# Модификация фотоэлектрических преобразователей лазерного излучения ( $\lambda = 808$ нм), получаемых методом жидкофазной эпитаксии

© В.П. Хвостиков, С.В. Сорокина, Н.С. Потапович, О.А. Хвостикова, Н.Х. Тимошина, М.З. Шварц

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: vlkh@scell.ioffe.ru

(Получена 4 октября 2017 г. Принята к печати 18 октября 2017 г.)

На основе однопереходных структур n-Al<sub>0.07</sub>Ga<sub>0.93</sub>As – p-Al<sub>0.07</sub>Ga<sub>0.93</sub>As – p-Al<sub>0.25</sub>Ga<sub>0.75</sub>As методом эпитаксии из жидкой фазы получены преобразователи лазерного излучения (ЛИ) для длины волны  $\lambda = 808$  нм, проведено их тестирование при равномерном (импульсный имитатор) и частично неравномерном (лазерный луч) распределении освещенности на фотоприемной поверхности. При равномерной засветке на образцах площадью S = 4 см<sup>2</sup> при мощности 1.2 Вт достигнут монохроматический кпд  $\eta = 53.1\%$ . Для преобразователей с S = 10.2 мм<sup>2</sup> кпд составил 58.3% при мощности лазерного излучения 0.7 Вт.

DOI: 10.21883/FTP.2018.03.45626.8740

### 1. Введение

При построении реальных лазерных систем дистанционного энергопитания требуется создание фотоэлектрических преобразователей (ФЭП) с высоким кпд для выбранных длин волн монохроматического излучения, устойчиво работающих при высоких освещенностях, повышенных температурах и неблагоприятных внешних факторах. Длина волны ( $\lambda$ ) источника лазерного излучения (ЛИ) будет определять выбор полупроводникового материала, характеристики гетероструктуры и в целом устройство ФЭП.

По своим конструктивным особенностям преобразователи ЛИ для  $\lambda = 808$  нм [1–3] близки к однопереходным солнечным элементам на основе GaAs. Однако лазерное излучение, в отличие от солнечного, монохроматично, неравномерно и ограничено по освещаемой области. Эти свойства требуют не только оптимизации структуры [4,5], контактной сетки [5] и просветляющих покрытий самих ФЭП ЛИ, но и особых подходов при построении модулей на их основе (специальная схема монтажа и коммутации в последовательные и параллельные цепочки элементов для компенсации неравномерности засветки; соответствие формы и размеров принимающей поверхности лазерному пятну; обеспечение эффективного отвода тепла при увеличении направленности и мощности ЛИ и т.п.).

Настоящая работа развивает исследования в области технологии изготовления  $\Phi$ ЭП ЛИ с  $\lambda = 808$  нм и фото-электрических модулей на их основе [2–4].

### 2. Эксперимент

### 2.1. Особенности гетероструктуры фотоэлектрического преобразователя лазерного излучения

В работе [1] сообщалось о применении традиционной технологии солнечных элементов на основе АlGaAs/GaAs для создания ФЭП ЛИ с  $\lambda = 808$  нм. Структура такого преобразователя, полученного методом эпитаксии из жидкой фазы (ЖФЭ), состояла из базового слоя *n*-GaAs, эмиттера *p*-GaAs и широкозонного оптического окна Al<sub>x</sub>Ga<sub>1-x</sub>As с x = 0.85, поверх которого в ряде случаев дополнительно осаждался контактный слой *p*-GaAs. Под излучением ксеноновой лампы образцы площадью от S = 4 мм<sup>2</sup> до 4 см<sup>2</sup> имеем монохроматический кпд  $\eta \approx 50-56.2\%$  [1].

В структурах ФЭП, оптимизированных для преобразования монохроматического излучения с длиной волны  $\lambda = 808$  нм, p-n-переход формировался в Al<sub>x</sub>Ga<sub>1-x</sub>As с  $x \approx 0.07$  (рис. 1). В отличие от солнечных элементов, для преобразователей ЛИ нет необходимости осаждения тонкого слоя широкозонного "окна" с высоким содержанием алюминия, повышающего фоточувствительность в коротковолновой области спектра. По этой причине содержание Al было уменьшено до x = 0.25 - 0.3, а толщина слоя увеличена до 3 - 10 мкм. В процессе роста толстого высоколегированного "окна" происходило



Рис. 1. Структура ФЭП ЛИ.



