Анализ механизмов переноса заряда в монокристаллах Ca₄Ga₂S₇ : Eu³⁺, определяющих форму вольт-амперных характеристик

© Б.Г. Тагиев, У.Ф. Касумов, Н.Н. Мусаева, Р.Б. Джаббаров

Институт физики Национальной академии наук Азербайджана, 370143 Баку, Азербайджан E-mail: ulvi@azintex.com и ulwi@mail.ru

(Поступила в Редакцию в окончательном виде 27 июня 2002 г.)

Впервые представлены вольт-амперные характеристики монокристалла $Ca_4Ga_2S_7 : Eu^{3+}$ и предпринята попытка теоретического обоснования процессов, обусловливающих их форму. Показано, что монокристаллы $Ca_4Ga_2S_7 : Eu^{3+}$ являются высокоомными полупроводниками с удельным сопротивлением $\sim 10^9 \,\Omega \cdot {\rm cm}$ и относительной диэлектрической проницаемостью 10.55. Электрические свойства данных материалов определяют ловушки с энергиями активации 0.13 и 0.19 eV и концентрацией $9.5 \cdot 10^{14} - 2.7 \cdot 10^{15} \, {\rm cm}^{-3}$. В слабых электрических полях имеет место монополярная инжекция носителей тока. В полях, превышающих $4 \cdot 10^3 \, V/cm$, происходит термополевая ионизация этих ловушек согласно теории Пула–Френкеля.

При низких температурах в сильных полях (160 К и 5 · 10⁴ V/cm) прохождение тока, по всей видимости, обусловлено прыжковой проводимостью носителей заряда по уровням в запрещенной зоне вблизи уровня Ферми.

Как известно, на инжекционные токи и, следовательно, на форму вольт-амперных характеристик (ВАХ) твердых тел весьма сильное влияние могут оказывать локальные уровни в запрещенной зоне полупроводника. Поэтому изучение структуры ВАХ в широком диапазоне приложенных внешних полей позволяет исследователям сделать выводы о типах ловушек в полупроводниках, определить их важнейшие характеристики, выяснить механизм переноса заряда, а также оценить целый ряд микроскопических параметров изучаемых соединений.

В настоящей статье впервые представлены результаты исследований ВАХ в монокристаллах $Ca_4Ga_2S_7:Eu^{3+}$ в интервале температур 160–365 К и электрических полей 0–8 · 10⁴ V/сm.

Соединение Ca₄Ga₂S₇ : Еи относится к группе высокоэффективных люминофоров с общей формулой $Ca_mGa_2S_n$: РЗЭ (редкоземельные элементы), где n = 4, 5, 6..., m = n - 3. Отличительной особенностью данных соединений является отсутствие концентрационного тушения для ряда примесей, участвующих в генерации и высокоэффективная люминесценция, в частности, в ИК диапазоне, пригодная для использования в линиях волоконно-оптической связи. Соединения Ca₄Ga₂S₇ : РЗЭ эффективно возбуждаются под действием ультрафиолетового, видимого излучения и электрического поля, преобразуя возбуждение в видимый свет. Из соединений Ca₄Ga₂S₇: P3Э наиболее интересным люминофором является Ca₄Ga₂S₇, легированный 2 mol% EuF₃. На основе смеси данного соединения с промышленным люминофором была изготовлена опытная партия высокоэффективных электролюминесцентных ламп [1-5]. В этой связи изучение электрических свойств и определение соответсвующих параметров Ca₄Ga₂S₇ : Еи представляется интересным.

1. Объект исследований

Монокристаллы Ca₄Ga₂S₇: Eu³⁺, выращенные методом Бриджмена–Стокбаргера, имели форму цилиндрических слитков высотой 15–17 и диаметром 8–10 mm. В результате исследования края собственного поглощения в данном соединении установлено, что в интервалах энергий 2.2–2.6 и 2.6–3.0 eV имеют место непрямые и прямые запрещенные и разрешенные оптические переходы, которым соответствуют значения ширины запрещенной зоны $E_{gi} = 1.88$, $E_{gdf} = 2.32$ и $E_{gda} = 2.45$ eV при T = 300 K [6].

