Эффект Холла в монокристаллах $La_{1-x}Sr_xMnO_3$

© В.В. Машкауцан, Р.И. Зайнуллина, Н.Г. Бебенин, В.В. Устинов, Я.М. Муковский*

Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

* Московский институт стали и сплавов,

117936 Москва, Россия

E-mail: vlad_ mashk@imp.uran.ru

(Поступила в Редакцию 27 мая 2002 г.)

Изучены температурные зависимости нормального и аномального коэффициентов Холла, а также холловской подвижности носителей тока в монокристаллах ферромагнитных манганитов $La_{1-x}Sr_xMnO_3$ (x = 0.15, 0.20 и 0.25) в температурном интервале от 85 до 400 К. Обсуждаются природа носителей и механизмы проводимости в указанных соединениях.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 00-02-17544 и 00-15-96745), а также Российской академии наук (6-й конкурс-экспертиза проектов молодых ученых, грант № 70).

Повышенный интерес к манганитам лантана обусловлен открытием в них колоссального магнитосопротивления (КМС). Несмотря на интенсивные экспериментальные исследования свойств манганитов, еще нет понимания механизма КМС в этих соединениях. Одним из методов, позволяющих определять природу носителей и механизмы проводимости, является исследование эффекта Холла. Однако проведенные исследования (см., например, [1–10]) не дают возможности сделать однозначные выводы о механизме КМС, что отчасти может быть связано с не вполне корректной обработкой экспериментальных результатов в этих работах.

В большинстве случаев эффект Холла исследуется в тонких пленках; лишь в одной работе [6] была изучена серия объемных монокристаллов La_{1-x}Sr_xMnO₃ с различными значениями x. В [6], однако, не была рассмотрена область температур, где наблюдается максимальное магнитосопротивление, и не исследовались диэлектрические составы с x < 0.17 (концентрационный переход металл-диэлектрик в системе La_{1-x}Sr_xMnO₃ происходит при критической концентрации $x_c \approx 0.17$).

В настоящей работе приводятся результаты исследования эффекта Холла в монокристаллах $La_{1-x}Sr_xMnO_3$ в интервале концентраций *x*, включающем x_c , и в интервале температур, включающем температуру Кюри T_C , т.е. нами изучены те составы и те температуры, для которых наблюдается наибольший эффект КМС. Полученные данные используются для выяснения механизмов проводимости в исследованных манганатах.

1. Образцы и методика эксперимента

Монокристаллы La_{1-x}Sr_xMnO₃ (x = 0.15, 0.20 и 0.25) были выращены методом плавающей зоны по методике, описанной в [11]. Сопротивление ρ измерялось стандартным четырхконтактным методом. Холловское сопротивление ρ_{Hall} измерялось в температурном интервале от 85 до 400 К в магнитном поле до 14.5 kOe. ЭДС Холла определялась потенциометрическим методом. Для исключения побочных эффектов измерения ЭДС Холла производились при двух направлениях магнитного поля и тока в образце. Образцы для измерений ρ и ρ_{Hall} вырезались в виде пластины размером $10 \times 3.5 \times 1$ mm. Индиевые контакты на образцы наносились с помощью ультразвукового паяльника. Кривые намагничивания были получены на вибрационном магнитометре на подобных пластинах меньших размеров в магнитном поле, направленном перпендикулярно плоскости пластины. Температура Кюри, определенная по методу термодинамических коэффициентов, равна 232, 308 и 340 К для x = 0.15, 0.20 и 0.25 соответственно.

