02

Снятие электродинамического запрета и особенности спектров гигантского комбинационного рассеяния в фуллерене С₇₀

© А.М. Полуботко¹, В.П. Челибанов²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия ² Университет ИТМО, 197101 Санкт-Петербург, Россия

e-mail: alex.marina@mail.ioffe.ru, Chelibanov@gmail.com

Поступила в редакцию 27.10.2017 г.

Показано, что в фуллерене C_{70} , который может в каком-то смысле рассматриваться как деформированный фуллерен C_{60} , происходит снятие электродинамического запрета сильного квадрупольного взаимодействия света с молекулами, который реализуется в фуллерене C_{60} , в силу понижения симметрии с икосаэдрической группы Y_h до группы симметрии D_{5h} . Это приводит к появлению линий в спектре гигантского комбинационного рассеяния (ГКР), запрещенных в обычном комбинационном рассеянии (КР), а также запрещенных в спектрах инфракрасного поглощения. Экспериментально измеренный спектр ГКР C_{70} показал присутствие таких линий, что полностью подтверждает наши представления о дипольно-квадрупольном механизме ГКР.

DOI: 10.21883/OS.2018.04.45745.252-17

Исследование фуллеренов методом гигантского комбинационного рассеяния света (ГКР) представляет большой интерес, поскольку может дать новую важную информацию об их структуре и оптических свойствах. Кроме того, как оказалось [1,2], в фуллерене С₆₀ (рис. 1, a) хорошо прослеживается сам механизм ГКР. Это выражается в том, что в этой молекуле реализуется так называемый электродинамический запрет сильного квадрупольного взаимодействия, когда квантовомеханический оператор сильного квадрупольного взаимодействия тождественно равен нулю в силу принадлежности C₆₀ икосаэдрической группе симметрии Y_h и в силу закона электродинамики div $\mathbf{E} = 0$ [1,2]. В спектрах ГКР электродинамический запрет проявляется в отсутствии линий, относящихся к колебаниям, преобразующимся по трехмерному неприводимому представлению T_{1u} (рис. 2), которое описывает трансформационные свойства компонент дипольного момента $d_{e,x}$, $d_{e,y}$ и $d_{e,z}$. Как известно, эти линии запрещены в обычном комбинационном рассеянии (КР) и разрешены в инфракрасном поглощении. Однако они становятся разрешенными и в ГКР. В фуллерене С₆₀ эти линии становятся также запрещенными, но уже в силу электродинамического запрета [1,2]. В настоящей работе мы хотим обратить внимание на то, что в фуллерене C_{70} , (рис. 1, *b*), который в каком-то смысле может рассматриваться как деформированный фуллерен С₆₀, электродинамический запрет снимается в силу понижения симметрии и изменения его группы с Y_h до D_{5h} . Это проявляется в том, что в спектре фуллерена С₇₀ появляются линии, запрещенные в обычном КР и разрешенные в инфракрасном поглощении.

Как нами было показано, усиление спектра КР в явлении ГКР связано с так называемыми сильным дипольным и квадрупольным взаимодействиями, возникающими в поверхностных электромагнитных полях вблизи шероховатой поверхности металла. Усиление дипольного взаимодействия происходит из-за усиления компоненты

Рис. 1. (*a*) Фуллерен С₆₀, (*b*) фуллерен С₇₀.

Рис. 2. Спектр ГКР фуллерена C₆₀. Видно, что в спектре наблюдаются только квадрупольно разрешенные линии, обусловленные колебаниями с неприводимыми представлениями A_g и H_g . Дипольно разрешенные линии с неприводимым представлением T_{1u} отсутствуют.

