01

О прецизионном измерении частоты запрещенного перехода $1^1S - 2^3S$ атома гелия

© Е.В. Бакланов, А.В. Тайченачев

Институт лазерной физики Сибирского отделения РАН, 630090 Новосибирск, Россия Новосибирский государственный университет, 630090 Новосибирск, Россия e-mail: baklanov.ev@gmail.com

Поступила в редакцию 27.11.2017 г.

Показана возможность прецизионного измерения частоты запрещенного перехода $1^1S_0-2^3S_1$ (62.6 nm) атома гелия с помощью метода вынужденного комбинационного рассеяния. Синглетное состояние 1^1S_0 является основным состоянием ⁴He, а метастабильное состояние 2^3S_1 имеет наименьшую энергию в триплетной части спектра (4 He*). Переход имеет очень малую естественную ширину, что позволяет считать его возможным репером для создания стандарта частоты в области вакуумного ультрафиолета.

DOI: 10.21883/OS.2018.03.45646.257-17

Введение

Методы лазерной спектроскопии высокого разрешения являются хорошим инструментом для исследования квантовой механики атома гелия. Его атомная структура вычислена с высокой точностью [1]. Прецизионное измерение частот переходов этого атома совместно с теоретическими вычислениями дает дополнительную информацию для квантовой электродинамики, поскольку рассматривается трехчастичная задача взаимодействия двух электронов в присутствии ядра (уточняются радиационные поправки, радиус ядра).

В настоящей работе рассмотрена возможность прецизионного измерения частоты запрещенного магнитодипольного перехода $1^1S_0-2^3S_1$ (62.6 nm) атома гелия (рис. 1) с помощью метода вынужденного комбинационного рассеяния (ВКР) через промежуточный уровень $2^{3}P_{1}$. Синглетное состояние $1^{1}S_{0}$ является основным состоянием 4 Не, а метастабильное состояние $2{}^{3}S_{1}$ имеет наименьшую энергию в триплетной части спектра (4He*). Переход имеет очень малую естественную ширину, которая определяется временем жизни уровня 2^3S_1 (8000 s). Из экспериментов, на которые мы ориентируемся, отметим работы [2,3]. После охлаждения гелия в состоянии 2^3S_1 до температуры $1 \mu K$ было получено более 10⁶ атомов. Наблюдалось прямое поглощение на переходе $2^1S_0 \rightarrow 2^3S_1$ (1775 nm) и была измерена его абсолютная частота с погрешностью 10 kHz. Надо отметить, что радиационная вероятность перехода $2^1S_0-2^3S_1$ очень мала (коэффициент Эйнштейна $A = 10^{-7} \, \mathrm{s}^{-1}$), что вызывает значительные трудности при наблюдении поглощения. На наш взгляд это самый слабый переход, на котором удалось наблюдать поглощение в лабораторных условиях. Ранее возможность наблюдения поглощения на этом переходе была рассмотрена в [4].

Резонанс в форме линии ВКР

Для простоты будем обозначать уровни 2^3S_1 , 2^3P_1 , 1^1S_0 номерами 0, 1, 2 (рис. 2). Частоты переходов $2^3P_1 \rightarrow 2^3S_1$ (1083 nm), $2^3P_1 \rightarrow 1^1S_0$ (59.1 nm) обозначим ω_{10} и ω_{12} соответственно. Рассматриваем ВКР поля:

$$E(t) = E \exp(-i\omega t) + E' \exp(-i\omega' t) + \text{c.c.},$$

при котором атом с уровня 0 переходит на уровень 2 через промежуточный уровень 1. Частота поля накачки

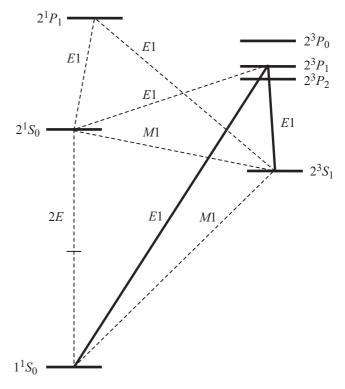


Рис. 1. Переходы между низколежащими уровнями атома гелия

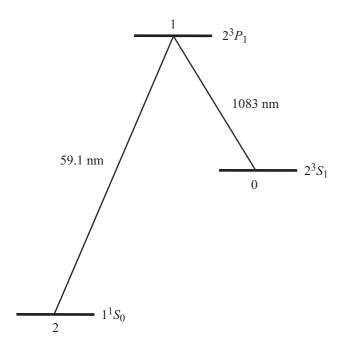


Рис. 2. Схема вынужденного комбинационного рассеяния с уровня 2^3S_1 в основное состояние 1^1S_0 через промежуточный уровень 2^3P_1 .

