05

# Исследование прочностных характеристик акрилонитрилбутадиенстирол пластика при динамических нагрузках

© А.А. Чеврычкина,<sup>1,2</sup> А.Д. Евстифеев,<sup>1</sup> Г.А. Волков<sup>1,2</sup>

1 Институт проблем машиноведения РАН,

199178 Санкт-Петербург, Россия

<sup>2</sup> Санкт-Петербургский государственный университет,

199034 Санкт-Петербург, Россия

e-mail: anastasiia.che@gmail.com

(Поступило в Редакцию 12 июля 2017 г.)

Проведены экспериментальные исследования по определению механических свойств аддитивного материала, изготовленного из акрилонитрилбутадиенстирол пластика на 3D принтере, в квазистатическом и динамическом режимах. С помощью критерия инкубационного времени построена прочностная кривая, описывающая нелинейную зависимость критического напряжения от скорости деформации. Определено значение характерного инкубационного времени  $\tau$  сопоставлением теоретической кривой с экспериментальными данными.

DOI: 10.21883/JTF.2018.03.45596.2430

# Введение

В настоящее время все большее внимание уделяется методам 3D печати [1]. Хотя эти методы уже много лет применяются в промышленности, разработка относительно дешевых потребительских 3D принтеров придала аддитивным технологиям производства новый импульс. Сегодня многие люди ожидают отличного будущего для 3D печати. Некоторые эксперты считают, что эти методы могут привести к новой промышленной революции и в будущем наши здания будут напечатаны на строительной площадке.

Несмотря на весь потенциал 3D печати вообще и 3D печати в строительной отрасли, в частности, еще необходимо исследовать свойства напечатанного материала, чтобы его можно было бы применить в строительной индустрии. Важно знать, как себя поведет материал в различных условиях эксплуатации. Критическое напряжение, при котором материал разрушается, является одной из основных характеристик материала. Известно, что для многих материалов, например бетона и горных пород, при увеличении скорости деформации критическое напряжение растет [2-4]. В 1974 г. Н.А. Златиным и его коллегами [5] экспериментально был получен эффект наличия "динамической ветви" при динамических разрушениях. А именно была зафиксирована возможность выдерживать материалами кратковременные нагрузки, многократно превосходящие их статический предел прочности, данный эффект хорошо описывается критерием инкубационного времени [6-8].

Основными целями настоящей работы являются определение прочностных характеристик продуктов 3D печати в условиях экстремальных нагрузок и анализ полученных эффектов с использованием структурно-временного подхода.

# 1. Развитие динамических методов исследования материалов

Хорошо известно, что многие материалы при динамических и квазистатических нагрузках ведут себя поразному. Ранние работы в этой области принадлежат В. Норкізоп [9] и W. Manson [10], они использовали падающий наконечник для получения импульса растяжения. Гинс (Ginns) [11], используя пружинный механизм для приложения внезапной нагрузки и тензодатчика для измерения напряжения, был одним из первых, кто попытался напрямую записать динамическую кривую напряжения — деформации. Позже Brouw и Vincent [12] с помощью маятниковой ударной машины и пьезоэлектрических кристаллов для измерения напряжений получили кривые напряжения — деформации непосредственно на экране осциллографа.

До 1940 г. измерение напряжения всегда включало один из двух методов. Напряжение вычислялось из соображений теории распространения упругих волн и поэтому было ограничено упругой областью или использовался метод с полумеханической измерительной головкой напряжения, что почти всегда сопровождалось большими колебаниями напряжения. Однако в 1940 г. Fanning и Bassett [13] разработали методику измерения ударных деформаций с помощью тензорезисторов с электрическим сопротивлением, а в 1948 г. Вгоwп и Edmonds [14] применили ударную маятниковую машину типа Брауна и Винсента. Это позволило фиксировать импульсы напряжения растяжения во времени, которые не искажали колебания напряжения, возникающие в измерительной головке.

Большинство исследователей, помимо Hopkinson и Manson, игнорировали влияние распространения волны напряжения в образце, считая, что напряжение, измеренное на конце образца, эквивалентно напряжению во всем

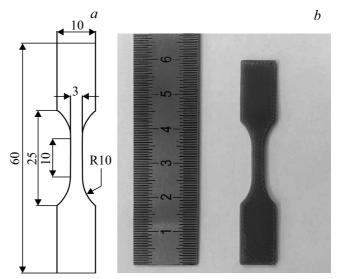
образце. Гэст (Guest) [15] в 1930 г. пришел к выводу, что, когда скорость удара достаточно высока, распространение и отражение волн напряжения в испытательной установке, если их игнорировать, могут привести к значительным ошибкам в результатах. Это было показано в 1948 г. в работах Clark и Duwez [16], в которых применена теория распространения пластических волн к испытаниям на растяжение.

