01

Расчет химических сдвигов рентгеновских эмиссионных спектров ниобия в оксидах ниобия(V) относительно металла*

© Ю.В. Ломачук¹, Ю.А. Демидов¹, Л.В. Скрипников^{1,2}, А.В. Зайцевский^{1,3}, С.Г. Семенов¹, Н.С. Мосягин¹, А.В. Титов¹

¹ НИЦ Курчатовский институт — ПИЯФ,

188300 Гатчина, Россия

² Санкт-Петербургский государственный университет, физический факультет,

198904 Санкт-Петербург, Россия

³ Московский государственный университет, химический факультет,

119991 Москва, Россия

e-mail: lomachuk yv@pnpi.nrcki.ru

Поступила в редакцию 28.11.2017 г.

Рассчитаны химические сдвиги линий $K_{\alpha 1}$, $K_{\beta 1}$ рентгеновских эмиссионных спектров ниобия в оксидах $(Nb_2O_5)_n$, n = 1-4, относительно металлического Nb. Стехиометрические кластеры $(Nb_2O_5)_n$, электронная структура которых была рассчитана с использованием прецизионных релятивистских псевдопотенциалов и двухкомпонентного варианта теории функционала плотности, рассматриваются как прообразы для моделирования различных кристаллических форм оксида ниобия(V). Химические сдвиги вычислялись при помощи метода, основанного на использовании свойства приближенной пропорциональности валентных спиноров в остовной области тяжелого атома. Определены поправки к значениям химических сдвигов, учитывающие отклонения от указанной пропорциональности. Продемонстрирована быстрая сходимость результатов по отношению к размеру кластера оксида ниобия.

DOI: 10.21883/OS.2018.04.45743.275-17

1. Введение

Основным препятствием для решения проблемы утилизации радиоактивных отходов является трудность прогнозирования поведения долгоживущих радионуклидов (особенно, искусственных чрезвычайно радиотоксичных актиноидов: Pu, Am, Np, Cm), которые в принципе могут находиться в химически и радиационно нестойкой форме в метамиктных минералах [1] в течение длительного времени (10⁴ и более лет). Природные минералы, содержащие примеси радиоактивных элементов, можно рассматривать как естественные модели изолированных в матрицах высокоактивных отходов на разных стадиях радиационного разрушения. Поэтому исследование структуры и свойств таких материалов необходимо для создания новых форм керамических матриц. Оксид ниобия (V) является основой широкого класса метамиктных соединений, в состав которых входят в примесных количествах радионуклиды Y, Ni, Ti, Ca, Ta, U, Th [2].

Химическая стабильность метамиктных соединений связана со способностью примесных атомов встраиваться в кристаллическую структуру ниобатов, для определения которой необходимо проведение квантовомеханических расчетов и сопоставления их с экспериментальными данными. Одним из методов экспериментального определения состояния атома в соединении является рентгеновская эмиссионная спектроскопия [3]. По изменению положения спектральной линии характеристического излучения атома в различных соединениях (химическом сдвиге линии) можно судить о его состоянии окисления и других свойствах. В работах [4,5] предложен метод расчета химических сдвигов рентгеновских эмиссионных линий на основе результатов квантово-механического моделирования соединений. В работе [6] был проведен расчет химических сдвигов ниобия в ферсмите (CaNb₂O₆) относительно металла и проведено сравнение с экспериментальными данными (величина химического сдвига K_{a1} -линии ниобия в этом соединении около 260 meV, теоретическое значение — около 300 meV).

Целью настоящей работы является оценка химических сдвигов рентгеновских эмиссионных линий ниобия в Nb₂O₅ относительно металла. Анализ погрешностей этих величин для структур, соответствующих реальным кристаллам оксида ниобия(V), осложнен тем, что данное соединение имеет несколько кристаллических форм сравнительно сложного строения [7]. Поэтому нами был использован другой подход, заключающийся в моделировании кристалла молекулярными кластерами (Nb₂O₅)_n, n = 1-4. Такие кластеры ранее изучались в работах [8,9].