**Рис. 2.** Спектральная зависимость фоточувствительности (*a*) и зависимость напряжения холостого хода V<sub>oc</sub> от фототока (*b*) ФЭП ЛИ, полученных с использованием традиционной (*I*) и усовершенствованной (*2*) технологий.

изменение коэффициента сегрегации и, следовательно, обеднение состава жидкой фазы алюминием. Содержание Al на поверхности значительно (до 10–15%) снижалось и не препятствовало качеству фронтальных контактов, исключая тем самым необходимость осаждения дополнительного контактного слоя и упрощая технологический цикл изготовления ФЭП ЛИ.

Рис. 2, *а* иллюстрирует различие в спектральной чувствительности для ФЭП ЛИ, изготовленных на основе традиционных (кривая 1) для солнечных элементов и разработанных (кривая 2) структур. На рис. 2, *b* сравниваются напряжения холостого хода  $V_{oc}$  фотоэлементов данных типов. Замена материала GaAs на Al<sub>0.07</sub>Ga<sub>0.93</sub>As при формированиии *p*-*n*-перехода практически не сказалась на величине спектральной чувствительности ФЭП ЛИ при  $\lambda = 808$  нм, обеспечив одновременно рост напряжения на 20 мВ.

### 2.2. Специфика постростовых операций

На фотоактивную поверхность ФЭП ЛИ наносилось двухслойное просветляющее покрытие TiO<sub>2</sub>/SiO<sub>2</sub>, имеющее высокую стойкость к мощным световым потокам и минимум отражения при  $\lambda = 808$  нм (коэффициент отражения  $R \approx 0.2\%$ ). При импульсной засветке лазерным излучением следы видимых повреждений TiO<sub>2</sub>/SiO<sub>2</sub> отсутствуют вплоть до ~  $4 \cdot 10^3$  BT/cm<sup>2</sup>, что значительно выше рабочих значений плотности мощности, преобразуемой разработанными ФЭП. Отражение от свободной поверхности преобразователя до и после нанесения просветляющих пленок показано на рис. 3.

Для снижения омических потерь ФЭП ЛИ на фронтальную контактную сетку, сформированную термическим испарением в вакууме Cr–Au, электролитически осаждался слой металла. Замена гальванического золота на серебро (рис. 4) и увеличение толщины пленки от 2 до 4 мкм позволили сместить падение фактора заполнения вольт-амперной характеристики (FF) и кпд ( $\eta$ ) в область бо́льших значений мощности преобразуемого ЛИ.



**Рис. 3.** Отражение от поверхности ФЭП ЛИ без антиотражающего покрытия (1) и с  $TiO_2/SiO_2$  (2).



**Рис. 4.** FF и кпд (оценка при равномерной засветке) преобразователей площадью  $4 \text{ см}^2$  с золото- (1) и серебросодержащими (2) фронтальными контактами.

Физика и техника полупроводников, 2018, том 52, вып. 3



**Рис. 5.** Фотографии ФЭП ЛИ: *1* — чип размером 20 × 20 мм (*a*) или 3.0 × 3.4 мм (*b*), 2 — алюминиевое основание с диэлектрической и медной пленками, 3 — радиатор, 4 — медная лента, 5 — электрические выводы, 6 — контактный рисунок на плате, 7 — стекло для транспортировки.

### 2.3. Конструктивное оформление макета и монтаж чипов

При монтаже чипов ФЭП ЛИ (рис. 5, a, b) применялись паяльные пасты на базе сплава PbSnAg с температурой плавления 180°С. Преобразователь (1) устанавливался на изолирующее основание (2) с высокими теплопроводностью, термостойкостью и совместимостью по коэффициенту термического расширения с подложкой GaAs. К фронтальным токосборным шинам чипа припаивалась медная луженая лента толщиной 0.1 мм (4). В качестве изоляционных оснований были выбраны печатные платы из сплава алюминия, слоя диэлектрика и медной фольги с лужением. Для улучшения отвода тепла от фотоэлемента они устанавливались на металлический



**Рис. 6.** Зависимости кпд,  $V_{oc}$  и FF от мощности ЛИ для  $\Phi$ ЭП площадью  $S = 10.2 \text{ мм}^2$  при равномерной облученности его поверхности.

радиатор (3). На поверхности плат формировался контактный рисунок (6).