напряженности поля E_z , перпендикулярной поверхности, в то время как возникновение сильного квадрупольного взаимодействия происходит из-за сильного увеличения одноименных производных электрического поля $\frac{\partial E_i}{\partial x_i}$, а также в связи с особенностями матричных элементов квадрупольных моментов $Q_{e,ii}$, имеющих постоянный знак. Последняя особенность является чисто квантовомеханическим эффектом. Моменты $Q_{e,ii}$ отвечают за сильное квадрупольное взаимодействие, возникающее в системе, и называются основными квадрупольными моментами Q_{main} . Гамильтониан взаимодействия света с молекулой может быть записан в форме

 $\hat{H}_{e-r} = |\mathbf{E}| \frac{(\mathbf{e}^* \mathbf{f}_e^*) e^{i\omega t} + (\mathbf{e} \mathbf{f}_e) e^{-i\omega t}}{2}, \qquad (1)$

где

$$f_{e,i} = d_{e,i} + \frac{1}{2E_i} \sum_k \frac{\partial E_i}{\partial x_k} Q_{e,ik}$$

есть компонента обобщенного вектора взаимодействия света с молекулой,

$$d_{e,i} = \sum_{lpha} e x_{lpha,i},$$
 $Q_{e,i,k} = \sum_{lpha} e x_{lpha,i} x_{lpha,k}$

— компоненты дипольного и квадрупольного моментов электронов молекулы. Здесь (i, k) = (x, y, z).

В симметричных молекулах удобно перейти от квадрупольных моментов $Q_{e,ii}$ к линейным комбинациям моментов $Q_{e,1}$, $Q_{e,2}$ и $Q_{e,3}$, преобразующимся по неприводимым представлениям группы симметрии, которые в общем случае имеют вид

$$\begin{aligned} Q_{e,1} &= b_{11}Q_{e,xx} + b_{12}Q_{e,yy} + b_{13}Q_{e,zz}, \\ Q_{e,2} &= b_{21}Q_{e,xx} + b_{22}Q_{e,yy} + b_{23}Q_{e,zz}, \\ Q_{e,3} &= b_{31}Q_{e,xx} + b_{32}Q_{e,yy} + b_{33}Q_{e,zz}. \end{aligned}$$

При этом моменты $Q_{e,xx}$, $Q_{e,yy}$ и $Q_{e,zz}$ выражаются через $Q_{e,1}$, $Q_{e,2}$ и $Q_{e,3}$ в общем случае следующим образом:

$$\begin{aligned} Q_{e,xx} &= a_{11}Q_{e,1} + a_{12}Q_{e,2} + a_{13}Q_{e,3}, \\ Q_{e,yy} &= a_{21}Q_{e,1} + a_{22}Q_{e,2} + a_{23}Q_{e,3}, \\ Q_{e,zz} &= a_{31}Q_{e,1} + a_{32}Q_{e,2} + a_{33}Q_{e,3}. \end{aligned}$$

Среди моментов $Q_{e,1}$, $Q_{e,2}$ и $Q_{e,3}$ будут линейные комбинации, существенные для рассеяния, имеющие постоянный знак и преобразующиеся по единичному неприводимому представлению, которые назовем основными квадрупольными моментами Q_{main} , и знакопеременные комбинации, не существенные для рассеяния, преобразующиеся по другим неприводимым представлениям, которые будут называться не основными квадрупольными моментами Q_{minor} . Как показано в наших публикациях, моменты Q_{main} в случае молекул достаточно высокой симметрии отвечают за появление запрещенных линий [3]. В симметричных молекулах с группами симметрии T, T_d, T_h, O и O_h , а также в фуллерене C_{60} , принадлежащем к икосаэдрической группе Y_h , линейные комбинации $Q_{e,1}, Q_{e,2}$ и $Q_{e,3}$ имеют вид

$$Q_{e,1} = \frac{1}{3} (Q_{e,xx} + Q_{e,yy} + Q_{e,zz}),$$

$$Q_{e,2} = \frac{1}{2} (Q_{e,xx} - Q_{e,yy}),$$

$$Q_{e,3} = \frac{1}{4} (Q_{e,xx} + Q_{e,yy} - 2Q_{e,zz}).$$
(2)

