07;09

Преобразование солнечного света в ячейках с сенсибилизированным красителем на основе модифицированных кобальтом и иттрием нанотрубок TiO₂

© Н.С. Шабанов^{1,2}, А.Б. Исаев^{1,¶}, Ф.Ф. Оруджев¹, Э.К. Мурлиев¹

¹ Дагестанский государственный университет, Махачкала, Россия ² Аналитический центр коллективного пользования ДагНЦ РАН, Махачкала, Россия [¶] E-mail: abdul-77@yandex.ru

Поступило в Редакцию 20 марта 2017 г.

Исследовано преобразование солнечного света в ячейках, сконструированных на основе сенсибилизированных эозином, допированных кобальтом и иттрием нанотрубок TiO₂. Установлено, что допирование ионами металлов приводит к смещению края поглощения диоксида титана в длинноволновую область для Со и в коротковолновую для Y. Показано, что эффективность преобразования солнечного света зависит от ширины запрещенной зоны полупроводника анода и достигает наибольших значений для диоксида титана, допированного иттрием (4.4%), в отличие от чистого TiO₂, для которого она составляет 4.1%.

DOI: 10.21883/PJTF.2018.02.45463.16779

Преобразователи солнечной энергии на основе мезопористого TiO₂, сенсибилизированного красителем, имеют множество преимуществ по сравнению с кремниевыми солнечными элементами [1]. Первые сведения о преобразователях на основе сенсибилизированного красителем нанокристаллического TiO₂ появились в 1991 г. в работе [2]. После этого было проведено большое количество исследований для повышения эффективности ячеек на основе TiO₂, сенсибилизированного красителем [3].

Диоксид титана в форме анатаза в настоящее время является наиболее используемым полупроводником, что связано с его доступ-

41

ностью, дешевизной, экологичностью и химической стойкостью [4]. В настоящее время большинство исследований по улучшению полупроводниковых свойств TiO2 связано с изменением его оптикоэлектронных характеристик для улучшения поглощения видимого света и увеличения фотокаталитической активности [5]. Для этого применяют допирование различными металлами и неметаллами [6]. Последние исследования в области использования сенсибилизированного красителем TiO₂ в качестве анодного материала в фотовольтаических преобразователях связаны с увеличением его ширины запрещенной зоны (ШЗЗ) [7], поскольку при уменьшении ШЗЗ стабильность ячеек уменьшается из-за фотокаталитического окисления красителя. В работе [8] сообщается о возможности контроля рекомбинации электроннодырочной пары путем внедрения Nb5+, Ga3+ и Y3+ в узлы кристаллической решетки TiO2 до 2%. Исходя из этого в настоящей работе нами исследована эффективность преобразования солнечной энергии в ячейке, сенсибилизированной эозином Y, с использованием допированных иттрием и кобальтом нанотрубок TiO₂ в качестве анодного материала и графеновых нанохлопьев в качестве катодного материала.

Нанотрубки TiO₂ были получены методом гидротермального синтеза с последующим отжигом при использовании в качестве прекурсора порошка TiO₂ марки R-202 (P-02), кристаллизованного в форме рутила [9]. Допирование TiO₂ ионами Y и Co в количестве 5 mol.% производилось методом пропитки свежеприготовленного порошка титановой кислоты в растворах нитратов иттрия и кобальта. Анод готовился путем нанесения на поверхность ІТО-стекла заданного объема пасты, чистого и допированных TiO2. В качестве красителя для пропитки анода использовался эозин Ү, поскольку известно, что ячейки, сенсибилизированные красителем эозин Ү, обладают наилучшими показателями, чем многие легкодоступные и недорогие синтетические красители [10]. Кроме того, сообщалось, что путем очень легкого манипулирования молекулярной конфигурацией эозина можно управлять эффективностью адсорбции на поверхности TiO₂ [11], что также является дополнительным фактором, с помощью которого можно управлять эффективностью ячейки.

В качестве катода использовался электрод на основе графеновых нанохлопьев, поскольку графен благодаря превосходной электропроводности уменьшает сопротивление переноса заряда (R_{ct}). Так, в

Рис. 1. Рентгенограммы образцов чистых и допированных нанотрубок TiO_2 . $1 - TiO_2/Co, 2 - TiO_2/Y, 3 - TiO_2$.