Измерения проводились на образцах толщиной 70 μ m, которые изготавливались путем сошлифовывания монокристаллических слитков. Толщина образцов контролировалась на всех ступенях обработки: сначала индикатором-микрометром, а при толщинах менее 100μ m — оптико-механическим индикатором. Индиевые сэндвич-контакты, имевшие площадь $0.25 \, {\rm mm}^2$, наносились при помощи напыления. Все измерения образцов монокристалла Ca₄Ga₂S₇: Еи проводились в экранированном вакуумном термостате. Погрешность измерения тока на самом чувствительном поддиапазоне ($10^{12} \Omega$) выходных сопротивлений электрометрического усилителя не превышала 10%, а погрешность измерения напряжений — 0.1%.

В данной работе представлены результаты исследования соединения $Ca_4Ga_2S_7$, активированного 2 mol% EuF₃.

2. Экспериментальные результаты и их интерпретация

На ВАХ монокристалла Ca₄Ga₂S₇ : Eu³⁺, представленных на рис. 1, выделяются четыре участка: I — сублинейный (проявляется при сравнительно низких темпера-

Рис. 1. Вольт-амперные характеристики монокристалла $Ca_4Ga_2S_7: Eu^{3+}$ при различных температурах. *T*, K: *I* — 160, *2* — 185, *3* — 205, *4* — 227, *5* — 260, *6* — 293, *7* — 318, *8* — 342, *9* — 365.

турах), II — линейный, III — квадратичный $(I \sim V^{1.5-2})$ и IV — область резкого роста тока $(I \sim V^{2.5-4.5},$ при низких температурах $I \sim V^{6-7}$). Следует отметить, что с понижением температуры кривые смещаются в область высоких полей. Анализ кривых проводился в рамках обобщенной аппроксимативной теории, теории Пула-Френкеля и теории безактивационной проводимости.

Обобщенная аппроксимативная теория инжекционноконтактных явлений, основанная на аппроксимациях ВАХ по диапазонам контактной инжекции для квазимонополярного полупроводника с произвольной зонной схемой объема и конечно-инжектирующим контактом, позволяет связать экстремумы степени нелинейности *а*, выражаемой формулой

$$\alpha = \frac{d \lg I}{d \lg V} = \frac{V}{I} \frac{dI}{dV},\tag{1}$$

с режимами инжекции, а также и макро- и микроскопическими параметрами [7–14].

На рис. 2 приведена зависимость $\alpha(V, I)$ от напряжения при различных температурах, определенная из экспериментальных данных, представленных на рис. 1.

Наличие на подобных зависимостях минимумов α_m и максимумов α_M позволяет определить по формулам, выведенным в [7–14], целый ряд микропараметров. Вычисленные микропараметры приведены в табл. 1, 2.

Различные физические процессы, протекающие в полупроводниках под воздействием внешнего допробойного электрического поля, как, например, монополярная и двойная инжекции, барьерная электропроводность и полевая ионизация ловушек, приводят к качественно идентичным ВАХ [8,11]. Поэтому особое внимание при исследованиях ВАХ следует уделять вопросу дискриминации доминирующих механизмов.

Установлено, что в случаях полевой ионизации, монополярной и двойной инжекции для соотношения между дискриминационным коэффициентом Q_M и показателем степени нелинейности α_M выполняются соотношения $Q_M \leq 4\alpha_M, Q_M \geq 1, Q_M \leq 1$ соответственно. В случае

Рис. 2. Зависимость показателя степени нелинейности α от напряжения V при различных температурах. T, K: 1 - 260; 2 - 318; 3 - 342; 4 - 365.

Τ,Κ	α_m	V_m, V	$I_m, \ \cdot 10^{-10} \mathrm{A}$	$n_{k0}, \ \cdot 10^{12} \mathrm{cm}^{-3}$	$D_{k}^{*}, \cdot 10^{-8}$	s_k , $\cdot 10^{-5}$ cm/s	$ au$, $\cdot 10^{-7}$ s	E_F, eV
260	0.45	1	0.91	1.72	1.03	3.70	1.49	0.35
318	0.67	1	2.75	2.96	2.02	7.90	4.19	0.41
342	0.72	1	3.90	3.74	2.37	9.60	5.99	0.44
365	0.79	1	5.10	4.31	2.95	12.40	9.94	0.46

Таблица 1. Параметры, определяемые из минимума на зависимости $\alpha(V, I)$

Примечание. Здесь T — абсолютная температура; α_m — минимальное значение показателя степени нелинейности; V_m и I_m — значения напряжения и силы тока, соответствующие α_m ; n_{k0} — концентрация носителей у катода; D_k^* — прозрачность катода; s_k — скорость поверхностной рекомбинации; τ — время жизни носителей относительно рекомбинационного уровня; E_F — квазиуровень Ферми.