Холловское сопротивление $\rho_{\rm Hall}$ в ферромагнетиках определяется соотношением [12]

$$\rho_{\text{Hall}} = R_0 B + R_S M,\tag{1}$$

где R_0 и R_S — соответственно нормальный и аномальный коэффициенты Холла, B — индукция магнитного поля, M — намагниченность. В тонких пластинах B мало отличается от напряженности внешнего магнитного поля H. В ферромагнитной области температур в области парапроцесса

$$M = M_S + \chi H, \tag{2}$$

где M_S — спонтанная намагниченность, χ — восприимчивость парапроцесса. Таким образом,

$$\rho_{\text{Hall}} \cong (R_0 + \chi R_S)H + R_S M_S. \tag{3}$$

Для нахождения коэффициентов R_0 и R_S необходимо проводить магнитные измерения, но при $T \ll T_C$ изза малых значений χ коэффициент $R_0 \gg \chi R_S$ и может быть найден в области парапроцесса из угла наклона линейного участка кривой $\rho_{\text{Hall}}(H)$ без проведения магнитных измерений. Таким способом коэффициент R_0 определяли в большинстве работ. Однако в материалах с КМС наибольший интерес представляет область вблизи T_C , где парапроцесс велик и полевая зависимость намагниченности уже не носит линейного характера. В этом случае для определения коэффициентов R_0 и R_S выражение (1) удобно переписать в виде

$$\rho_{\text{Hall}}/H = R_0 + R_S(M/H). \tag{4}$$

Построив зависимость ρ_{Hall}/H от M/H, из наклона кривой можно получить коэффициент R_S , а из пересечения с осью ординат — коэффициент R_0 [13–17].

В парамагнитной области, где $M = \chi H$, выражение (1) принимает вид $\rho_{\text{Hall}} = R_{\text{eff}}H$, где $R_{\text{eff}} = R_0 + \chi R_S$ — эффективный коэффициент Холла. В этой области температур нормальный и аномальный коэффициенты Холла невозможно разделить описанным выше способом. Однако если коэффициенты R_0 и R_S слабо (по сравнению с χ) зависят от температуры, то их можно найти, построив зависимость R_{eff} от χ . Этот способ был использован при изучении некоторых ферромагнитных сплавов [18,19].

2. Результаты измерений

На рис. 1 представлены кривые температурной зависимости удельного сопротивления $\rho(T)$. Эти кривые подобны приведенным в [20]. Монокристалл La_{0.85}Sr_{0.15}MnO₃ отличается от La_{0.80}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ тем, что его сопротивление на порядок выше и в области низких температур носит полупроводниковый характер, тогда как в La_{0.80}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ при $T < T_C$ наблюдается металлический ход сопротивления с $d\rho/dT > 0$.

Кривые $\rho_{\text{Hall}}(H)$ в исследованных монокристаллах имеют одинаковый характер. На рис. 2 в качестве примера представлены полевые зависимости холловского сопротивления ρ_{Hall} в монокристалле $\text{La}_{0.85}\text{Sr}_{0.15}\text{MnO}_3$. В исследованном интервале температур $\rho_{\text{Hall}} < 0$. В ферромагнитной области линейная зависимость ρ_{Hall} от H наблюдается при $H \ge 7$ kOe.

На рис. 3 и 4 для исследованных монокристаллов приведены температурные зависимости коэффициентов R_0 и R_s , рассчитанные из кривых $\rho_{\text{Hall}}(H)$ и M(H).

Рис. 1. Температурная зависимость удельного сопротивления ρ в монокристаллах La_{1-x}Sr_xMnO₃.

Рис. 2. Полевые зависимости холловского сопротивления ρ_{Hall} в монокристалле La_{0.85}Sr_{0.15}MnO₃.

Рис. 3. Температурная зависимость нормального коэффициента Холла R_0 в монокристаллах La_{1-x}Sr_xMnO₃. На вставке — зависимость эффективного коэффициента Холла R_{eff} в La_{0.80}Sr_{0.20}MnO₃ от восприимчивости парапроцесса χ .

В монокристалле La_{0.85}Sr_{0.15}MnO₃ измерения ЭДС Холла были затруднены из-за высокого удельного сопротивления, что привело к заметному (по сравнению с другими образцами) разбросу величин R_0 и R_s . По этой же причине, к сожалению, не удалось измерить ЭДС Холла в La_{0.85}Sr_{0.15}MnO₃ в парамагнитной области. При $T < T_C$ зависимости $R_0(T)$ в La_{0.85}Sr_{0.15}MnO₃ и в двух других монокристаллах существенно отличаются друг от друга. В La_{0.80}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ коэффициент R_0 положителен и слабо зависит от температуры, а в монокристалле La_{0.85}Sr_{0.15}MnO₃ при T < 150 К нормальный коэффициент Холла отрицателен, несмотря на дырочный тип легирования, и сильно зависит от T. При приближении к точке Кюри во всех образцах R_0 резко возрастает, достигая максимума вблизи T_C .

