.595 Å, b = 3.995 Å, c = 7.734 Å, тогда как в эксперименте они получаются следующие: a = 6.035 Å, b = 4.591 Å, c = 6.784 Å [10]. Расхождение между теорией и экспериментом по параметрам решетки 9-14% является слишком большим для такого достаточно хорошо зарекомендовавшего себя метода расчетов, как ТФП. Это позволяет предположить, что реальная структура Mg₂Si при высоких давлениях может быть и гораздо более сложной, чем структура антикоттунита или Ni₂In.

Как свидетельствуют результаты эволюционного поиска из первых принципов, кроме известных структур типа Ni₂In и антикоттунита, при высоких давлениях $P > 20 \,\text{GPa}$ также может существовать структура пространственной группы симметрии 63 (Cmcm), получающаяся путем сдвига атомов Mg и Si в двух смежных ячейках [11]. Вьетнамские ученые с помощью компьютерного моделирования на основе ТФП обнаружили еще одну возможную структуру Mg₂Si пространственной группы симметрии 12 (C2/m) при давлениях $P > 38 \,\text{GPa}$ [12]. Для корректного описания фазовых переходов антифлюорит — антикоттунит — структура типа Ni₂In необходимо использовать ячейку, в которую входят не менее трех формульных единиц Mg₂Si (Z = 3). В ранних работах Дюжевой и др. [13] на основе данных радиографических исследований было сделано предположение, что при высоких давлениях и комнатных температурах в силицидах Mg₂Si и Mg₂Ge возможны полиморфные изменения, в связи с удвоением периода решетки и соответственно увеличением Z до 15 или 16. Чтобы проверить это предположение, была поставлена задача провести эволюционный поиск, подобный выполненному в работе [11], с Z = 15 и Z = 16.

2. Методика расчета

Для определения структур с минимальной энтальпией был использован алгоритм Universal Structure Predictor: Evolutionary Xtallography (USPEX) [14,15], который позволяет найти положение глобального минимума на основе методов эволюционного поиска [16,17], используя в качестве начального приближения случайный набор структур. В процессе эволюционного поиска было генерировано несколько десятков поколений из 45-48 структур в зависимости от общего количества атомов в суперячейке. В первом поколении структуры генерировались случайным образом, во всех последующих поколениях для генерации следующих структур использовалось 60% структур предыдущего поколения с наименьшей энергией. 70% из них были сгенерированы с помощью оператора наследования, а 30% были сгенерированы применением оператора мутации решетки. Сходимость считалась достигнутой, если наиболее выгодная по энергии структура не меняется в течение 30 поколений подряд. Все структуры, полученные с помощью применения эволюционного алгоритма, были затем отрелаксированы с использованием метода сопряженных градиентов, реализованном в программе VASP [18], с точностью по энергии до 0.1 meV на ячейку. Энергия обрезания плоско-волнового базиса при этом составляла $E_{\rm cut} = 300 \, {\rm eV}$, обменно-корреляционный потенциал был выбран в параметризации Пердью-Бурке-Эрнзерхофа [19] в приближении обобщенного градиента. Для численного интегрирования в процессе эволюционного поиска плотность k-точек была задана равной $2\pi \cdot 0.05 \,\text{\AA}^{-1}$. Положения атомов оптимизировались до достижения сходимости по силам $\sim 10^{-2}\,\mathrm{eV/\AA}$ и сходимости по энергиям $\sim 10^{-6}$ eV.

Для энтальпии использовалось следующее определение при низкой температуре $T \rightarrow 0$: $F = E + P \cdot V$, где E — полная энергия, P — внешнее давление, V — объем примитивной ячейки.

Внешнее давление было задано равным 20 GPa, так как согласно данным предыдущих расчетов [11] при этом давлении уже появляется новая структура силицида Mg_2Si , но еще не происходит фазовый переход антикоттунит $\rightarrow Ni_2In$.