Таблица 2. Параметры, определяемые из максимума на зависимости $\alpha(V, I)$

<i>Т</i> ,К	α_M	$I_M, \cdot 10^{-7} \mathrm{A}$	V_M, V	Q_M	$\sigma_M, \cdot 10^9 \Omega^{-1} \mathrm{cm}^{-1}$	$ ho_M, \cdot 10^4 \mathrm{C} \cdot \mathrm{cm}^{-3}$	$\mu_M, \mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$
260	2.97	3.22	100	3.05	5.42	5.64	9.85
318	2.66	2.14	100	2.31	3.69	4.63	5.54
342	2.53	1.39	100	2.02	2.43	4.22	3.32
365	2.45	0.54	100	1.85	0.96	3.97	1.23

Примечание. Здесь T — абсолютная температура; α_M — максимальное значение показателя степени нелинейности; V_M и I_M — значения напряжения и силы тока, соответствующие α_M ; Q_M — дискриминационный коэффициент; σ_M — электропроводность; ρ_M — плотность заряда; μ_M — дрейфовая подвижность в сильных полях.

полевой ионизации (FI) для дискриминационного коэффициента получено выражение [15]

$$(Q_M)_{FI} = \frac{(2\alpha_M - 1)^2(\alpha_M - 1)}{(\alpha_M + 1)}.$$
 (2)

Дискриминационные коэффициенты, вычисленные для монокристаллов $Ca_4Ga_2S_7$: Eu^{3+} при различных температурах, приведены в табл. 2.

Как видно из данной таблицы, для исследуемых нами монокристаллов выполняются условия монополярной инжекции и полевой ионизации ловушек.

Экспериментальные результаты, полученные при измерениях в области резкого роста тока после квадратичного участка в интервале электрических полей $6 \cdot 10^3 - 7.2 \cdot 10^4 \text{ V/ cm}$, обработаны в соответствии с теорией термоэлектронной ионизации Пула–Френкеля.

Согласно теории Пула–Френкеля [16–18],

$$j = \sigma_0 F \exp(\beta \sqrt{F}),\tag{3}$$

где

$$\beta = \frac{\sqrt{e^3}}{kT\sqrt{\pi\varepsilon\varepsilon_0}} \tag{4}$$

— коэффициент Френкеля. Здесь F — напряженность электрического поля, j — плотность тока в сильных полях, σ_0 — проводимость в омической области, e заряд электрона, ε — диэлектрическая проницаемость материала, ε_0 — электрическая постоянная, k — постоянная Больцмана, T — абсолютная температура.

На рис. З приведены зависимости $\lg \sigma$ от $F^{1/2}$ при девяти различных значениях температуры. Видно, что экспериментальные точки хорошо ложатся на прямые с различными наклонами, причем наклоны этих прямых

с уменьшением температуры увеличиваются, что находится в полном соответствии с теорией эффекта Пула– Френкеля и указывает на рост вероятности полевой ионизации локальных уровней.

Из наклона прямых определены коэффициенты Френкеля β при различны температурах. Согласно формуле (4), β линейно зависит от обратной температуры

Рис. 3. Зависимость проводимости монокристалла $Ca_4Ga_2S_7: Eu^{3+}$ от квадратного корня из значений электрических полей *F* при различных температурах. *T*, K: I - 160; 2 - 185; 3 - 205; 4 - 227; 5 - 260; 6 - 293; 7 - 318; 8 - 342; 9 - 365.

1/T и экстраполяция зависимости $\beta \sim 1/T$ должна проходить через начало координат, что в нашем случае убедительно подтверждается рис. 4.

Вычислив величину коэффициента Френкеля, мы определили значение диэлектрической проницаемости $\varepsilon = 10.55$, что хорошо согласуется с величиной ε , определенной емкостным методом.

На рис. 5 представлены температурные зависимости электропроводности для монокристалла $Ca_4Ga_2S_7:Eu^{3+}$ в интервале электрических полей $1.4\cdot10^3-5.7\cdot10^4~V/\,cm.$

Рис. 4. Зависимость коэффициента Френкеля β от $10^3/T$.