Здесь основным моментом является $Q_{e,1}$, преобразующийся по единичному неприводимому представлению, в то время как моменты $Q_{e,2}$ и $Q_{e,3}$ являются не основными. Соответственно

$$Q_{e,xx} = Q_{e,1} + \frac{2}{3}Q_{e,3} + Q_{e,2},$$
$$Q_{e,yy} = Q_{e,1} + \frac{2}{3}Q_{e,3} - Q_{e,2},$$
$$Q_{e,zz} = Q_{e,1} + \frac{2}{3}Q_{e,3} - 2Q_{e,2}.$$

Тогда величина $|\mathbf{E}|(\mathbf{ef}_e)$ в выражении (1) для фуллерена С₆₀ может быть представлена как

$$|\mathbf{E}|(\mathbf{ef}_{e}) = (\mathbf{Ed}_{e}) + \frac{1}{2} \operatorname{div} \mathbf{E} \left(\mathcal{Q}_{e,1} + \frac{2}{3} \mathcal{Q}_{e,3} \right) \\ + \frac{1}{2} \left(\frac{\partial E_{x}}{\partial x} - \frac{\partial E_{y}}{\partial y} - 2 \frac{\partial E_{z}}{\partial z} \right) \mathcal{Q}_{e,2} + \frac{1}{2} \sum_{\substack{i,k \\ i \neq k}} \frac{\partial E_{i}}{\partial x_{k}} \mathcal{Q}_{e,ik}.$$

Отсюда видно, что член, содержащий основной момент $Q_{e,1}$, тождественно обращается в нуль в силу закона электродинамики divE = 0. Это и есть так называемый электродинамический запрет сильного квадрупольного взаимодействия, который возникает благодаря особенностям сильного квадрупольного взаимодействия и принадлежности молекулы к указанным группам симметрии. Поскольку все остальные члены квадрупольного взаимодействия содержат не основные моменты, то указанные оптические процессы определяются только дипольным взаимодействием, и их спектры не будут содержать запрещенные линии. Для фуллерена С₇₀ выражения для моментов $Q'_{e,1}$, $Q'_{e,2}$ и $Q'_{e,3}$ будут иметь вид

$$Q'_{e,1} = \frac{1}{2}(Q_{e,xx} + Q_{e,yy}),$$
$$Q'_{e,2} = \frac{1}{2}(Q_{e,xx} - Q_{e,yy}),$$
$$Q'_{e,3} = Q_{e,zz}.$$

Здесь мы применили штрихованные обозначения, чтобы различать моменты для разных типов фуллеренов. Отметим, что неприводимые представления, характеры и соответствующие комбинации дипольных и квадрупольных моментов для группы симметрии D_{5h} , описывающей симметрийные свойства фуллерена C_{70} , представлены в приложении.

Соответствующая величина

$$|\mathbf{E}|(\mathbf{ef}_{e}) = (\mathbf{Ed}_{e}) + \frac{1}{2} \left(\frac{\partial E_{x}}{\partial x} - \frac{\partial E_{y}}{\partial y} \right) Q'_{e,2} + \frac{1}{2} \frac{\partial E_{z}}{\partial z} Q'_{e,3} - \frac{1}{2} \frac{\partial E_{z}}{\partial z} Q'_{e,1} + \frac{1}{2} \sum_{\substack{i,k \\ i \neq k}} \frac{\partial E_{i}}{\partial x_{k}} Q_{e,ik}.$$
(3)

В правой части выражения (3) моменты $Q'_{e,2}$ и $Q'_{e,ik}$ являются не основными и не должны влиять на усиление. Однако третий и четвертый члены содержат основные моменты, которые в общем случае должны обусловливать усиление за счет сильного квадрупольного взаимодействия. Можно показать, что эти члены будут несущественны в случае перехода к икосаэдрической группе симметрии Y_h . Это следует из того, что в этом случае моменты $Q_{e,xx}$, $Q_{e,yy}$ и $Q_{e,zz}$ преобразуются друг через друга, и в каком-тос эквивалентны. Более того, величина $(Q'_{e,1} - Q'_{e,3})$ с точностью до множителя $\frac{1}{2}$ совпадает с не основным моментом $Q_{e,3}$, определенным для группы Y_h (2).