На рис. 5, *b* поверхность чипа защищена оргстеклом, которое устанавливалось на период хранения и транспортировки ФЭП ЛИ и удалялось при его эксплуатации.

### 3. Результаты и обсуждение

## 3.1. Характеристики фотоэлектрического преобразователя лазерного излучения при равномерной облученности

Исследование динамики фотоэлектрических параметров ФЭП от мощности ЛИ проводилось при равномер-



**Рис. 7.** Зависимости клд,  $V_{oc}$  и FF для ФЭП площадью  $S = 4 \text{ см}^2$  от мощности ЛИ при равномерной облученности его поверхности.

ном (импульсный имитатор) и частично неравномерном (лазерный луч) распределении освещенности на фотоприемной поверхности.

Коэффициент полезного действия  $(\eta)$ , напряжение холостого хода (Voc) и фактор заполнения нагрузочной характеристики (FF) для преобразователей разных типов при засветке импульсным имитатором представлены на рис. 6, 7. Эквивалентная мощность лазерного излучения определялась как отношение  $I_{sc}/SR$  в предположении линейного роста фототока с освещенностью, где Isc ток короткого замыкания, SR — спектральная чувствительность ФЭП на длине волны 808 нм, А/Вт. Для преобразователя с  $S = 10.2 \,\mathrm{mm}^2$  при эквивалентной мощности 0.7 Вт достигнут максимальный монохроматический кпд  $\eta = 58.3\%$  (рис. 6). Параметры ФЭП ЛИ с  $S = 4 \text{ см}^2$ уступают указанным образцам за счет роста омических потерь, связанных с увеличением сопротивления растекания при повышении площади фотоэлемента. При мощности 1.2 Вт на таких образцах получен кпд  $\eta = 53.1\%$ (рис. 7).

### Характеристики фотоэлектрических преобразователей лазерного излучения с λ = 808 нм

В лаборатории фотоэлектрических преобразователей ФТИ им. А.Ф. Иоффе имеется возможность тестирования ФЭП малой площади непосредственно при облучении потоком ЛИ, подводимым к образцу по оптоволокну. Контроль мощности ЛИ в этом случае производился термопарным измерителем Gentec-EO XPL12-3S-H2, а размер лазерного пятна и профиль распределения освещенности в нем (рис. 8) — профилометром лазерного луча типа Gentec Beamage-CCD23 [6].

Исследовались ФЭП площадью  $S = 4 \text{ мм}^2$ . Измеренное значение спектральной чувствительности составило 0.55 А/Вт ( $\lambda = 808 \text{ нм}$ ) для диапазона мощностей ЛИ 0.1–1 Вт (точка *a* на рис. 9).

Это значение близко к величине 0.56 А/Вт ( $\lambda$ =808 нм), определенной при измерении спектральной зависимости



Рис. 8. Распределение освещенности в пятне ЛИ.



Рис. 9. Спектральная зависимость ФЭП ЛИ.



Рис. 10. Зависимости фотоэлектрических параметров ФЭП ЛИ от плотности генерируемого фототока при равномерном (1, импульсный имитатор) и частично неравномерном (2, лазерный луч) распределении освещенности на фотоприемной поверхности.

фоточувствительности (точка *b* на рис. 9) [7]. Таким образом, результаты для двух независимых методов определения SR имеют хорошую сходимость. Несколько меньшее значение спектральной чувствительности при воздействии на ФЭП лазерным лучом следует связывать с характеристиками светового пучка ЛИ. Так, анализ профиля распределения освещенности на ФЭП (рис. 8) показывает, что небольшая доля ЛИ (диаметр пятна 2.3 мм) выходит за пределы фоточувствительной поверхности элемента (диаметр 2 мм) и оказывается потерянной для преобразования, в то время как измеритель Gentec-EO XPL12-3S-H2 регистрирует полную мощность подводимого к ФЭП излучения.