Рис. 5. Зависимость электропроводности от обратной температуры при различных значениях приложенных электрических полей *F*, $10^3 \cdot V/\text{cm}$: *I* — 1.4, *2* — 5.7, *3* — 8.75, *4* — 14.3, *5* — 28.6, *6* — 43.0, *7* — 57.0.

Рис. 6. Зависимость $lg(\sigma_F/\sigma_0)$ от обратной температуры при различных значениях приложенного электрического поля *F*, $10^3 \cdot V/\text{cm}$: *I* — 0.1, *2* — 0.4, *3* — 0.9, *4* — 1.2, *5* — 2.86, *6* — 5, *7* — 7.14, *8* — 10, *9* — 12.86, *I0* — 17.14, *I1* — 22.86, *I2* — 22.57, *I3* — 28.57, *I4* — 71.4.

Видно, что экспериментальные данные в координатах $\lg \sigma \sim 10^3/T$ ложатся на прямые с двумя различными наклонами. Эти прямые относятся к двум температурным диапазонам: низко- (160–270 K) и высокотемпературному (270–365 K). Данный график демонстрирует уменьшение энергии активации ловушек E_t , которая определяется величиной наклона прямолинейных участков, с ростом приложенного электрического поля. Как следует из теории эффекта Пула–Френкеля (ЭПФ), уменьшение энергии активации ловушек E_t с изменением поля F описывается выражением [18]

$$E_t(F) = E_t(0) - \sqrt{\frac{e^3 F}{\pi \varepsilon_0 \varepsilon}},$$
(5)

где $E_t(F)$ — энергия активации ловушек в сильных полях, $E_t(0)$ — энергия активации ловушек при F = 0, а в остальном используются принятые в данной работе обозначения.

На рис. 6 приведена зависимость $lg[\sigma(F)/\sigma(0)]$ от $10^3/T$ в интервале значений электрических полей $0.1 \cdot 10^3 - 71.4 \cdot 10^3$ V/сm. Можно заметить, что с ростом электрического поля увеличивается наклон прямых, что отражает изменение энергии активации примесных уровней.

Уменьшение энергии активации ловушек в электрическом поле на величину $(e^3 F / \pi \epsilon \epsilon_0)^{1/2}$ является необходимым, но недостаточным условием для того, чтобы электрон покинул кулоновский центр. ЭПФ может наблюдаться только в том случае, когда носитель заряда

после соударения с фононами и прохождения максимума потенциальной энергии сохраняет энергию, бо́льшую, чем $E_t - (e^3 F / \pi \varepsilon \varepsilon_0)^{1/2}$. Это условие выполняется при $\lambda > r_m$ [15]. В противном случае влияние электрического поля на освобождение электрона из центров заключается лишь в облегчении диффузии носителей тока из центров. Определенные из рис. 6 значения изменения энергии активации примесных уровней ΔE_i в зависимости от внешнего электрического поля были представлены в координатах $\Delta E_i \sim F$. При определенном значении электрического поля F_{cr} на данной зависимости наблюдается перегиб. Эта величина соответствует тому значению электрического поля, при котором начинает наблюдаться ЭПФ. Знание значения критического поля позволило сравнить $\lambda = \beta k T / 2 e (F_{\rm cr})^{1/2}$ $= 1.73 \cdot 10^{-5}$ cm — длину свободного пробега носителя заряда и $r_m = (e/4\pi\varepsilon\varepsilon_0 F_{\rm cr})^{1/2} = 1.46 \cdot 10^{-5} \,{\rm cm}$ — расстояние от ловушки до максимума потенциального барьера. Как видно, в монокристаллах выполняются оба условия для протекания ЭПФ. О возможности осуществления в рассматриваемых полупроводниках механизма термополевой ионизации согласно ЭПФ указывают и эффективные размеры потенциальной ямы ловушек. Форма потенциальной ямы ловушек рассчитана нами на основании зависимости их энергии активации от электрического поля согласно методу, описанному в [19].

Концентрацию ловушек можно вычислить также по формуле [15]

$$N_t = \frac{3}{4\pi} \frac{e^3 F_{\rm cr}^{3/2} (F_2^{1/2} - F_1^{1/2})^3}{[E_t(F_1) - E_t(F_2)]^3}.$$
 (6)

Эта формула позволяет без знания величины диэлектрической проницаемости оценить концентрацию ловушек, используя лишь экспериментальные данные по измерению электропроводности в сильных полях. Подставляя значение критического электрического поля, мы получили $N_t = 2.7 \cdot 10^{15}$ (для $E_t = 0.13 \text{ eV}$) и $9.5 \cdot 10^{14} \text{ cm}^{-3}$ (для $E_t = 0.19 \text{ eV}$).