Clark и Wood [17] работе 1949 г. описали устройство нового типа растягивающей машины, в которой сила приложена пневматически и достигает максимального значения в течении  $5\,\mu$ s. Такой тип нагружения они называли "быстрым", под которым они подразумевали динамическое нагружение со скоростями, при которых эффект распространения волны напряжения в аппарате пренебрежимо мал. Это отличается от ударного нагружения, когда волновые эффекты должны быть приняты во внимание.

Campbell and Duby [18] в 1956 г. были первыми, кто выполнил ударную нагрузку на аппарате, спроектированном специально для анализа результатом в терминах волнового распространения. Они смогли получить значение предела текучести мягкой стали, когда время воздействия  $25\,\mu\mathrm{s}$  и максимальная скорость деформации порядка  $1000\,\mathrm{s}^{-1}$ .

В настоящее время наиболее востребованной экспериментальной методикой в мире для исследования динамического поведения материалов при скоростях деформаций порядка  $10^2-10^4\,\mathrm{s}^{-1}$  является метод Кольского с использованием разрезного стержня Гопкинсона (РСГ) или его модификации. Изначально этот метод был предназначен только для испытания на одноосное сжатие, метод постоянно совершенствовался и на сегодняшний день существуют сжимающий, растягивающий, крутильный, сдвиговой и двуосный варианты метода РСГ.

В настоящей работе исследования динамических характеристик аддитивного материала проводились на башенном копре Instron CEAST 9350 при скорости деформации порядка  $10^2 - 10^3 \, \mathrm{s}^{-1}$ .


### 2. Материал и методика исследования

В настоящей работе рассматривается аддитивный материал, изготовленный из акрилонитрилбутадиоенстирол (ABS) пластика на 3D принтере. Образцы соответствуют стандарту ISO 8256 методу А, внешний вид и геометрия образцов приведены на рис. 1. Печать образцов проводилась послойно, толщина слоя 0.06 mm.

Испытания проведены для 10 различных скоростей деформации от  $2\cdot 10^{-5}$  до  $2\cdot 10^3$  s $^{-1}$ . Для каждой скорости деформации было проведено 5 испытаний.

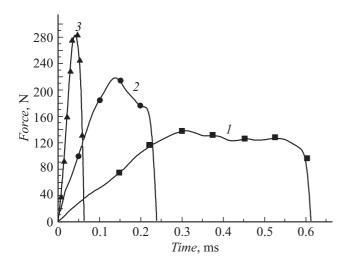
#### 2.1. Квазистатические свойства

Квазистатические исследования проводились на установке Shimadzu AG-50kNXD, оборудованной экстензометром, при скорости деформации  $2 \cdot 10^{-3}$  и  $2 \cdot 10^{-5}$ .

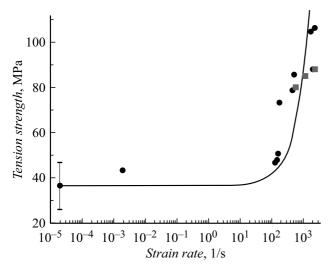


**Рис. 1.** a — геометрия и размеры образца (толщина образца 1 mm), b — внешний вид испытуемых образцов.

#### Свойства материалов


| Свойства         | Образец | Филамент  |
|------------------|---------|-----------|
| E, MPa           | 1700    | 1700-2930 |
| $\sigma_c$ , MPa | 36.5    | 26 - 47   |

Значение модуля Юнга определялось как угол наклона линейно-упругой части кривой напряжение — деформации, т. е.  $E = d\sigma/d\varepsilon$ . Предел прочности определялся как максимальная сила к площади сечения образца. Значения модуля упругости и предела прочности приведены в таблице. Стоит отметить, что полученные в опытах величины модуля Юнга и предела прочности для напечатанных образцов находятся в интервале значений, указанных производителем, для исходного материала.


#### 2.2. Динамические свойства

Динамические исследования производились на башенном копре Instron Ceast 9350 с функцией дополнительной энергии, скорость ударника от 0.77 до 24 m/s.