работе [12] было показано, что R_{ct} термически расслоенных хлопьев графена составляет $11.7 \,\Omega \cdot \mathrm{cm}^2$, что сопоставимо с величиной для электродов на основе Pt ($6.5 \,\Omega \cdot \mathrm{cm}^2$). Коллоидный раствор нанохлопьев графена, полученный согласно [13], наносился на поверхность ITO-стекла методом центрифугирования (spin-coating) [14] и отжигался при температуре 450° C в течение 10 min для удаления остатков органики.

На рис. 1 представлены рентгенограммы образцов чистых и допированных иттрием и кобальтом нанотрубок TiO₂. По характерным дифракционным пикам при $2\theta = 25.35$, 37.8, 48.05° видно, что межплоскостные расстояния нанотрубок диоксида титана соответствуют межплоскостным расстояниям анатаза для плоскостей (101), (004) и (200) [15]. Допирование нанотрубок диоксида титана иттрием (TiO₂/Y) и кобальтом (TiO₂/Co) не приводит к изменению картины дифракционных пиков. Это свидетельствует о том, что происходит гомогенное включение иттрия и кобальта в кристаллическую решетку. Интенсивности пиков TiO₂/Y ниже, чем у чистого TiO₂, что связано с наличием легированных ионов в кристаллической решетке диок-

Рис. 2. Спектры комбинационного рассеяния (a) и диффузного отражения (b) для образцов чистых и легированных нанотрубок TiO₂. $1 - \text{TiO}_2$, $2 - \text{TiO}_2/\text{Y}$, $3 - \text{TiO}_2/\text{Co}$.

сида титана. Ионы иттрия и кобальта могут замещать ионы Ti^{4+} в ячейке TiO_2 . На основе рассчитанных по уравнению Шеррера [16] значений размеров кристаллитов и параметров ячеек для чистых

Рис. 3. Нагрузочная вольт-амперная характеристика изготовленного образца фотоэлектрохимической ячейки. *I* — TiO₂/Y, *2* — TiO2, *3* — TiO₂/Co.

и допированных иттрием и кобальтом нанотрубок TiO_2 установлено, что допирование приводит к увеличению параметров кристаллической решетки и уменьшению размеров кристаллитов, поскольку ионные радиусы иттрия и кобальта отличаются от ионного радиуса титана.

Результаты исследования спектров комбинационного рассеяния, представленные на рис. 2, *a*, также показали, что TiO₂ кристаллизован в фазе анатаза, так как выделяются три пика, соответствующие дважды вырожденным колебательным модам оптических фононов E_{g1} (144 cm⁻¹), E_{g2} (195 cm⁻¹), E_{g3} (637 cm⁻¹), и два пика невырожденных колебательных мод оптических фононов 2 B_{g1} (394 cm⁻¹ и 513 cm⁻¹) [17]. Спектры комбинационного рассеяния для диоксида титана, допированного ионами иттрия и кобальта, представлены пиками, соответствующими характерным для анатаза модам, однако наблюдается заметное снижение интенсивности пика E_g (144 cm⁻¹). По мнению авторов [18,19], такой эффект объясняется уменьшением размеров кристаллитов и изменением стехиометрии исходных компонентов. При

Образец	J_{sc} , mA/cm ²	U_{oc},V	FF, %	РСЕ, %
TiO ₂	15.32	0.52	63	4.1
TiO ₂ /Y	15.79	0.52	63	4.4
TiO ₂ /Co	14.62	0.52	62	4.0

Эффективность преобразования солнечной энергии в фотовольтаическом преобразователе

этом частоты колебательных мод становятся дисперсионно-зависимыми, что и приводит к уменьшению интенсивности полос рамановского рассеяния. Следовательно, внедрение допирующих элементов в структуру диоксида титана приводит к снижению его кристалличности за счет увеличения дефектов кристаллической решетки, обусловленных различием размеров ионов титана и замещающих его иттрия и кобальта, что также согласуется с результатами рентгеноструктурного анализа.

Для исследования электронной структуры и оптических свойств допированных иттрием и кобальтом нанотрубок TiO_2 были получены спектры диффузного отражения в УФ- и видимой области (рис. 2, *b*). В работе [20] с помощью расчетов по теории функционала плотности установлено, что анатаз является полупроводником с непрямым разрешенным межзонным переходом. Исходя из этого дальнейшее определение оптической ШЗЗ проводилось согласно [21]. Рассчитанные значения для образцов TiO_2 , TiO_2/Y , TiO_2/Co составляли 3.30, 3.35, 3.15 eV соответственно.