Сравнение фотоэлектрических параметров  $\Phi \Im \Pi \Pi \Pi c$  $S = 4 \text{ мм}^2$  при равномерном и частично неравномерном распределении освещенности на фотоприемной поверхности приведено на рис. 10. Мощность лазерного излучения варьировалась в диапазоне от 0.1 до 1 Вт, что соответствует плотности мощности ЛИ от 5 до 100 Bт/см<sup>2</sup>. Максимальная эффективность преобразования ЛИ составила 54.5% при плотности генерируемого фототока 7.5 A/см<sup>2</sup>. Дальнейшее увеличение мощности ЛИ ведет к росту потерь на последовательном сопротивлении (снижению FF) и уменьшению напряжения холостого хода из-за неконтролируемого нагрева ФЭП ЛИ. При измерениях вольт-амперных характеристик ФЭП на импульсном имитаторе (длительность светового импульса 1 мс) нагрев образца удается исключить, что обеспечивает логарифмический рост напряжения холостого хода вплоть до предельных освещенностей. Снижение доли резистивных потерь при переходе к равномерной засветке позволяет сохранить достаточно высокие значения фактора заполнения вольт-амперной характеристики в диапазоне плотностей генерируемого тока до 20 A/см<sup>2</sup> при незначительном увеличении кпд, до 55%.

### 4. Заключение

Исследована возможность оптимизации гетероструктур AlGaAs/GaAs с целью создания методом ЖФЭ высокоэффективных фотоэлектрических преобразователей лазерного излучения с  $\lambda = 808$  нм. Формирование p-n-перехода в Al<sub>0.07</sub>Ga<sub>0.93</sub>As повышает  $V_{oc}$  ФЭП ЛИ и дает возможность получения действующих макетов преобразователей с монохроматическим кпд  $\eta > 58\%$ . Увеличение площади образцов от  $S = 10.2 \,\mathrm{MM}^2$  до  $4 \,\mathrm{cm}^2$ снижает эффективность на 5%. При переходе к прямой засветке лазерным излучением возникает радиационный нагрев ФЭП, что сказывается на напряжении холостого хода. В совокупности с возрастающими резистивными потерями из-за неравномерной освещенности это ведет к уменьшению значений кпд ФЭП ЛИ в сравнении с величинами, получаемыми при облучении короткими импульсами (1 мс).

Исследование выполнено за счет гранта Российского научного фонда (проект № 17-79-30035)

### Список литературы

- L.C. Olsen, D.A. Huber, G. Dunham, F.W. Addis. Proc. 22nd IEEE Photovoltaic Specialist Conf. (N.Y., USA, 1991) p. 419.
- [2] В.П. Хвостиков, С.В. Сорокина, Н.С. Потапович, О.А. Хвостикова, Н.Х. Тимошина. ФТП, **51** (5), 676 (2017).
- [3] В.М. Андреев. Альтернативный киловатт, **6** (18), 1 (2012).
- [4] В.П. Хвостиков, Н.А. Калюжный, С.А. Минтаиров, С.В. Сорокина, Н.С. Потапович, В.М. Емельянов, Н.Х. Тимошина, В.М. Андреев. ФТП, 50, 1242 (2016).
- [5] В.М. Емельянов, С.А. Минтаиров, С.В. Сорокина, В.П. Хвостиков, М.З. Шварц. ФТП, 50, 125 (2016).

- [6] Электронный pecypc https://www.gentec-eo.com
- [7] M.Z. Shvarts, A.E. Chalov, E.A. Ionova, V.R. Larionov, D.A. Malevskiy, V.D. Rumyantsev, S.S. Titkov. *Proc. 20th Eur. Photovoltaic Solar Energy Conf.* (Barcelona, Spain, 2005) p. 278.

Редактор Л.В. Шаронова

### Modification of laser power converters ( $\lambda = 808 \text{ nm}$ ) by using LPE

V.P. Khvostikov, S.V. Sorokina, N.S. Potapovich, O.A. Khvostikova, N.Kh. Timoshina, M.Z. Shvarts

### loffe Institute, 194021 St. Petersburg, Russia

**Abstract** Basing on *n*-Al<sub>0.07</sub>Ga<sub>0.93</sub>As-*p*-Al<sub>0.07</sub>Ga<sub>0.93</sub>As*p*-Al<sub>0.25</sub>Ga<sub>0.75</sub>As single-junction heterostructures, we have produced laser power converters with the wavelength of 808 nm by using LPE, and carried out their testing in cases of uniform (i. e., with a flash lamp) and partly non-uniform illumination of the photodetector. In the former case the monochromatic efficiency  $\eta = 53.1\%$  has been achieved for the samples of 4 cm<sup>2</sup> in area (*S*) at the power of 1.2 W. At *S* = 0.1 cm<sup>2</sup> the efficiency is found to be 58.3% at the 0.7 W power.