Рис. 4. Температурная зависимость аномального коэффициента Холла R_S в монокристаллах La_{1-x}Sr_xMnO₃. Горизонтальные отрезки — результат оценки величины коэффициента R_S из зависимости $R_{\rm eff}$ от χ . На вставке — зависимость коэффициента R_S от сопротивления ρ в La_{0.80}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃.

Аномальный коэффициент Холла (рис. 4) в исследованных монокристаллах отрицателен. При $T \ll T_C$ коэффициент R_S слабо зависит от температуры. При приближении к T_C зависимость $R_S(T)$ становится резкой. Вблизи точки Кюри коэффициент R_S в La_{0.85}Sr_{0.15}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ достигает минимума. В La_{0.80}Sr_{0.20}MnO₃ экстремума на зависимости $R_S(T)$ не наблюдается.

Для нахождения R_0 и R_S в парамагнитной области мы построили зависимость $R_{\rm eff}$ от χ . Из вставки к рис. З видно, что в монокристалле La_{0.80}Sr_{0.20}MnO₃ коэффициент $R_{\rm eff}$ линейно зависит от χ в интервале 320 < T < 390 К. Аналогичная ситуация имеет место и в монокристалле La_{0.75}Sr_{0.25}MnO₃ в интервале 375 < T < 400 К. Таким образом, нам удалось оценить коэффициенты R_0 и R_S в монокристаллах La_{0.80}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ в парамагнитной области температур. Результаты для R_S представлены горизонтальными отрезками на рис. 4. К сожалению, нормальный коэффициент Холла определяется указанным методом с высокой погрешностью, поэтому мы эти результаты не приводим.

3. Обсуждение результатов

Манганиты лантана характеризуются наличием сильного магнитного и немагнитного беспорядка [21]. Основную роль в формировании транспортных свойств такого рода материалов играет взаимное расположение края подвижности E_C и уровня Ферми E_F [22]. Если уровень Ферми E_F лежит в области делокализованных состояний, кристалл является металлом. При этом величина холловской подвижности μ_{Hall} должна уменьшаться

с ростом температуры. Коэффициент R₀ должен быть постоянным и положительным в случае дырочного легирования. При переходе от ферромагнитного в парамагнитное состояние край подвижности сдвигается за счет роста магнитного беспорядка от потолка зоны к ее центру и при некоторой температуре может пересечь уровень Ферми. Если Е_F лежит в области локализованных состояний, то кристалл является диэлектриком и проводимость может осуществляться двумя способами: 1) термически активированными прыжками носителей с энергией вблизи E_F , коэффициент R_0 в этом случае должен иметь отрицательный знак независимо от знака носителей [22]; 2) возбуждением носителей на край подвижности; в манганитах в температурной области, где преобладает активация на край подвижности, коэффициент R₀ должен быть положительным, поскольку петля Ааронова-Бома включает четыре иона марганца [17]. Величина холловской подвижности μ_{Hall} в этом случае порядка $0.1 \text{ cm}^2/(\text{V} \cdot \text{s})$ [22].

Обратимся к нашим экспериментальным результатам. На рис. 5 показана температурная зависимость холловской подвижности $\mu_{\text{Hall}} = R_0/\rho$. В монокристаллах La_{0.80}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ зависимости $\mu_{\text{Hall}}(T)$ подобны: в области T < 200 К при росте температуры происходит уменьшение μ_{Hall} от нескольких единиц до $\approx 0.2-0.3 \text{ cm}^2/(\text{V}\cdot\text{s})$, после чего μ_{Hall} от температуры практически не зависит. В La_{0.85}Sr_{0.15}MnO₃ при низких температурах $\mu_{\text{Hall}} < 0$, при возрастании Tхолловская подвижность становится положительной и в окрестности T_C достигает величины, несколько меньшей $0.1-0.3 \text{ cm}^2/(\text{V}\cdot\text{s})$.