Вольт-амперные характеристики исследованных нами монокристаллов рассматривались и с точки зрения теории инжекционных токов, развитой в [20].

Выражения для критических токов и напряжений, при которых наблюдается переход от квадратичного участка к участку резкого роста тока, записываются следующим образом:

$$I_2 = \frac{e^2 n_0^2 \mu LBC}{\varepsilon},\tag{7}$$

$$V_2 = \frac{en_0 L^2 B}{2\varepsilon} = \frac{eN_t L^2}{2\varepsilon}.$$
 (8)

В приведенных выше формулах приняты следующие обозначения: e — заряд электрона, n_0 — концентрация свободных носителей тока, L — расстояние между электродами (толщина образца), ε — диэлектрическая постоянная полупроводника, θ — фактор захвата, N_t — концентрация ловушек. Величины $C = N/gn_0$, где $N = n_i$ — концентрация инжектированных из электрода

носителей тока и $B = N_t/n_0$ связаны с фактором захвата соотношением $\theta = C/B \ll 1$.

Определенная из этих соотношений концентрация свободных носителей меняется от $8.6 \cdot 10^{16}$ при T = 260 K до $5.2 \cdot 10^{17}$ сm⁻³ при T = 365 K. Для величины концентрации ловушек N_t получено значение, которое уступает оценке этого же параметра другими методами $(2.5 \cdot 10^{13}$ сm⁻³ вместо $9.5 \cdot 10^{14}$ сm⁻³). Такое расхождение, по-видимому, объясняется тем, что ловушки в Ca₄Ga₂S₇ : Eu³⁺ располагаются недостаточно низко относительно уровня Ферми, как того требуют предположения, сделанные при выводе формул (7)–(8).

При рассмотрении низкотемпературных ВАХ образцов монокристаллов Ca₄Ga₂S₇ : Eu³⁺ мы обратили внимание на то, что в полях напряженностью примерно 10⁴ V/ст ток резко возрастает с температурой. Дифференциальный анализ ВАХ при температуре 160 К показал наличие на зависимости $\alpha(V, I) \sim V$ максимума в сильных полях, а показатель степени нелинейности α принимал в этом случае максимальные значения $(I \sim V^7)$. Расчет дискриминационного коэффициента продемонстрировал нарушение условия полевой ионизации ($Q_M = 126.75 \gg 4\alpha_M$). Как показывают наблюдения, подобный резкий рост тока в сильных полях при сравнительно низких температурах может быть обусловлен высокой концентрацией локализованных состояний в запрещенной зоне и объяснен на основе теории прыжковой проводимости в компенсированных кристаллических и аморфных полупроводниках, предложенной Шкловским [21]. Основная идея этой теории заключается в том, что при низких температурах носители заряда занимают лишь самые глубокие примесные уровни, причем расстояние от уровня Ферми до ближайшей разрешенной зоны значительно превышает энергию связи изолированной примеси. Это и создает условия для существования широкой области полей, в которой может наблюдаться неомическая прыжковая проводимость.

В результате проведенного в рамках этой теории анализа нами вычислен ряд параметров, характеризующих данный процесс. В нашем случае значение плотности состояний вблизи уровня Ферми оказалось равным $6.4 \cdot 10^{19} \,\mathrm{eV^{-1} cm^{-3}}$. Такое значение N_F указывает на высокую концентрацию локализованных состояний в запрещенной зоне. Средняя длина прыжка $\overline{r_i} = 7.4 \cdot 10^{-7}$ ст. Была также оценена концентрация состояний n_F, по которым возможна прыжковая проводимость. Можно ожидать, что в результате прыжковой проводимости по этим состояниям будут наблюдаться релаксационные токи, которые в действительности были обнаружены и изучены нами на эксперименте. Этот показатель оказался равным $n_F = 2.3 \cdot 10^{19} \, \mathrm{cm}^{-3}$, что согласуется с аналогичным параметром, определенным из исследований релаксационных токов $(2.6 \cdot 10^{19} \text{ cm}^{-3})$.