3. Результаты и обсуждение

На рис. 1 приведены стабильные структуры силицида Mg_2Si с минимальной энергией, полученные в результате эволюционного поиска при внешнем давлении P = 20 GPa. Как мы можем видеть на рисунке, наиболее энергетически выгодной структурой является

Рис. 1. Результаты эволюционного поиска оптимальной структуры силицида Mg_2Si при давлении P = 20 GPa.

структура с Z = 16 или 48 атомами на ячейку. По мере приближения к глобальному минимуму разница в энергии между наиболее выгодной структурой состава Mg₃₂Si₁₆ и следующей наиболее выгодной структурой состава Mg₃₀Si₁₅ приближается к 0.58 eV на формульную единицу Z = 1 или 146 meV на атом. Это позволяет предположить, что лучшей является структура с четным числом атомов и четным числом Z.

Симметрия наиболее энергетически выгодных структур, показанных на рис. 1, была определена утилитой FINDSYM [20]. Определение симметрии зависит от параметра точности или так называемой допустимой ошибки, с которой заданы положения атомов в ячейке. Как показано в табл. 1, если параметр точности задать равным нулю, то симметрия определяется как самая низкая — P₁. По мере возрастания параметра точности соответственно возрастает и симметрия она становится Pnma или P63/mmc в зависимости от структуры. Для разных оптимальных структур Mg₃₂Si₁₆, показанных на рис. 1, при параметре точности в диапазоне 0.01-0.1 Å получаются структуры с симметрией Рпта или Р63/ттс. Таким образом, воспроизводятся все известные структуры типа антифлюорита и Ni₂In, существующие при высоких давлениях.

Поскольку из общих соображений не всегда возможно определить, какая симметрия является наиболее оптимальной, были выполнены расчеты всех структур, приведенных в табл. 1, в диапазоне давлений 19–24 GPa, с плотностью *k*-точек более $2\pi \cdot 0.02$ Å⁻¹ и энергией обрезания плоско-волнового базиса $E_{\rm cut} = 500$ eV. Чтобы минимизировать ошибку, связанную с разными ячей-ками, для расчетов использовалась одинаковая ячейка симметрии P₁, которая содержит 16 формульных единиц силицида Mg₂Si (Z = 16). На рис. 2 показан вид сверху гексагональной поверхности (110), где жирной линией

Параметр точности (Å)	Структура	Z	Постоянные решетки (Å)		
0	$1 (P_1)$	16	7.018		15.05
0.001	$1 (P_1)$	8	5.512	4.345	15.05
0.002	$11 (P2_1/m)$	8	5.512	4.345	15.05
0.005	25 (Pmm2)	8	5.512	4.345	15.05
0.01	62 (Pnma)	4	5.512	4.345	7.525
0.1	194 (P6 ₃ /mmc)	2		4.344	5.512
	1 (P ₁), 10.4 GPa	8	5.703	4.456	7.721
	62 (Pnma), 10.4 GPa	4	6.607	4.029	7.732
	62 (Pnma), 10.4 GPa [7]	4	6.035	4.591	6.784

Таблица 1. Структуры, определенные утилитой FINDSYM [20], в зависимости от параметра точности (допустимого сдвига) атомов

Примечание. В нижних строчках таблицы для сравнения приведены данные из других расчетов [21] и экспериментов [7].

выделена использованная в расчетах ячейка минимальной симметрии P₁. Для иллюстрации на рис. 2 выделены также ячейка симметрии P2₁/m (Z = 8), ячейка симметрии Pmm2 (Z = 8), ячейка симметрии Pnma (z = 4) и ячейка симметрии P6₃/mmc (Z = 2).