 ω близка к частоте перехода ω_{10} , а частота вынужденного рассеяния ω' — к частоте перехода ω_{12} . Известно, что для Λ -схем в форме линии вынужденного рассеяния имеется резонанс с однородной шириной запрещенного перехода ω_{02} [5]. Специально для нашего случая мы решили эту задачу с помощью уравнений для матрицы плотности, считая интенсивности полей слабыми по сравнению с их насыщающими интенсивностями. Для вероятности перехода атома из состояния 0 в состояние 2 имеем выражение

$$W(0 \to 2) = A \frac{\Gamma^4}{(\Gamma^2 + \Omega'^2)(\Gamma^2 + \Omega^2)}$$

 $+ A \operatorname{Re} \left\{ \frac{\Gamma^3}{(\Gamma - i\Omega')(\Gamma + i\Omega)(\Gamma_{02} + i\Delta)}, \right\},$
 $A = a|V|^2/\Gamma.$

Здесь $\Omega' = \omega' - \omega_{12}$, $\Omega = \omega - \omega_{10}$, $\Delta = \omega' - \omega - \omega_{02}$, $\Gamma = 1/\tau_1$ — ширина линии переходов 1-0 и 1-2, τ_1 — время жизни уровня 1, Γ_{02} — ширина запрещенного перехода 0-2, $V = d'E'/\hbar$, $U = dE/\hbar$, d и d' — проекции оператора дипольного момента на направление поля, $q = 2|U|^2/\Gamma^2$ — безразмерный параметр насыщения на переходе 1-0. Вероятность двухфотонного перехода состоит из двух членов, которые имеют разную физическую природу. Первый член состоит из двух ступенчатых переходов — поглощение фотона с созданием заселенности на верхнем уровне 1, а затем однофотонное излучение. Второй член — ВКР (когерентное поглощение и испускание двух фотонов), в форме линии которого

имеется резонанс с однородной шириной запрещенного перехода 0-2 .

При условиях $\Omega'^2 \ll \Gamma^2$ и $\Omega^2 \ll \Gamma^2$ имеем

$$W(0 \to 2) = A \left(1 + \frac{\Gamma_{02} \Gamma}{(\omega' - \omega - \omega_{02})^2 + \Gamma_{02}^2} \right).$$

В нашем случае $\Gamma\gg\Gamma_{02}$, поэтому получим

$$W(0 o 2) = W \, rac{\Gamma_{02}^2}{(\omega - \omega' - \omega_{02})^2 + \Gamma_{02}^2}, \ W = a|V|^2/\Gamma_{02}.$$

Таким образом, имеем резонанс в форме линии ВКР, когда разность частот $\omega - \omega'$ равняется частоте перехода ω_{20} .

Численные оценки

Будем считать интенсивность излучения на переходе $2^3P_1 \to 2^3S_1$ (1083 nm) равной 1 mW. Такой порядок величины имеет насыщающая интенсивность этого перехода (см. Приложение), а поэтому при оценках параметр q можно положить единице:

$$W = |V|^2 / \Gamma_{02}$$
.

В реальных экспериментах ширина резонанса Γ_{02} существенно больше своей естественной ширины. При измерении частоты перехода ω_{02} холодные атомы являются свободными, а поэтому основным фактором уширения линии является допплеровское уширение. При температуре $1\,\mu{\rm K}$ тепловая скорость атомов гелия порядка $1\,{\rm cm/s}$, а допплеровское уширение на длине волны $59.1\,{\rm nm}$ имеет порядок $100\,{\rm kHz}$. При этом величина Γ_{02} все еще меньше радиационных ширин переходов $2^3S_1-2^3P_1$ и $1^1S_0-2^3P_1$, для которых $\Gamma=10^7\,{\rm s}^{-1}$ ($1.6\,{\rm MHz}$). При размере светового пучка $1\,{\rm cm}$ время взаимодействия атома с полем T будет порядка одной секунды. Количество атомов, которое за это время окажется в состоянии 1^1S_0 , равно

$$N(1^1S_0) = WNT,$$

где N — число атомов в начальном состоянии 2^3S_1 . Для оценок примем $T=4\,\mathrm{s},\ 2\Gamma_{02}=2\pi\cdot 100\,\mathrm{s}^{-1},\ N=10^7.$ Используя Приложение, вероятность перехода W перепишем в виде

$$W = \frac{\lambda'^3 \gamma' I'}{16\pi^2 \hbar c \Gamma_{02}},$$

где для перехода $1^1S_0-2^3P_1$ длина волны $\lambda'=5.9\cdot 10^{-6}\,\mathrm{cm}$, вероятность перехода $\gamma=177\,\mathrm{s}^{-1}$. Интенсивность поля на этом переходе положим

$$I' = 1 \,\mu \text{W/cm}^2 = 10 \,\text{erg/cm}^2 \text{s}.$$

В результате для числа атомов, которые окажутся в основном состоянии 1^1S_0 , получим

$$N(1^1S_0) = 10^4$$
.