На рис. З приведены нагрузочные вольт-амперные характеристики фотовольтаической ячейки, изготовленной с использованием образцов TiO₂, TiO₂/Y, TiO₂/Co. Допирование ионами иттрия приводит к увеличению, а допирование ионами кобальта — к снижению плотности тока короткого замыкания по сравнению с величиной для чистого TiO₂. В таблице приведены основные показатели, характеризующие эффективность фотовольтаической ячейки, фактор заполнения (fill factor) (FF), плотность тока короткого замыкания J_{sc} , напряжения холостого хода U_{oc} и эффективность фотопреобразования (PCE).

Как видно из данных таблицы, наибольшая эффективность преобразования солнечного света наблюдается в ячейке с сенсибилизированным красителем на основе легированных иттрием нанотрубок TiO₂.

Внедрение в кристаллическую решетку ионов иттрия приводит к расширению среднего размера элементарной ячейки, что способствует увеличению ширины запрещенной зоны. Эффективность преобразования солнечного света в ячейке с использованием TiO₂/Y в качестве анода увеличивается на 0.3%, а при использовании TiO₂/Co уменьшается на 0.1% по сравнению с таковой для чистого TiO₂.

Список литературы

- Gonçalves L.M., de Zea Bermudez V., Ribeiro H.A., Mendes A.M. // Energy Environ. Sci. 2008. V. 1. P. 655–667.
- [2] O'Regan B., Grätzel M. // Nature. 1991. V. 353. P. 737-740.
- [3] Xia J., Yanagida S. // Solar. Energy. 2011. V. 85. P. 3143-3159.
- [4] Yan J., Zhou F. // J. Mater. Chem. 2011. V. 21. P. 9406–9418.
- [5] Pelaez M., Nolan N.T. // Appl. Catal. B: Environ. 2012. V. 125. P. 331–349.
- [6] Roy P., Berger S., Schmuki P. // Angew. Chem. Int. Ed. 2011. V. 50. P. 2904– 2939.
- [7] Liu Q., Zhou Y., Duan Y., Wang M., Lin Y. // Electrochim. Acta. 2013. V. 95. P. 48–53.
- [8] Chandiran A.K., Sauvage F., Etgar L., Graetzel M. // J. Phys. Chem. C. 2011.
 V. 115. P. 9232–9240.
- [9] Захарова Г.С. // Журн. неорган. химии. 2014. Т. 59. С. 148-153.
- [10] Al-Kahlout A.M., El-Ghamri H.S., Al-Dahoudi N., El-Agez T.M., Taya S.A., Abdel-Latif M.S. // Turk. J. Phys. 2015. V. 39. P. 272–279.
- [11] Zhang F., Shi F., Ma W., Gao F., Jiao Y., Li H., Wang J., Shan X., Lu X., Meng S. // J. Phys. Chem. C. 2013. V. 117. P. 14659–14666.
- [12] Kaniyoor A., Ramaprabhu S. // J. Appl. Phys. 2011. V. 109. P. 124308.
- [13] Vadukumpully S., Paul J., Valiyaveettil S. // Carbon. 2009. V. 47. P. 3288-3294.
- [14] Schmidt L.C., Pertegas A., Gonzalez-Carrero S., Malinkiewicz O., Agouram S., Espallargas G.M., Bolink H.J., Galian R.E., Pérez-Prieto J. // J. Am. Chem. Soc. 2014. V. 136. P. 850–853.
- [15] Dai S., Wu Y., Sakai T., Du Z., Sakai H., Abe M. // Nanoscale Res. Lett. 2010.
 V. 5. P. 1829–1835.
- [16] Abdullah A.M., Al-Thani N.J., Tawbi K., Al-Kandari H. // Arab. J. Chem. 2016. V. 9. P. 229–237.

- [17] Choi H.Ch., Jung Y.M., Kim S.B. // Vibrational Spectroscopy. 2005. V. 37. P. 33– 38
- [18] Swamy V.A., Kuznetsov A., Dubrovinsky L.S., McMillan P.F., Prakapenka V.B., Shen G.Y., Muddle B.C. // Phys. Rev. Lett. 2006. V. 96. P. 135702 (1–4).
- [19] Barsani D., Lottici P. // Appl. Phys. Lett. 1998. V. 72. P. 912-916.
- [20] Zhang J., Zhou P., Liu J., Yu J. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 20382–20386.
- [21] Isaev A.B., Shabanov N.S., Orudzhev F.F., Giraev K.M., Emirov R.M. // J. Nanosci. Nanotechnol. 2017. V. 17. P. 4498–4503.