Расчет химических сдвигов линий $K_{\alpha 1}$ и $K_{\beta 1}$ ниобия в этих кластерах позволяет детально проанализировать точность предложенного метода [4,5], а также изучить влияние размера рассматриваемых кластеров на величину химического сдвига.

^{*} Совещание по прецизионной атомно-молекулярной спектроскопии, 13–14 ноября 2017 г., ПИЯФ НИЦ "Курчатовский институт", Гатчина, Россия.

2. Процедура расчета химических сдвигов рентгеновских эмиссионных спектров

Моделирование структуры и свойств Nb2O5 и металлического ниобия выполнено в рамках кластерного приближения. Основой методики решения многоэлектронной задачи для кластеров послужили расчетные технологии релятивистской теории функционала плотности в ее "двухкомпонентной" неколлинеарной формулировке [10], адаптированные к использованию модели прецизионных "согласованных по форме" релятивистских псевдопотенциалов малых остовов [11-13]. В рамках этой модели, в отличие от случая явного описания всех электронных оболочек рассматриваемых систем, вполне корректно использование формально нерелятивистской аппроксиманты РВЕ0 [14] обменно-корреляционного функционала. Релятивистские двухкомпонентные уравнения Кона-Шема решались посредством разложения компонент вспомогательных спиноров по базисным системам, оптимизированным с учетом магнитных (эффективных спин-орбитальных) взаимодействий. Особенности примененной технологии построения базисов, обеспечивающие хорошее соотношение "число базисных функций / точность результатов" — одновременная оптимизация нелинейных и линейных параметров сгруппированных гауссовых функций и возможность включения в процедуру оптимизации разнородных объектов, содержащих данный атом, что обеспечивает универсальность получаемых базисов. Базис для кислорода был получен расширением трехэкспонентного набора [15] поляризационными и диффузными функциями.

Двухэтапную процедуру, примененную в данной работе, можно считать обобщением описанной в работах [16–18]. На первом этапе выполняется молекулярный расчет в приближении релятивистского псевдопотенциала остова [11-13]. Псевдофункции, описывающие состояния валентных и внешних остовных электронов, "сглажены" (модифицированы по сравнению с истинными одноэлектронными функциями, имеющими большое число радиальных узлов) в остовной области атома. Для расчета ряда свойств, обусловленных поведением волновых функций вблизи ядра, требуется восстановить правильное поведение четырехкомпонентных аналогов псевдофункций (биспиноров) в этой области. Для этого на втором этапе строится пара одноцентровых эквивалентных базисных наборов. В первый включаются атомные псевдофункции. Во второй набор включаются четырехкомпонентные функции, рассчитанные с гамильтонианом Дирака-Кулона(Брейта) для тех же конфигураций атома, что и функции из первого набора. Далее молекулярные псевдофункции (псевдоспиноры) переразлагаются по одноцентровым атомным псевдофункциям, коэффициенты переразложения $c_{nl\,im}^{i}$ фиксируются и атомные псевдофункции заменяются соответствующими эквивалентными атомными биспинорами. В результате

получается следующее выражение для молекулярного спинора $\varphi_i(\mathbf{r})$:

$$\varphi_{i}(\mathbf{r}) = \sum_{nljm} c_{nljm}^{i} \begin{pmatrix} f_{nlj}(r)\Omega_{ljm}(\mathbf{r}/r) \\ g_{nlj}(r)\Omega_{2j-l,jm}(\mathbf{r}/r) \end{pmatrix}.$$
 (1)

В этом выражении $f_{nlj}(r)$ и $g_{nlj}(r)$ — радиальные функции большой и малой компоненты атомного биспинора, соответствующего значениям главного квантового числа n, орбитального и полного моментов l и j; $\Omega_{ljm}(\mathbf{r}/r)$ — двухкомпонентные сферические спиноры, которые являются собственными функциями операторов полного момента количества движения и пространственной инверсии.

Построив одночастичную молекулярную матрицу плотности ρ в базисе атомных биспиноров и просуммировав по *n*, можно определить распределение электронов по "парциальным волнам" относительно ядра данного атома.

Полученное представление матрицы плотности было использовано для расчета постоянных сверхтонкой структуры и других свойств атома в соединении с погрешностью 5–10% в работах [19–22].