Для исключения влияния размерных эффектов расчеты всех полученных структур, приведенных в табл. 1, были выполнены с использованием одинаковой ячейки, которая содержит 16 формульных единиц силицида Mg_2Si (Z = 16). Зависимость энтальпии этих структур от давления показана на рис. 3. Мы видим, что при давлениях около 20 GPa линии, соответствующие разным структурам, практически неразличимы невооруженным взглядом. Максимальная разница в энергиях разных структур не превышает 0.3 meV на ячейку, что составляет порядка kT при T = 3 К. При давлениях бо́льших $P = 22.3 \,\text{GPa}$, т.е. после прохождения фазового перехода антикоттунит — структура типа Ni₂In [11], наиболее выгодной по энергии структурой является структура типа Ni₂In с симметрией P6₃/mmc. Вполне вероятно, что при давлениях около 20 GPa могут существовать разные структуры, что можно легко объяснить, если рассмотреть, как они переходят друг в друга.

Рис. 2. Зависимость энтальпии различных структур Mg_2Si от давления.

Рис. 3. Границы ячеек разной симметрии из вида сверху на гексанальную поверхность.

Как показано в табл. 2, в ячейке самой высокой симметрии P63/mmc атомы Mg и Si расположены в позициях, определяющихся рациональными дробями. Понижение симметрии P63/mmc -> Pnma происходит в результате смещения базисных атомов из высокосимметричных позиций, в результате чего их координаты теперь определяются иррациональными параметрами х и z. Понижение симметрии Pnma — Pmm2 происходит за счет сдвига базисных атомов в соседних ячейках, вследствие чего происходит удвоение периода в направлении 111. Как мы видим из табл. 2, базисные атомы при этом становятся в высокосимметричные положения на поверхности (110), кроме атомов Mg(2g) и Mg(2h). Смещение базисных атомов из симметричных положений приводит к последующему понижению симметрии $Pmm2 \rightarrow P2_1/m$. И, наконец, смещение базисных атомов из симметричных положений в направлении 111 приводит к понижению симметрии до P21/m, а затем и до минимальной — Р₁.

Для сравнения с экспериментальными данными в табл. 1 были добавлены три строки, соответствую-

8	6	7

Z, параметры решетки	Структура	Атом	Координаты		
	$P2_1/m$	Mg $(2e)$	x	1/4	z
Z = 8	(11)	Si(2e)	-x	3/4	-z
		Mg (1 <i>a</i>)	0	0	z
Z = 8	Pmm2	Mg (1b)	0	1/2	z
	(25)	Mg $(1c)$	1/2	0	z
a = 5.512 Å		Mg $(1d)$	1/2	1/2	z
b = 4.345 Å		Mg $(2g)$	0	$\pm y$	z
c = 15.05 Å		Mg $(2h)$	1/2	$\pm y$	z
		Si $(1a)$	0	0	z
		Si (1b)	0	1/2	z
		Si $(1c)$	1/2	0	z
		Si (1 <i>d</i>)	1/2	1/2	z
	Pnma	Mg (4 <i>c</i>)	x	1/4	z
Z = 4	(62)		-x + 1/2	3/4	z + 1/2
			-x	3/4	-z
a = 5.512 Å			x + 1/2	1/4	-z + 1/2
b = 4.345 Å		Si $(4c)$	х	1/4	z
$c=7.525\mathrm{\AA}$			-x + 1/2	3/4	z + 1/2
			-x	3/4	-z
			x + 1/2	1/4	-z + 1/2
Z = 2	P6 ₃ /mmc	Mg2 (2 <i>a</i>)	0	0	0
	(194)		0	0	1/2
$a = 4.344 \text{\AA}$		Si $(2c)$	2/3	1/3	3/4
c = 7.512 Å			1/3	2/3	1/4