Уменьшающаяся при росте температуры холловская подвижность (рис. 5), положительный и слабо зависящий от температуры коэффициент R_0 (рис. 3) указывают на то, что при T < 200 К основными носителями тока в монокристаллах La_{0.80}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ являются дырки, находящиеся в металлическом состоя-

Рис. 5. Температурная зависимость холловской подвижности μ_{Hall} в монокристаллах La_{1-x}Sr_xMnO₃.

нии, и рост сопротивления происходит из-за уменьшения их подвижности. При вычислении концентрации дырок по формуле $R_0 = (ecn_h)^{-1}$ получаем, что значение n_h заметно превышает ожидаемое исходя из уровня легирования. Это может указывать на наличие существенного электронного вклада в R_0 [7,8,15,23]. Такое предположение косвенно подтверждается и зонными расчетами [24].

Отрицательный знак коэффициента R_0 в La_{0.85}Sr_{0.15}MnO₃ и быстрое падение сопротивления при T < 150 К показывают, что при низких температурах проводимость в этом монокристалле осуществляется в основном за счет перескоков между локализованными состояниями. В окрестности T_C , однако, основным механизмом в La_{0.85}Sr_{0.15}MnO₃ является активация дырок на край подвижности, поскольку $\mu_{\text{Hall}} > 0$ и по порядку величины близка к $0.1-0.3 \text{ cm}^2/(\text{V} \cdot \text{s})$.

В области T > 200 K в La_{0.80}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ $\mu_{\text{Hall}} \approx 0.2 \text{ cm}^2/(\text{V} \cdot \text{s})$ (рис. 5), а коэффициент R_0 положителен (рис. 3). Следовательно, при этих температурах изменение сопротивления и коэффициента R_0 в монокристаллах с x = 0.20 и 0.25, как и в La_{0.85}Sr_{0.15}MnO₃, обусловлено изменением концентрации носителей в делокализованных состояниях.

На вставке к рис. 4 представлены зависимости R_S от сопротивления ρ для La_{0.85}Sr_{0.15}MnO₃ и La_{0.75}Sr_{0.25}MnO₃. Каждая кривая состоит из двух линейных участков, причем граница между этими участками соответствует началу быстрого роста сопротивления, R_0 и $|R_S|$. Точки левее излома соответствуют в основном металлическому состоянию, поэтому пропорциональность R_S сопротивлению указывает, по-видимому, на преобладание в R_S вклада от "косого" рассеяния.

В окрестности T_C линейная зависимость R_S от ρ наблюдается как в кристаллах с x = 20 и 0.25, так и в La_{0.85}Sr_{0.15}MnO₃. Температурная зависимость R_S в этой области определяется, скорее всего, изменением концентрации подвижных носителей тока. Ранее аналогичное поведение R_S наблюдалось нами в монокристалле La_{0.80}Ba_{0.20}MnO₃ [17] и в поликристаллах La_{0.60}(Eu,Gd)_{0.07}Sr_{0.33}MnO₃ [23].

Таким образом, из анализа данных по эффекту Холла следует, что в $La_{0.85}Sr_{0.15}MnO_3$ при низких температурах проводимость осуществляется в основном за счет перескоков между локализованными состояниями, а в окрестности T_C — за счет активации дырок на край подвижности.

В La_{0.85}Sr_{0.20}MnO₃ и La_{0.75}Sr_{0.25}MnO₃ при T < 200 К основными носителями тока являются дырки, находящиеся в металлическом состоянии, и рост сопротивления происходит из-за уменьшения их подвижности. При T > 200 К температурная зависимость сопротивления обусловлена, как и в La_{0.85}Sr_{0.15}MnO₃, изменением концентрации носителей в делокализованных состояниях.