Воспользуемся свойством приближенной пропорциональности валентных (и низколежащих виртуальных — в случае корреляционного расчета) спиноров в остовной области рассматриваемого атома [11]. Тогда переразложение можно выполнять не во всем пространстве, а только внутри сферы с центром на ядре рассматриваемого атома с радиусом R_c . В этом случае разложение (1) приобретает следующий вид:

$$\varphi_{i}(\mathbf{r} < R_{c}) = \sum_{ljm} c_{ljm}^{i} \left(\begin{array}{c} \eta_{lj}^{f}(r) \Omega_{ljm}(\mathbf{r}/r) \\ \eta_{lj}^{g}(r) \Omega_{2j-l,jm}(\mathbf{r}/r) \end{array} \right), \ r < R_{c},$$

$$(2)$$

где $\eta_{lj}^{f}(r)$ и $\eta_{lj}^{g}(r)$ — радиальные части большой и малой компонент некоторых реперных биспиноров, которые заранее выбираются для каждой пары значений l и j. Нормировка $\eta_{lj}(r) = \begin{pmatrix} \eta_{lj}^{f}(r) \\ \eta_{lj}^{g}(r) \end{pmatrix}$ определяется соотношением

$$\int_{$$

Величину любого свойства A атома в соединении, описываемого одноэлектронным оператором **A**, локализованным в остовной области рассматриваемого атома, можно получить, вычислив среднее значение этого оператора с использованием матрицы плотности $\rho_{r < R_c}$, записанной в представлении (2):

$$A = \operatorname{Tr}\left[\boldsymbol{\rho}_{r < R_c} \mathbf{A}\right]. \tag{4}$$

Описываемая процедура была реализована и использована для количественного объяснения соотношения вычисленных постоянных сверхтонкой структуры и других свойств, зависящих от спиновой электронной плотности, в молекулах ThO и ThF⁺ [18]. Однако для расчета химических сдвигов рентгеновских эмиссионных спектров ее точность может быть недостаточной, поскольку эти величины представляют собой разности близких по величине средних значений эффективного одноэлектронного оператора χ [4], вычисленных по матрицам плотности, описывающим электронную структуру соответствующих соединений.

Естественным обобщением указанного метода может быть использование нескольких реперных биспиноров для каждой пары l и j. Для оценки погрешности, связанной с нарушением свойства пропорциональности, в настоящей работе рассматривается случай двух реперных биспиноров для каждой пары значений l и j. Обозначим радиальные части больших и малых компонент этих биспиноров как $\eta^{1,f}(r)$, $\eta^{1,g}(r)$ и $\eta^{2,f}(r)$, $\eta^{2,g}(r)$ для первого и второго биспинора соответственно.

Выражение (2) принимает следующий вид:

$$p_{i}(\mathbf{r} < R_{c}) = \sum_{ljm} \left(\frac{\left(c_{ljm}^{i,1} \eta^{1,f}(r) + c_{ljm}^{i,2} \eta^{2,f}(r) \right) \Omega_{ljm}(\mathbf{r}/r)}{\left(c_{ljm}^{i,1} \eta^{1,g}(r) + c_{ljm}^{i,2} \eta^{2,g}(r) \right) \Omega_{2j-l,jm}(\mathbf{r}/r)} \right),$$

$$r < R_{c}.$$
(5)

Условие ортонормировки (3) в этом случае может быть записано как

$$\int_{\substack{r < R_c}} \eta_{lj}^p(r) \eta_{lj}^q(r) r^2 dr = \delta_{pq} .$$
(6)

Радиальные части реперных биспиноров в настоящей работе получены взаимной ортогонализацией биспиноров, соответствующих одноэлектронным валентным и низколежащим виртуальным состояниям, взятым расчета методом Дирака-Хартри-ИЗ Фока свободного атома Nb в конфигурации $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^4 5s^1$ с использованием программы HFD [23].