В соответствии с дипольно-квадрупольной теорией [3] сечение ГКР для какой-либо колебательной моды определяется суммой вкладов в рассеяние, выражающихся через различные дипольные и квадрупольные моменты, которые мы в дальнейшем будем называть просто f_1 и f_2 (рис. 3),

$$d\sigma_{s,\text{surf}} = \frac{\omega_{\text{inc}}\omega_{\text{scat}}^3}{16\hbar^2\varepsilon_0^2\pi^2c^4} \frac{|\mathbf{E}_{\text{inc}}|_{\text{surf}}^2}{|\mathbf{E}_{\text{inc}}|_{\text{vol}}^2} \frac{|\mathbf{E}_{\text{scat}}|_{\text{surf}}^2}{|\mathbf{E}_{\text{scat}}|_{\text{vol}}^2} \\ \times \sum_p \begin{pmatrix} (V_{(s,p)}+1)/2 \\ V_{(s,p)}/2 \end{pmatrix} |T_{d-d}+T_{d-Q}+T_{Q-d}+T_{Q-Q}|_{\text{surf}}^2 dO.$$

Здесь E_{inc} и E_{scat} — напряженности падающего и рассеянного электрических полей, значки surf и vol означают, что поле берется на поверхности и в объеме соответственно, ω_{inc} и ω_{scat} — соответственно частоты этих полей, $V_{(s,p)}$ — колебательное квантовое число вырожденной колебательной моды (s, p), s нумерует группы вырожденных колебаний, p нумерует состояния внутри группы, T обозначает сумму вкладов соответственно диполь-дипольного, дипольквадрупольного рассеяний, dO — элемент телесного угла. Остальные обозначения общепринятые. Здесь мы не выписываем явное выражение для вкладов. Читатель может найти их в монографии [3]. Каждый отдельный вклад подчиняется правилам отбора

$$\Gamma_{(s,p)} \in \Gamma_{f_1} \times \Gamma_{f_2}.$$
 (4)

Здесь значок Γ обозначает неприводимое представление, по которому преобразуются колебательная мода (s, p) и соответственно дипольные и квадрупольные момен-

Рис. 3. Диаграмма рассеяния ГКР. Рассеяние происходит через различные комбинации дипольных и квадрупольных моментов *d* и *Q*.

ты f₁ и f₂. В дальнейшем будем обозначать каждый вклад через дипольные и квадрупольные моменты как $(f_1 - f_2)$. Относительная величина этих вкладов зависит от условий экспериментов. В частности, в случае очень сильной степени шероховатости подложки квадрупольное взаимодействие может быть значительно сильнее, чем дипольное [3] и наибольшее усиление испытывают вклады $(Q_{\text{main}} - Q_{\text{main}})$. Согласно правилам отбора (4), эти вклады будут определять линии, обусловленные колебаниями, преобразующимися по единичному неприводимому представлению. Вклады типа $(Q_{\text{main}} - d_i)$ и $(d_i - Q_{\text{main}})$ также испытывают сильное усиление, но в меньшей степени, чем указанные предыдущие. Эти вклады обусловлены колебаниями, преобразующимися как дипольные моменты d_i, и определяют появление линий, запрещенных в обычном КР в молекулах с достаточно высокой симметрией. Вклады типа $(d_i - d_i)$ и $(d_i - d_k)$ $i \neq k$, также могут быть сильно усилены, но в меньшей степени, чем предыдущие два типа. Причем вклад типа $(d_i - d_i)$ может при определенных условиях определять интенсивность линий, обусловленных колебаниями, преобразующимися по единичному неприводимому представлению. Однако, как уже указывалось выше, в общем случае относительная величина вкладов зависит от условий эксперимента. Конкретно исследование спектра ГКР фуллерена С70 проводилось в [4]. В табл. 1 указаны волновые числа линий в спектре ГКР С₇₀ и соответствующие им неприводимые представления. При этом, как следует из результатов, наибольшее усиление испытывали линии, обусловленные колебаниями с неприводимыми представлениями Е2 и E_1'' (рис. 4), которые описывают трансформационные свойства моментов типа ху, хг и уг. При этом линии, обусловленные колебаниями с единичным неприводимым представлением А'₁, усилены значительно слабее. Данный факт указывает на то, что дипольное взаимодействие в данном эксперименте значительно сильнее