Таблица 2. Положения базисных атомов в ячейках Mg₂Si различной симметрии

щие структурам под давлением 10.4 GPa. Две из них представляют собой расчетные значения, полученные в данной работе и в работе китайских коллег [21], а последняя строка — значения, полученные в экспериментальной работе [7]. Параметры решетки структуры симметрии P_1 , рассчитанные для давления P = 10.4 GPa, отличаются от экспериментальных на 0.7%, 4.9% и 2.2% для a, b, c соответственно. Это меньше, чем различие с экспериментом расчетных значений параметров решетки структуры симметрии Pnma, полученных как в данной работе, так и в работе китайских коллег [21] — 9%, 12% и 14%. Однако структура симметрии Рпта под давлением P = 10.4 GPa более выгодна по энергии, чем структура структуры симметрии Р1. Тем не менее, как мы можем видеть на рис. 2, разница в энергии очень невелика и составляет всего лишь 0.13 eV на формульную единицу. Результаты расчетов не позволяют однозначно объяснить, почему в эксперименте могут наблюдаться параметры решетки, лучше согласующиеся с параметрами решетки низкосимметричной структуры. Можно предположить, что в экспериментах определенное влияние оказывает влажность и гидролизация, которым, как известно, подвержен силицид Mg₂Si.

4. Заключение

Новая структура силицида Mg_2Si низкой симметрии P_1 , обнаруженная в результате эволюционного поиска, является стабильной в диапазоне давлений 20-24 GPa. Энергия низкосимметричной структуры в этом диапазоне давлений почти не отличается от энергии известных структур симметрии Pnma и P_63/mmc в пределах точности используемого метода расчета. Параметры решетки низкосимметричной структуры под давлением P = 10.4 GPa более близки к экспериментальным значениям, чем параметры решетки структуры с симметрией Pnma.

Список литературы

- [1] N.O. Folland. Phys. Rev. 158, 764 (1967).
- [2] A. Stella, A.D. Brothers, R.H. Hopkins, W. Lynch. Phys. Status Solidi B 23, 697 (1967).
- [3] Processing, Properties, and Design of Advanced Ceramics and Composites: Ceramic Transactions / Ed. G. Singh, A. Bhalla, M.M. Mahmoud, R.H.R. Castro, N.P. Bansal, D. Zhu, J.P. Singh, Y. Wu. John Wiley & Sons (2016). V. 259.
- [4] A. Vantomme. Appl. Phys. Lett. 70, 1086 (1997).
- [5] E.A. Owen, G.D. Preston. Proc. Phys. Soc. 36, 341 (1924).
- [6] P. Cannon, E.T. Conlin. Science. 145, 487 (1964).
- [7] J. Hao, B. Zou, P.W. Zhu, C.X. Gao, Y.W. Li, D. Liu, K. Wang, W.W. Lei, Q.L. Cui, G.T. Zou. Solid State Commun. 149, 689 (2009).
- [8] F. Zhu, X. Wu, Sh. Qin, J. Liu. Solid State Commun. 152, 2160 (2012).
- [9] H. Yu, F. Peng, D. Chen, Y.L. Jia, M.L. Liu, B.P. Dong. Physica B 406, 2070 (2011).
- [10] F. Yu, J.X. Sun, W. Yang, R.G. Tian, G.F. Ji. Solid State Commun. 150, 620 (2010).
- [11] Yu.V. Luniakov. Solid. State Phenom. 249, 9 (2016).
- [12] T.D. Huan, V.N. Tuoc, N.B. Le, N.V. Minh, L.M. Woods. Phys. Rev. B 93, 094109 (2016).
- [13] Т.И. Дюжева, С.С. Кабалкина, Л.Ф. Верещагин. Кристаллография 17, 804 (1972).
- [14] A.R. Oganov, C.W. Glass. J. Chem. Phys. 124, 244704 (2006).
- [15] A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu. Comp. Phys. Commun. 184, 1172 (2013).
- [16] A.R. Oganov, A.O. Lyakhov, M. Valle. Acc. Chem. Res. 44, 227 (2011).
- [17] A.R. Oganov. Modern methods of crystal structure prediction. John Wiley & Sons (2011). 274 p.
- [18] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [19] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [20] H.T. Stokes, D. Hatch. J. Appl. Cryst. 38, 237 (2005).
- [21] B.-H. Yu, D. Chen. Chin. Phys. B 20, 030508 (2011).