Реперные биспиноры, соответствующие парциальной волне $s_{1/2}$, были получены ортогонализацией по условию (6) из биспиноров 5*s* и 6*s*; парциальным волнам $p_{1/2}$ и $p_{3/2}$ — из соответствующих биспиноров $4p_{1/2}$, $5p_{1/2}$ и $4p_{3/2}$, $5p_{3/2}$; парциальным волнам $d_{3/2}$ и $d_{5/2}$ — из биспиноров $4d_{3/2}$, $5d_{3/2}$ и $4d_{5/2}$.

3. Результаты расчетов

Для оценки применимости свойства пропорциональности при вычислении химических сдвигов линий $K_{\alpha 1}$ (переход $2p_{3/2} \rightarrow 1s_{1/2}$), $K_{\beta 1}$ (переход $3p_{3/2} \rightarrow 1s_{1/2}$) атома Nb, проведены расчеты иона Nb⁺³ и нейтрального атома в приближении Дирака–Хартри–Фока–Брейта с использованием программы HFD [23]. Для случая свободных атомов и ионов при пренебрежении погрешностями, связанными с использованием процедуры восстановления электронной плотности в остовной области

Рис. 1. Кластер Nb₉ состоит из центрального атома Nb (выделен черным цветом) и его первой координационной сферы в структуре ОЦК. Расстояния между соседними атомами ниобия в кластере совпадают с экспериментальным значением расстояния Nb–Nb в идеальном кристалле (2.86 Å).

Рис. 2. Кластер Nb₁₆ состоит из двух соседних ("центральных", на рисунке выделены черным цветом) атомов Nb и объединения их первых координационных сфер. Расстояния между соседними атомами ниобия в кластере совпадают с экспериментальным значением расстояния Nb–Nb в идеальном кристалле (2.86 Å).

атома [16,17], методика вычисления химических сдвигов рентгеновских эмиссионных спектров с использованием эффективного одночастичного оператора, описанная в работах [4,5], должна приводить к результатам, совпадающим с оценками химических сдвигов как разности энергий соответствующего перехода в атоме и ионе, вычисленных по теореме Купманса [24].

Сравнивая эти величины, можно определить погрешность, вносимую при использовании различных вариантов процедуры восстановления. Из результатов, приве-

Рис. 3. Равновесные ядерные конфигурации молекулярных кластеров стехиометрического состава (Nb₂O₅)_n. Атомы ниобия выделены черным цветом.

денных в табл. 1, следует, что для вычисления химических сдвигов линии $K_{\alpha 1}$ с погрешностью около 20 meV достаточно использования свойства пропорционально-

сти валентных и внешнеостовных спиноров в остовной области атома. Для химических сдвигов линии $K_{\beta 1}$ погрешность составляет порядка 100 meV. Такая разница

Таблица 1. Химические сдвиги линий $K_{\alpha 1}$ (переход $2p_{3/2} \rightarrow 1s_{1/2}$) и $K_{\beta 1}$ (переход $3p_{3/2} \rightarrow 1s_{1/2}$) иона Nb⁺³ относительно нейтрального атома, meV

Переход	$R_c = 0.5 \mathrm{a.u.}^1$	$R_c = 0.5 { m a. u.}^2$	$R_c=0.7\mathrm{a.u.}^2$	Теорема Купманса ³
$\frac{2p_{3/2}-1s_{1/2}}{3p_{3/2}-1s_{1/2}}$	$-200\\108$	-219 58	-216 4	-220 8

Примечание. Результаты, полученные с использованием:

¹ свойства пропорциональности;

 2 двух реперных биспиноров для каждой пары значений квантовых чисел l и j;

³ оценки по теореме Купманса, соответствующие точному переразложению электронной плотности при рассмотрении свободного атома и иона. Расчеты проведены с помощью компьютерного кода [23] в приближении Дирака–Хартри–Фока. Конфигурация атома Nb — $[1s^2-3d^{10}]4s^24p^64d^45s^1$, изолированного иона — $[1s^2-3d^{10}]4s^24p^64d^2$.