В окрестности T_C во всех исследованных монокристаллах температурное поведение нормального и аномального коэффициентов Холла определяется изменением концентрации подвижности носителей тока.

Список литературы

- J. Nunez-Requeiro, D. Gupta, A. Kadin. J. Appl. Phys. 79, 8, 5179 (1996).
- [2] P. Wagner, D. Mazilu, L. Trappeniers, V.V. Moshchalkov, Y. Bruynseraede. Phys. Rev. B 55, 22, R14721 (1997).
- [3] P. Wagner, I. Gordon, A. Vantomme, D. Dierickx, M.J. Van Bael, V.V. Moshchalkov, Y. Bruynseraede. Europhys. Lett. 41, 1, 49 (1998).
- [4] G. Jakob, F. Martin, W. Westerburg, H. Adrian. Phys. Rev. B 57, 17, 10 252 (1998).
- [5] P. Matl, N.P. Ong, Y.F. Yan, Y.Q. Li, D. Studebaker, T. Baum, G. Doubinina. Phys. Rev. B 57, 17, 10248 (1998).
- [6] A. Asamitsu, Y. Tokura. Phys. Rev. B 58, 1, 47 (1998).
- [7] S.H. Chun, M.B. Salamon, P.D. Han. Phys. Rev. B 59, 17, 11155 (1999).
- [8] S.H. Chun, M.B. Salamon, P.D. Han. J. Appl. Phys. 85, 8, 5573 (1999).
- [9] M. Jaime, H. Hardner, M.B. Salamon, M. Rubinstein, P. Dorsey, D. Emin. Phys. Rev. Lett. 78, 5, 951 (1997).
- [10] S.H. Chun, M.B. Salamon, Y. Tomioka, Y. Tokura. Phys. Rev. B 61, 14, R9225 (2000).
- [11] D. Shulyatev, S. Karabashev, A. Arsenov, Ya. Mukovskii. J. Cryst. Growth **198**/**199**, 511 (1999).
- [12] С.В. Вонсовский. Магнетизм. Наука, М. (1971). С. 949.
- [13] Н.Г. Бебенин, Р.И. Зайнуллина, В.В. Машкауцан, А.М. Бурханов, В.В. Устинов, В.В. Васильев, Б.В. Слободин. ЖЭТФ 113, 3, 981 (1998).
- [14] Р.И. Зайнуллина, Н.Г. Бебенин, В.В. Машкауцан, В.В. Устинов, В.Г. Васильев, Б.В. Слободин. ФТТ 40, 11, 2085 (1998).
- [15] N.G. Bebenin, R.I. Zainullina, V.V. Mashkautsan, V.V. Ustinov, V.G. Vasiliev, B.V. Slobodin. Phys. Stat. Sol. (a) 175, 659 (1999).
- [16] Р.И. Зайнуллина, Н.Г. Бебенин, В.В. Машкауцан, А.М. Бурханов, Ю.П. Сухоруков, В.В. Устинов, В.Г. Васильев, Б.В. Слободин. ФТТ 42, 2, 284 (2000).
- [17] Н.Г. Бебенин, Р.И. Зайнуллина, В.В. Машкауцан, В.С. Гавико, В.В. Устинов, Я.М. Муковский, Д.А. Шулятев. ЖЭТФ 117, 6, 1181 (2000).
- [18] И.К. Кикоин. ЖЭТФ 10, 11, 1242 (1940).
- [19] Н.П. Гражданкина, Л.А. Матюшенко, Ю.С. Берсенев. ФТТ 10, 3, 670 (1968).
- [20] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B 51, 20, 14103 (1995).
- [21] N.G. Bebenin, V.V. Ustinov. J. Phys.: Cond. Matter 10, 6301 (1998).
- [22] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982). Т. 1. 368 с.
- [23] Н.Г. Бебенин, Р.И. Зайнуллина, В.В. Машкауцан, В.В. Устинов, В.Г. Васильев, Б.В. Слободин. ФТТ 43, 3, 482 (2001).
- [24] D.A. Papaconstantopoulos, W.E. Pickett. Phys. Rev. B 57, 20, 12751 (1998).