Регистрировать атомы гелия в основном состоянии 1^1S_0 можно различными способами, например, с помощью метода работы [6]. Излучение 58.4 nm, резонансное переходу $1^{1}S_{0} \to 2^{1}P_{0}$, переводит атомы в состояние $2^{1}P_{0}$, а затем регистрируются ионы гелия по фотоионизации УФ излучением 292 nm. При отсутствии фона флуктуация числа ионов имеет порядок \sqrt{N} , а отношение сигнал/шум равно $N/\sqrt{N} = 10^2$. Это позволяет зарегистрировать форму резонанса с погрешностью 10^{-2} . Наличие фона приводит к уменьшению отношения сигнал/шум. Однако в реальных экспериментах фон может быть сильно подавлен, так как резонанс регистрируется с помощью разнообразных методик [5]: запись резонанса по производной, использование частотной модуляции и др. Для оценок мы ориентировались на данные экспериментов [2,3], где в состоянии 2^3S_1 было более 10^6 атомов при температуре 1 µК. В перспективе охлаждение 10^9 атомов в состоянии 2^3S_1 до 1 nK позволит увеличить число регистрируемых атомов до 10^8 .

При постановке эксперимента могут возникнуть трудности с созданием источника излучения 59.1 nm, которое резонансно переходу $1^1S_0 \to 2^3P_1$. Однако еще в 1997 г. в работе [6] использовался ВУФ спектрометр с длиной волны 58 nm для измерения частоты перехода $1^1S_0 \to 2^1P_0$ атома гелия и уточнения лэмбовского сдвига основного состояния 1^1S_0 .

Заключение

Показано, что при достаточно малой интенсивности излучения 59.1 nm можно измерить частоту запрещенного перехода $1^1S_0 \to 2^3S_1$ атома гелия. Отметим особенности этого перехода, которые делают его перспективным для дальнейших исследований.

- 1. Переход находится в области вакуумного ультрафиолета и имеет очень малую радиационную ширину $\sim 10^{-5}\,\mathrm{Hz}.$
- 2. Измерение частоты перехода $1^1S_0 \rightarrow 2^3S_1$ дает дополнительную информацию для проверки квантовой электродинамики, так как рассматривается трехчастичная система двух электронов и ядра. Можно измерить лэмбовский сдвиг уровня 2^3S_1 и сравнить его с теоретическим значением ($\sim 5\,\mathrm{GHz}$).
- 3. Можно использовать методы лазерной спектроскопии без допплеровского уширения, так как в форме линии ВКР в газе имеется резонанс с однородной шириной [5,7,8].
- 4. Переход $1^1S_0 \rightarrow 2^3S_1$ (63 nm) может быть использован в качестве репера для измерения частот в области вакуумного ультрафиолета, а возможно и рентгена. Измерение частот в рентгеновском диапазоне актуально для изучения процессов, происходящих в объектах порядка нанометра.

Работа выполнена при финансовой поддержке гранта РФФИ N 17-02-00292.

Приложение

Рассмотрен атом с двумя уровнями 0 и 1. Уровень 0 является основным состоянием, а верхний уровень 1 распадается в основное состояние с радиационной вероятностью γ . Уравнения для элементов матрицы плотности атома, взаимодействующего с полем

$$E(t) = E \exp(-i\omega t) + \text{c.c.},$$

имеют вил

$$\dot{\rho}_1 + \gamma \rho_1 = U(t)\rho_{10}^* + \rho_{10} U^*(t),$$

$$\dot{\rho}_0 = \gamma \rho_0 - U(t)\rho_{10}^* - \rho_{10} U^*(t),$$

$$\dot{\rho}_{10} + (i\omega_{10} + \Gamma)\rho_{10} = U(t)(\rho_0 - \rho_1).$$

Здесь Γ — ширина линии перехода, частота поля ω близка к частоте перехода ω_{10} , $U(t)=U\exp(-i\omega t)$, $U=dE/\hbar, d=d_{10}$ — матричный элемент проекции оператора дипольного момента на направление напряженности поля. Интенсивность $I=c|E|^2/2\pi$ равна плотности потока энергии, усредненной по периоду колебаний.