Таблица 2. Химические сдвиги линий Nb $K_{\alpha 1}$ (переход $2p_{3/2} \rightarrow 1s_{1/2}$) и $K_{\beta 1}$ (переход $3p_{3/2} \rightarrow 1s_{1/2}$) в различных соединениях, моделирующих твердое тело, meV

Переход	Nb-Nb91	Nb ₂ -Nb ₉ ²	Nb ₁₆ -Nb ₉ ³	
$2p_{3/2} \rightarrow 1s_{1/2}{}^4 \ 3p_{3/2} \rightarrow 1s_{1/2}{}^4$	120 (90) 340	$120 (100)^5 430$	-20(-14) -9	

Примечание. Химический сдвиг линий ниобия $K_{\alpha 1}$ и $K_{\beta 1}$ в:

¹ свободном атоме Nb относительно кластера Nb₉;

 2 димере Nb₂ относительно кластера Nb₉;

³ кластере Nb₁₆ относительно Nb₉.

⁴ Химические сдвиги линий ниобия $K_{\alpha 1}$ и $K_{\beta 1}$ рассчитаны с использованием двух реперных биспиноров для каждой пары значений квантовых чисел l и j для восстановления электронной плотности в области $r < R_c = 0.7$ а. u.

⁵ В скобках приведены значения химических сдвигов линии $K_{\alpha 1}$, полученные с использованием свойства пропорциональности валентных и внешнеостовных спиноров в остовной области атома Nb $r < R_c = 0.55$ a.u.

Таблица 3. Длины связей, заряд ниобия по Бейдеру и химические сдвиги линий Nb $K_{\alpha 1}$ и $K_{\beta 1}$ относительно Nb₉ в кластерах $(Nb_2O_5)_n$ ¹. Геометрия кластеров соответствует минимуму полной энергии

Кластер	Nb-O, Å (I)	Nb–O, Å (II)	$Q_{\rm Nb}^2$, a. u.	$\chi_{K\alpha 1}^{3},$ meV	$\chi_{K\beta1}^3$, meV
$\begin{array}{c} Nb_2O_5\\ Nb_4O_{10}\\ Nb_6O_{15}\\ Nb_8O_{20} \end{array}$	1.714 1.695 1.692 1.691	2.117 1.928 1.925 1.912	2.49 2.67 2.68 2.69	$\begin{array}{r} -239(-217)\\ -303(-268)\\ -303(-266)\\ -310(-268)\end{array}$	$-152 \\ -161 \\ -166 \\ -182$

Примечание. ¹ Атом кислорода (I) связан только с одним атомом Nb, (II) — с двумя атомами Nb (рис. 3).

² Вычислены с помощью кода [27,28].

³ Химические сдвиги линий $K_{\alpha 1}$ и $K_{\beta 1}$ рассчитаны с использованием двух реперных биспиноров для каждой пары значений l и j при одноцентровом переразложении, $R_c = 0.7$ а. u. (в скобках приведены результаты для линии $K_{\alpha 1}$, полученные с использованием свойства пропорциональности в области $r < R_c = 0.55$ а. u.).

в погрешности связана с тем, что одноэлектронный оператор химического сдвига [4] локализован в области, размер которой пропорционален среднему радиусу оболочки, с которой происходит переход (для оболочки $3p_{3/2}$ эта величина в 5 раз больше, чем для $2p_{3/2}$).

Для повышения уровня точности расчета химического сдвига линии $K_{\beta 1}$ необходим учет поправок, связанных с отклонением от пропорциональности. Использование двух реперных биспиноров для восстановления электронной плотности в остовной области атома Nb размером $r < R_c = 0.7$ а. u. позволяет снизить погрешность до 4 meV.

Для моделирования металлического Nb были проведены расчеты изолированного атома Nb, димера Nb₂ и двух кластеров Nb₉ и Nb₁₆ (рис. 1, 2). Для расчета свободного атома и димера Nb₂ использован псевдопотенциал 28-электронного остова Nb [25] (тринадцать электронов ниобия, $4s^24p^64d^45s^1$, рассматривались явно). Моделирование кластеров Nb₉ и Nb₁₆ выполнялось с набором псевдопотенциалов остова, включающим в себя упомянутую 13-электронную модель для центрального атома Nb в Nb₉ и двух центральных атомов Nb в Nb₁₆ в сочетании с одноэлектронной моделью (четыре *d* электрона включены в остов) для периферийных атомов. Расстояние между атомами Nb в кластерах полагалось равным экспериментальному значению 2.86 Å [26].