Волновое число, ст ⁻¹	Неприводимые представления группы D _{5h}	Волновое число, ст ⁻¹	Неприводимые представления группы D _{5h}
221	A'_1	943	$E_1^{\prime\prime}$
254	$\dot{E_2'}$	990	$\dot{E'_2}$
357	A_2'' IR active	1031	E'_1 IR active
392	E'_2	1056	E_2'
410	E'_2	1180	E_1'', E_2'
426	$E_1^{\prime\prime}$	1212	E_1'', E_2'
450	A_1'	1224	E_1''
500	E'_2	1250	E_1''
533	A'_1	1281	A'_1
564	$E_1^{\prime\prime}$	1301	E'_2
574	$E_1^{\prime\prime}$	1321	A_1'
610	E'_2	1337	E_1''
654	$E_1^{\prime\prime}$	1374	E'_2
697	E'_2	1408	E_1''
718	$E_1^{\prime\prime}$	1441	E'_2
734	A_1'	1466	A'_1
787	E'_2	1509	E_1''
825	A'_1	1563	E'_2
861	E'_2	1583	A_{1}', E_{1}''
893	E_1''		

Таблица 1. Соотнесение линий спектра ГКР фуллерена C_{70} неприводимым представлениям группы симметрии D_{5h} , IR active — линии, активные в инфракрасном поглощении

квадрупольного. Значительное усиление линий с неприводимыми представлениями E'_2 и E''_1 обусловлено тем, что в системе координат, связанной с молекулой С70, все три компоненты электрического поля могут быть усилены в связи с тем, что фуллерен С₇₀, по-видимому, может адсорбироваться на металлическую подложку, имея произвольную ориентацию по отношению к поверхности и соответственно к усиленной компоненте поля E_z , перпендикулярной поверхности. При этом E_z может проектироваться на все три оси системы координат, связанной с молекулой, и иметь отличные от нуля компоненты напряженности электрического поля E'_x, E'_y и Е₂. Здесь мы ввели обозначения компонент поля со штрихом, тем самым отличая их от компонент поля в системе координат, связанной с поверхностью. Кроме того, в спектре наблюдаются две линии с малой интенсивностью, запрещенные в обычном КР с неприводимыми представлениями A_2'' и E_1' , и волновыми числами 357 и $1031 \,\mathrm{cm}^{-1}$. Появление этих линий говорит о появлении квадрупольного взаимодействия в системе и соответственно о снятии электродинамического запрета. Однако их сравнительно малая интенсивность говорит, что квадрупольное взаимодействие достаточно слабо. Это может быть связано с тем, что мы имеем сравнительно слабое нарушение симметрии по отношению к икосаэдрической группе Y_h. Кроме того, в соответствии с условиями эксперимента в [4] металлическая подложка являлась подложкой зеркального типа и шероховатостями с характерным размером порядка 100 nm. По-

Рис. 4. Спектр ГКР фуллерена C_{70} . Наибольшее усиление имеют линии, обусловленные колебаниями с неприводимыми представлениями E'_2 и E''_1 , описывающими трансформационные свойства моментов xy, xz и yz.

видимому, при этих условиях шероховатость являлась достаточно "слабой", что не приводило к большому усилению поля и его производных. Соответственно квадрупольное взаимодействие было меньше, чем дипольное.