Образец помещается таким образом, что нижний конец помещен в захваты, по которым приходится удар с заданной скоростью ударника. Верхняя часть закреплена на неподвижной стойке, на которой находится пьезо-электрический датчик силы. Типичный профиль силы от времени для трех разных скоростей деформации 180, 455 и 2035 1/s для проведенных испытаний приведен на рис. 2. Напряжение линейно возрастает до своего максимального значения, затем значение силы немного уменьшается и держится постоянным некоторое время, в это время в образце развиваются процессы, которые ведут к разрушению. За значение динамического предела прочности бралось отношение максимального значения



**Рис. 2.** Типичный профиль силы от времени для трех разных скоростей деформации: I = 180, 2 = 455, 3 = 2035 l/s.



**Рис. 3.** Зависимость критического напряжения от скорости деформации. Кривая построена по критерию (I) при  $\sigma_c=36.5\,\mathrm{MPa},~\tau=57\,\mu\mathrm{s},$  черные круглые точки — экспериментальные данные для аддитивного материала, серые квадраты — экспериментальные данные для филамента из работы [19].

силы к начальной площади сечения образца. На рис. З приведены усредненные результаты испытаний для каждого режима, также приведены данные из работы [19] для исходного ABS-пластика, из которого печатались образцы. Как в случае статического нагружения, так и для динамического нагружения значение предельного напряжения для напечатанного материала мало отличается от исходного материала. Сравнение данных для напечатанного и исходного материалов позволяют считать, что при высоком качестве печати прочностные свойства меняются слабо. Выполненные испытания показали, что предел прочности напечатанных образцов из ABS-пластика существенно зависит от скорости дефор-

мации, значения критического напряжения нелинейно возрастают с увеличением скорости деформации.

# 3. Критерий инкубационного времени

Критическое напряжение принято считать постоянной материала при статическом нагружении. В динамических испытаниях, как было отмечено выше, критическое напряжение зависит от скорости деформаций, способа приложения нагрузки и не является константой. В связи с этим возникает проблема, что же считать динамической прочностью материала, и как предсказывать предельные прочностные характеристики для динамических воздействий произвольной формы. Ключом к решению данной задачи может служить структурно-временной подход с использованием инкубационного времени [6–8]. В рамках этого подхода считается, что разрушение наступает тогда, когда текущее напряжение превышает статический предел прочности на протяжении некоторого временного промежутка, длительность которого определяется формой разрушающего импульса и значением инкубационного времени.

Критерий инкубационного времени можно выразить следующей формулой [6,7]:

$$\int_{t-\tau}^{t} \sigma(s)ds \le \sigma_c \tau, \tag{1}$$

где  $\sigma_c$  — статическая прочность на растяжение,  $\tau$  — инкубационное время материала,  $\sigma(s)$  — временной профиль нагружающего импульса.

Результаты проведенных испытаний показывают, что напряжения возрастают линейно до своего максимального значения (рис. 2), потому зависимость напряжений в образце от времени вплоть до момента разрушения может быть описана следующей функцией:

$$\sigma(t) = E\dot{\varepsilon}tH(t),\tag{2}$$

где H(t) — функция Хэвисайда, E — модуль упругости материала,  $\dot{\varepsilon}$  — скорость деформации. Другими словами, в данной экспериментальной схеме было реализовано жесткое нагружение образца, т. е.  $\dot{\varepsilon}=$  const. Подстановка выражения для временного профиля напряжений (2) в критерий (1) позволяет определить уровень критических напряжений для определенного значения  $\dot{\varepsilon}$ . Таким образом, кривая скоростной зависимости прочности может быть рассчитана аналитически для любого диапазона скоростей деформации образца.

Критерий разрушения (1), используемый в структурно-временном подходе, содержит два определяющих параметра: статическую прочность и инкубационное время материала, которое можно условно считать динамическим параметром прочности, поскольку в динамике именно от его значения в первую очередь зависит величина критических напряжений в момент разрушения.

Инкубационное время можно интерпретировать, как характерное время, необходимое для подготовки изучаемого процесса разрушения в образце. В настоящее время нет стандартных экспериментальных методов для прямого измерения значений  $\tau$ , так как для этого требуется высокоточная техника. Некоторое оптимальное значение инкубационного времени может быть определено сопоставлением аналитической кривой, рассчитанной по критерию (1) с экспериментальными данными. В качестве условия наилучшего совпадения можно использовать, например, метод наименьших квадратов.

На рис. 3 приведены результаты экспериментов и расчетная кривая для ABS-пластика в квазистатических и динамических режимах работы. Кривая соответствует расчетам по формуле (1) при  $\sigma_c = 36.5 \,\mathrm{MPa}, \, \tau = 57 \,\mu\mathrm{s}.$ 

Результаты расчетов показывают, что кривая, полученная с помощью критерия инкубационного времени, не только довольно точно описывает экспериментальные данные во всем диапазоне скоростей нагружения, реализованных в ходе испытаний, но и предсказывает возможные значения прочности материалов в неисследованных областях по шкале скорости деформации. Используя данный подход, можно на качественном уровне подбирать материалы под индивидуальные условия эксплуатации.