Результаты расчетов представлены в табл. 2. Исходя из приведенных данных можно заключить, что значение химического сдвига существенно зависит от ближайшего окружения атома (химические сдвиги в свободном атоме Nb и димере Nb₂ относительно кластеров Nb₉ и Nb₁₆ порядка 100 meV), но при этом практически не зависит от более удаленных атомов (химические сдвиги в Nb₁₆ относительно Nb₉ составляют около 20 meV).

При расчете молекулярных стехиометрических кластеров $(Nb_2O_5)_n$ проводилась оптимизация конфигурации ядер до достижения минимальной полной энергии системы. Равновесная геометрия кластеров показана на рис. 3. Каждый атом Nb в кластерах Nb₄O₁₀, Nb₆O₁₅ и Nb₈O₂₀ окружен четырьмя атомами кислорода, один из которых связан только с этим атомом Nb, а три других являются мостиковыми. В кластере Nb₂O₅ два атома кислорода связаны с двумя атомами Nb одновременно. Это обстоятельство приводит к существенному различию длин связей и бейдеровских зарядов (табл. 3).

Результаты расчетов приведены в табл. 3. Для атома Nb использовался 13-электронный эффективный потенциал остова [25]. Значения химических сдвигов линий Nb $K_{\alpha 1}$ и $K_{\beta 1}$ в оксиде Nb₂O₅ относительно металлического ниобия, моделируемого кластером Nb₉, быстро стабилизируются при росте размера кластера — значения этих величин для Nb₂O₅ относительно металла отличаются от таковых в Nb₄O₁₀ на величину около 60 meV, в то время как соответствующее различие для кластеров Nb₄O₁₀, Nb₆O₁₅ и Nb₈O₂₀ порядка 10 meV. Сильное различие результатов в случае Nb₂O₅ и в случае бо́лыших кластеров Oбусловлено качественным отличием ближайших окружений атомов Nb.

Заключение

При вычислении химических сдвигов рентгеновских эмиссионных спектров тяжелых атомов в соединении требуется детальный анализ погрешностей. Это обстоятельство обусловлено тем, что химический сдвиг представляет собой разность двух средних значений эффективного одноэлектронного оператора [4], близких по величине. Итоговая относительная погрешность определения химического сдвига становится существенно больше по сравнению с другими остовными свойствами атома, такими, как постоянные сверхтонкой структуры [18].

В настоящей работе на основе результатов расчетов иона Nb^{+3} и нейтрального атома Nb оценена погреш-

ность в вычислении химического сдвига, возникающая из-за использования свойства пропорциональности валентных спиноров в остовной области атома [5,16,17]. Показано, что для химического сдвига линии $K_{\alpha 1}$ (переход $2p_{3/2} \rightarrow 1s_{1/2}$) использование свойства пропорциональности вносит погрешность около 20 meV, которая приемлема с точки зрения интерпретации эксперимента. Для химического сдвига линии $K_{\beta 1}$, соответствующей переходу из более диффузного одноэлектронного состояния $3p_{3/2}$, учет поправок к свойству пропорциональности приводит к уменьшению погрешности расчета на порядок — со 100 до 10 meV.

Из анализа результатов расчетов химических сдвигов линий $K_{\alpha 1}$ и $K_{\beta 1}$ атома Nb в стехиометрических кластерах (Nb₂O₅)_n относительно кластеров Nb₉, Nb₁₆ следует, что существенное влияние на величину химического сдвига рентгеновских эмиссионных спектров атома в этих соединениях оказывает только его ближайшее окружение.

Исследование выполнено за счет гранта Российского научного фонда (проект № 14-31-00022). Расчеты проведены с использованием оборудования центра коллективного пользования "Комплекс моделирования и обработки данных исследовательских установок мегакласса" НИЦ "Курчатовский институт".

Авторы благодарны проф. К. ван Вюллену за предоставленную программу моделирования электронной структуры при помощи двухкомпонентного варианта теории функционала плотности [10]. Также авторы благодарят рецензента за полезные замечания.