Таким образом, в связи с тем, что фуллерен С₇₀ принадлежит к группе D_{5h} и может в каком-то смысле рассматриваться как деформированный фуллерен С₆₀, растянутый по оси z, электродинамический запрет сильного квадрупольного взаимодействия в нем снимается, и в спектре ГКР появляются запрещенные линии. Безусловно, фуллерен С₇₀ отличается от фуллерена С₆₀ количеством атомов, поскольку он может рассматриваться как С₆₀, в который по экватору встроен некоторый ободок из колец атомов углерода. При этом естественно и волновые числа колебаний будут сдвигаться относительно волновых чисел С₆₀. Однако в целом наше качественное рассмотрение имеет определенный смысл. При этом квадрупольное взаимодействие в данном эксперименте, по-видимому, оказывается достаточно слабым, и основную роль здесь играет сильное дипольное взаимодействие, что приводит к наибольшему усилению линий с неприводимыми представлениями Е2 и E_1'' , описывающими трансформационные свойства моментов xy, xz и yz, и соответственно обусловленных чисто дипольным рассеянием. Сравнительно малое квадрупольное взаимодействие, по-видимому, также связано с конкретными условиями эксперимента, когда степень шероховатости подложки не очень велика, а также с тем, что "относительная деформация" С70 по отношению к С₆₀ сравнительно мала. На сравнительно слабое квадрупольное взаимодействие указывает и тот факт, что запрещенные линии в данном эксперименте на С₇₀ имеют сравнительно малую интенсивность.

Приложение

Таблица 2. Неприводимые представления группы симметрии D_{5h} , в последнем столбце указаны комбинации дипольных и квадрупольных моментов, преобразующиеся по соответствующим неприводимым представлениям

Неприводимое представление	C_1	2C ₅	$2C_{5}^{2}$	5C ₂	σ_h	2 <i>S</i> ₅	$2S_{5}^{3}$	$5\sigma_v$	Комбинация дипольных и квадрупольных моментов
A_1'	1	1	1	1	1	1	1	1	$(Q_{e,xx}+Q_{e,yy}), Q_{e,zz}$
$A_1^{\prime\prime}$	1	1	1	1	-1	-1	-1	-1	
A_2'	1	1	1	-1	1	1	1	-1	
$A_2^{\prime\prime}$	1	1	1	-1	-1	-1	-1	1	$d_{e,z}$
E'_1	2	$2\cos 72^\circ$	$2\cos 144^\circ$	0	2	$2\cos 72^{\circ}$	$2\cos 144^{\circ}$	0	$(d_{e,x}, d_{e,y})$
E_1''	2	$2\cos 72^{\circ}$	$2\cos 144^\circ$	0	$^{-2}$	$-2\cos 72^\circ$	$-2\cos 144^\circ$	0	$(Q_{e,xz}, Q_{e,yz})$
E'_2	2	$2\cos 144^\circ$	$2\cos 72^\circ$	0	2	$2\cos 144^{\circ}$	$2\cos 72^{\circ}$	0	$(Q_{e,xx} - Q_{e,yy}, Q_{e,xy})$
E_2''	2	$2\cos 144^\circ$	$2\cos 72^\circ$	0	-2	$-2\cos 144^\circ$	$-2\cos 72^\circ$	0	

Примечание. Основные квадрупольные моменты в этой группе будут $Q'_{e,1} = Q_{e,xx} + Q_{e,yy}, Q'_{e,3} = Q_{e,zz}.$

Список литературы

- Полуботко А.М., Челибанов В.П. // ЖЭТФ. 2017. Т. 151.
 В. 2. С. 305; *Polubotko A.M., Chelibanov V.P.* // J. Exp. Theor. Phys. 2017. V. 124. N 2. P. 261.
- [2] Chelibanov V.P., Polubotko A.M. // Materials Today: Proceedings. 2017. V. 4. P. 6786.
- [3] Polubotko A.M. The Dipole-Quadrupole Theory of Surface Enhanced Raman Scattering. NY.: Nova Science Publishers. Inc., 2009. 136 p.
- [4] Huang Ya-bin, Mo Yu-jun, Mattei G., Pagnanne M., Xie Sishen // Chin. Phys. Lett. 1997. V. 14. N 7. P. 513.