Заселенности уровней ρ_0 и ρ_1 удовлетворяют условию нормировки $\rho_0+\rho_1=1$. Это позволяет не учитывать второе уравнение, а заменить ρ_0 на $1-\rho_1$:

$$\dot{\rho}_1 + \gamma \rho_1 = U(t)\rho_{10}^* + \rho_{10} U^*(t),$$

$$\dot{\rho}_{10} + (i\omega_{10} + \Gamma)\rho_{10} = U(t)(1 - 2\rho_1).$$

В стационарном случае решение этих уравнений будем искать в виде

$$\rho_{10} = rU \exp(-i\omega t),$$

где r и ρ_1 — константы. В результате имеем

$$\gamma \rho_1 = |U|^2 (r^* + r),$$

$$(-i\Omega+\Gamma)r=1-2\rho_1,$$

где $\Omega = \omega - \omega_{10}$. Из этих уравнений находим заселенность верхнего уровня:

$$ho_1 = rac{\kappa}{2} \, rac{\Gamma^2}{\Omega^2 + \Gamma^2(1+q)},$$

где безразмерный параметр насыщения q равен

$$q = \frac{|U|^2}{\gamma \Gamma}.$$

Когда $q \ll 1$,

$$\rho_1 = \frac{q}{2} \frac{\Gamma^2}{\Omega^2 + \Gamma^2}.$$

При $q \to \infty$ получим $\rho_1 = 1/2$. Как и должно быть, при больших полях заселенности на уровнях 0 и 1 выравниваются.

Для оценок приведем выражение для q к удобному виду. В нашем случае уровни 0 и 1 есть состояния S и

P, а поэтому радиационная вероятность перехода $1 \to 0$ дается известной формулой:

$$\gamma = \frac{4\omega^3 d^2}{\hbar c^3}, \quad \omega = 2\pi c/\lambda.$$

Учитывая, что

$$d^2 = \frac{\hbar \lambda^3 \gamma}{4(2\pi)^3}, \quad E^2 = \frac{2\pi I}{c},$$

находим

$$|U|^2 = \frac{\lambda^3 \gamma I}{16\pi^2 \hbar c}.$$

Параметр насыщения запишем в виде

$$q = I/I_{\text{sat}}$$
,

где насыщающая интенсивность равна

$$I_{\rm sat} = 16\pi^2 \hbar c \Gamma / \lambda^3$$
.

Напомним, что $\hbar=10^{-27}\,\mathrm{erg/s}$, $c=3\cdot 10^{10}\,\mathrm{cm/s}$, $1\,\mathrm{erg/s}=10^{-7}\,\mathrm{W}$. Для дипольного перехода $2^3S_1-2^3P_1$ атома гелия, у которого $\lambda=1.083\cdot 10^{-4}\,\mathrm{cm}$, $\gamma=10^7\,\mathrm{s^{-1}}$, $\Gamma=\gamma/2$, имеем

$$I_{\text{sat}} = 1.9 \,\text{mW/cm}^2$$
.

В экспериментах, где используется этот переход, интенсивность I сравнима с $I_{\rm sat}$. Это позволяет при наших оценках параметр насыщения q положить равным единице.

Список литературы

- [1] Drake G., Yan Z.-C. // Can. J. Phys. 2008. V. 86. P. 45.
- [2] van Rooij R., Borbely J.S., Simonet J., Hoogerland M.D., Eikema K.S.E., Roozendaal R.A., Vassen W. // Science. 2011. V. 333. P. 196.
- [3] *Vassen W.* // EPJ Web of Conferences. 2013. V. 57. P. 02006. 10.1051/epjconf/20135702006
- [4] Baklanov E.V., Denisov A.V. // Laser Phys. 1999. V. 9. P. 259.
- [5] Летохов В.С., Чеботаев В.П. Нелинейная лазерная спектроскопия сверхвысокого разрешения. М.: Наука, 1990. 512 с.
- [6] Eikema K.S., Ubachs W., Vassen W., Hogervorst W. // Phys. Rev. A 1997. V. 55. P. 1866.
- [7] Бакланов Е.В., Бетеров И.М., Дубецкий Б.Я., Чеботаев В.П. // Письма в ЖЭТФ. 1975. Т. 22. С. 289.
- [8] Baklanov E.V., Beterov I.M., Chebotayev V.P., Dubetsky B.Y. // Appl. Phys. 1976. V. 11. P. 75.