Список литературы

- [1] Joseph B. // Am. Mineral. 1955. V. 40. P. 805–827.
- [2] Nakai I., Akimoto J., Imafuku M. et al. // Phys. and Chem. of Minerals. 1987. V. 15. N. 2. P. 113–124.
- [3] Сумбаев О.И. // УФН. 1978. V. 124. № 2. Р. 281–306.
- [4] Lomachuk Y.V., Titov A.V. // Phys. Rev. A. 2013. V. 88. P. 062511.
- [5] Titov A.V., Lomachuk Y.V., Skripnikov L.V. // Phys. Rev. A. 2014. V. 90. P. 052522.
- [6] Lomachuk Y.V., Maltsev D.A., Demidov Y.A. et al. // Nonlinear Phenomena in Complex Systems. 2017. V. 20. P. 170–176.
- [7] Gatehouse B.M., Wadsley A.D. // Acta Crystallographica. 1964. V. 17. N. 12. P. 1545–1554.
- [8] Zhai H.-J., Döbler J., Sauer J., Wang L.-S. // J. American Chemical Society. 2007. V. 129. N. 43. P. 13270–13276.
- [9] Mann J.E., Waller S.E., Rothgeb D.W., Jarrold C.C. // J. Chemical Physics. 2011. V. 135. N. 10. P. 104317.
- [10] van Wüllen C. // Z. Phys. Chem. 2010. V. 224. P. 413-426.
- [11] Titov A.V., Mosyagin N.S. // Int. J. Quantum Chem. 1999.
 V. 71. N. 5. P. 359–401.
- [12] Mosyagin N.S., Zaitsevskii A.V., Titov A.V. // Review of Atomic and Molecular Physics. 2010. V. 1. N. 1. P. 63–72.
- [13] Mosyagin N.S., Zaitsevskii A.V., Skripnikov L.V., Titov A.V. // Int. J. Quantum Chem. 2016. V. 116. N. 4. P. 301-315.

- [14] Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. N. 13. P. 6158–6170.
- [15] Schäfer A., Huber C., Ahlrichs R. // J. of Chemical Physics. 1994. V. 100. N. 8. P. 5829–5835.
- [16] Titov A.V., Mosyagin N.S., Petrov A.N. et al. // Progr. Theor. Chem. Phys. 2006. V. 15. P. 253–283.
- [17] Titov A.V., Mosyagin N.S., Petrov A.N., Isaev T.A. // Int. J. Quantum Chem. 2005. V. 104. N. 2. P. 223–239.
- [18] Skripnikov L.V., Titov A.V. // Phys. Rev. A. 2015. V. 91. P. 042504.
- [19] Skripnikov L.V., Petrov A.N., Mosyagin N.S. et al. // Phys. Rev. A. 2015. V. 92. P. 012521.
- [20] Skripnikov L.V., Kudashov A.D., Petrov A.N., Titov A.V. // Phys. Rev. A. 2014. V. 90. P. 064501.
- [21] Lee J, Chen J, Skripnikov L.V. et al. // Phys. Rev. A. 2013.
 V. 87. P. 022516.
- [22] Skripnikov L.V. // J. Chem. Phys. 2016. V. 145. N. 21. P. 214301.
- [23] Братцев В.Ф., Дейнека Г.Б., Тупицын И.И. // Изв. АН СССР. Сер. физ. 1977. Т. 41. №. 12. Р. 173–182.
- [24] Майер И. Избранные главы квантовой химии: доказательства теорем и вывод формул. М.: БИНОМ. Лаборатория знаний, 2006. С. 197–267.
- [25] Mosyagin N.S., Titov A.V. Generalized relativistic effective core potentials. [Электронный ресурс.] Режим доступа: http://www.qchem.pnpi.spb.ru/recp.
- [26] WebElements Periodic Table of the Elements. [Электронный ресурс.] Режим доступа:
- https://www.webelements.com/niobium/crystal_structure.html [27] Sanville E., Kenny S.D., Smith R., Henkelman G. //
- J. Comput. Chem. 2007. V. 28. N. 5. P. 899–908.
- [28] Tang W., Sanville E., Henkelman G. // J. Phys.: Condens. Matter. 2009. V. 21. N. 8. P. 084204.