Таким образом, впервые исследованы вольт-амперные характеристики монокристаллов $Ca_4Ga_2S_7:Eu^{3+}$. В результате проведенного дифференциального анализа кривых показано, что электрические свойства указанных высокоомных полупроводников обусловливаются ловушечными уровнями с энергиями активации 0.13 и 0.19 eV

и концентрацией $9.5 \cdot 10^{14} - 2.7 \cdot 10^{15}$ сm⁻³. Установлено, что в сильных полях происходит термополевая ионизация указанных ловушек. При сравнительно низких температурах в сильных полях основным механизмом токопрохождения служит, по всей видимости, безактивационная проводимость.

Авторы выражают искреннюю признательность сотруднику Института физики НАН Азербайджана Мустафаевой С.Н. за плодотворное обсуждение экспериментальных результатов.

Список литературы

- B.G. Tagiev, R.B. Jabbarov, U.F. Kasumov, A.N. Georgobiani, N.N. Musaeva. New Technologies for 21st Century 2, 58 (1999).
- [2] A.N. Georgobiani, B.G. Tagiev, O.B. Tagiev, R.B. Jabbarov, N.N. Musaeva, U.F. Kasumov. Jpn. J. Appl. Phys. **39–1**, 434 (2000).
- [3] Б.Г. Тагиев. У.Ф. Касумов, Р.Б. Джаббаров, Н.Н. Мусаева, О.Б. Тагиев. Неорган. материалы 36, 1, 7 (2000).
- [4] Б.Г. Тагиев, У.Ф. Касумов, Р.Б. Джаббаров, Н.Н. Мусаева, О.Б. Тагиев. Неорган. материалы 37, 12, 1430 (2001).
- [5] Б.Г. Тагиев, А.Н. Георгобиани, О.Б. Тагиев, Р.Б. Джаббаров, У.Ф. Касумов, Э.Ф. Гамбаров. Неорган. Материалы, в печати.
- [6] Б.Г. Тагиев, У.Ф. Касумов, Р.Б. Джаббаров, Н.Н. Мусаева, С.А. Абушов. ФТП 34, 1170 (2000).
- [7] А.Н. Зюганов, С.В. Свечников. Инжекционноконтактные явления в полупроводниках. Наук. думка, Киев (1981). 256 с.
- [8] А.Н. Зюганов, С.В. Свечников, Ю.Г. Письменный. В сб.: Полупроводниковая техника и микроэлектроника. Наук. думка, Киев. Вып. 11. С. 96. (1973).
- [9] А.Н. Зюганов, С.В. Свечников, Е.П. Шульга. УФЖ 23, 291 (1978).
- [10] А.Н. Зюганов, С.В. Свечников, А.Ю. Тхорик, Е.П. Шульга. УФЖ 21, 370 (1977).
- [11] А.Н. Зюганов, С.В. Свечников, Е.П. Шульга. В сб.: Полупроводниковая техника и микроэлектроника. Наук. думка, Киев, (1979). Вып. 29. С. 48.
- [12] А.Н. Зюганов, С.В. Свечников. В сб.: Микроэлектроника (1981). № 10. С. 99.
- [13] Ю.Г. Гусев, А.М. Иванов, А.Н. Зюганов, С.В. Свечников, П.С. Смертенко. В сб.: Оптоэлектроника и полупроводниковая техника. Наук. думка, Киев, (1988). Вып. 14. С. 26.
 [14] А.Н. Зюганов. УФЖ 15, 45 (1974).
- [14] A.H. SKITHOB. $\mathcal{Y}\Psi \mathcal{M}$ 15, 45 (19/4)
- [15] O.B. Tagiev, G.H. Kasimova. Phys. Stat. Sol. (a) 128, 167 (1981).
- [16] Ya.I. Frenkel. Phys. Rev. 54, 657 (1938).
- [17] P.N. Murgatroud. J. Phys. 3, 2, 151 (1970).
- [18] R.M. Hill. Thin Solid Films 8, R21 (1971).
- [19] А.Н. Георгобиани, В.И. Демин, Е.С. Логазинская. В сб.: Труды ФИАН им. П.Н. Лебедева. (1987). Т. 182. С. 69.
- [20] М. Ламперт, П. Марк. Инжекционные токи в твердых телах. Мир, М. (1973). 416 с.
- [21] Б.И. Шкловский. ФТП 6, 2335 (1972).