#### Заключение

Проведенные экспериментальные исследования по измерению критического напряжения аддитивного материала, изготовленного из ABS-пластика на 3D принтере, в квазистатическом и динамическом режимах показали, что статическая прочность и модуль Юнга напечатанных образцов соответствует значениям, указанным производителем исходного филамента. В ходе динамических испытаний была измерена величина критического напряжения в материале для скоростей деформации в диапазоне  $10^{-5}$  до  $10^3 \, \mathrm{s}^{-1}$ , и полученная скоростная зависимость прочности была описана с помощью критерия инкубационного времени. В ходе расчетов было определено значение характерного инкубационного времени  $au = 57 \, \mu {
m s}$ , которое также может быть использовано для предсказания разрушения напечатанного материала в случае динамических ударных импульсов произвольной формы.

Также стоит отметить, что проведенная в настоящей работе серия статических динамических испытаний, с последующей обработкой результатов с помощью критерий инкубационного времени, может рассматриваться, как некая стандартизированная методика, позволяющая определить скоростную зависимость критических напряжений в любом диапазоне скоростей деформации. Для этого необходимо определить параметры материала в квазистатическом режиме нагружения и сделать контрольные замеры в динамическом режиме. Используемый башенный копер позволяет определить критическое

напряжение для исследуемых образцов при скоростях деформации порядка  $10^2 - 10^3 \, \mathrm{s}^{-1}$ , для более высоких скоростей деформации значения критического напряжения предсказываются по критерию инкубационного времени.

Работа выполнена при финансовой поддержке: Волков Г.А. и Чеврычкина А.А. выполнили разд. 1,2 — гранта РНФ (17-11-01053), Естифеев А.Д. выполнил разд. 3 — гранта РФФИ (16-31-60003 мол\_а\_дк). Исследования проведены с использованием оборудования ресурсного центра Научного парка СПбГУ "Исследование экстремальных состояний материалов и конструкций/Scientific research were performed at the Research park of St.Petersburg State University The study of extreme states of materials and constructions".

## Список литературы

- [1] Campbell T. et al. Could 3D Printing Change the World? 2011.
- [2] Goldsmith W. et al. // Rock. Mech. Min. Sci. Geomech. 1976. Vol. 13. P. 303.
- [3] Howe S., Goldsmith W., Sackman J. // Experimental Mechanics. 1974. Vol. 14. P. 337.
- [4] Petrov Y.V., Smirnov I.V., Utkin A.A. // Mech. Solids. 2010. Vol. 45. N 1. P. 476.
- [5] Златин Н.А., Мочалов С.М., Пугачев Г.С., Брагов А.М. // ФТТ. 1974. Т. 16. Вып. 6. С. 1752.
- [6] Petrov Y.V, Utkin A.A. // Mater Sci. 1989. Vol. 25. N 2. P. 153.
- [7] Petrov Y.V. On "quantum" nature of dynamic fracture of brittle solids. Dokl Akad Nauk USSR. 1991. Vol. 321. P. 66.
- [8] Петров Ю.В., Ситникова Е.В. // ЖТФ. 2004. Т. 74. Вып. 1.
   С. 58—61. (Petrov Yu.V., Sitnikova E.V. // Technical Physics. 2004. Vol. 49. N 1. P. 57.)
- [9] Hopkinson B. // Proc. Roy. Soc. 1905. Vol. 74. Series A. P. 498.
- [10] Manson W. // Proc. Instn. Mech. Engrs. 1934. Vol. W. 128. P. 409
- [11] Ginns D.W. // J. Inst. Met. 1937. Vol. 61. P. 61.
- [12] Brown A.F.C., Vincent N.D.G. // Proc. Instn. Mech. Engrs. 1941. Vol. 145. P. 126.
- [13] Fanning R., Bassett W. // J. Appl. Mech. 1940. Vol. 7. P. 24.
- [14] Brown A.F.C., Edmonds R. // Proc. Instn. Mech. Engrs. 1948. Vol. 159. P. 11.
- [15] Guest J.J. // Proc. Instn. Mech. Engrs. 1930. P. 1273.
- [16] Clark D.S., Duwez P.E. // J. Appl. Mech. 1948. Vol. 15. P. 243.
- [17] Clark D.S., Wood D.S. // Proc. Amer. Soc. Test. Mater. 1949.Vol. 49. P. 717.
- [18] Campbell J.D., Duby J. // Proc. Roy. Soc. 1956. Series A. Vol. 236. P. 24.
- [19] Yin Z.N., Wang T.J. // Mater. Sci. Engineer. A. 2010. Vol. 527. N 6. P. 1461.