07,05

Влияние механических напряжений и отжига на магнитную структуру и магнитоимпеданс аморфных CoFeSiBCr микропроводов

© М.Г. Неъматов^{1,3}, М.М. Салем¹, У. Азим¹, М. Ахмат¹, А.Т. Морченко¹, Н.А. Юданов¹, Л.В. Панина^{1,2}

¹ Национальный исследовательский технологический университет "МИСиС", Москва, Россия

² Институт проблем проектирования в микроэлектронике РАН,

Москва, Россия

³ Таджикский технический университет им. акад. М.С. Осими,

Душанбе, Таджикистан

E-mail: nematovmaqsud@misis.ru, lpanina@plymouth.ac.uk,

(Поступила в Редакцию 1 августа 2017 г.)

Структурные и магнитные свойства аморфных ферромагнитных микропроводов могут претерпевать значительные изменения в результате воздействия внешних механических напряжений и температурной обработки. Изучение происходящих при этом трансформаций представляется важным как для разработки различных сенсоров механических напряжений, нагрузки, температуры, так и для индуцирования в проводах определенного типа магнитной анизотропии, играющей значительную роль в осуществлении в них различных эффектов. В настоящей работе исследовано влияние внешних напряжений и отжига на процессы намагничивания и магнитный импеданс в микропроводах состава Co₇₁Fe₅B₁₁Si₁₀Cr₃, которые в аморфном состоянии имеют невысокую положительную магнитострикцию (порядка 10⁻⁸). Воздействие внешних напряжений приводит к резкому изменению характера кривой перемагничивания, что обусловлено изменением знака магнитного импеданса оказываются чувствительными к механическим напряжениям. В проводах с частичной кристаллизацией действие упругих напряжений не приводит к заметному изменению магнитнох анизотропии. Соответственно амплитуда высших гармоник и величина магнитного импеданса оказываются чувствительными к механическим напряжениям. В проводах с частичной кристаллизацией действие упругих напряжений не приводит к заметному изменению магнитных свойств, однако с помощью отжига можно добиться существенного увеличения осевой магнитной анизотропии проводов, находящихся в напряженном состоянии. Экспериментальные результаты проанализированы в рамках магнитострикционной модели наведенной магнитной анизотропии.

DOI: 10.21883/FTT.2018.02.45387.234

1. Введение

Ферромагнитные микропровода с аморфной или нанокристаллической структурой имеют ряд специфических магнитных свойств: наличие двух устойчивых состояний намагниченности (бистабильность), высокую подвижность доменов и гигантский магнитный импеданс (МИ) [1–6].

Явление магнитной бистабильности, сопровождающееся быстрым распространением одиночных доменов вдоль оси провода, наблюдается в микропроводах из сплавов с высоким содержанием железа. Для них характерна положительная магнитострикция, которая в сочетании с растягивающими напряжениями, образующимися в процессе быстрого затвердевания при вытягивании из расплава, приводит к осевой магнитной анизотропии. При перемагничивании таких проводов в продольном направлении наблюдается почти прямоугольная петля гистерезиса и генерируется узкий сигнал электрического напряжения, имеющий в спектре гармоники высших порядков. Так как на высоких частотах подавляется обычный шум и 1/f шум, то появляется возможность детектировать такие гармоники с высокой точностью, что предложено использовать в различных сенсорных системах [7–9].

Другой тип аморфных микропроводов, приготовленных из сплавов на основе кобальта, имеет отрицательную магнитострикцию и циркулярную магнитную анизотропию. В результате при перемагничивании в осевом магнитном поле наблюдается наклонная кривая намагничивания с незначительным гистерезисом и высокой магнитной восприимчивостью. В этих материалах проявляется МИ эффект — очень большое изменение высокочастотного импеданса микропровода под влиянием продольного магнитного поля. Указанное свойство используется при разработке высокочувствительных магнитных датчиков для регистрации магнитных полей чрезвычайно низкой напряженности (см., например, обзор [10]).

При отсутствии магнитокристаллической анизотропии в аморфном состоянии основной вклад в формирование магнитной структуры вносят магнитострикционные взаимодействия. Это приводит к зависимости упомянутых выше эффектов от внешних механических напряжений, что используют для создания сенсоров различных механических величин [11,12]. Кроме того, магнитные и структурные свойства проводов можно регулировать с помощью специальных тепловых обработок, в результате которых происходит релаксация внутренних напряжений или индуцирование таковых в определенном направлении, а в некоторых случаях и частичная кристаллизация изначально аморфного сплава [13–16]. Как правило, усилия исследователей направлены на достижение определенного максимального эффекта путем совершенствования магнитной структуры провода. Например, в работе [14] у микропроводов на основе Со с отрицательной магнитострикцией в результате отжига электрическим током достигается циркулярная магнитная анизотропия с малым разбросом осей анизотропии и небольшой константой анизотропии, что привело к рекордным изменениям МИ (около 600% на частоте 15 MHz).

В данной работе исследуется влияние внешних механических напряжений и отжига на магнитную структуру микропроводов на основе железо-кобальтовых сплавов, имеющих небольшую положительную магнитострикцию и осевую магнитную анизотропию. Под действием внешних напряжений константа магнитострикции изменяет знак, что сопровождается скачкообразным изменением типа анизотропии, кривой намагничивания и МИ. Это приводит к усилению зависимости амплитуд гармонического спектра и МИ от механических напряжений. Отжиг стабилизирует осевую магнитную структуру, однако в проводах с частичной кристаллизацией после отжига наблюдается сильная зависимость коэрцитивной силы от внешних напряжений и возникает асимметрия кривой намагничивания. Обнаруженные явления могут быть перспективными для разработки миниатюрных сенсоров механических напряжений.

2. Анализ статической намагниченности

Для анализа магнитной структуры в аморфных проводах с учетом различных напряжений может быть предложена следующая модель. Предполагается, что в проводе имеются осевые напряжения растяжения или сжатия $\sigma_a = \sigma_i + \sigma_{ex}$, где σ_i — внутренние напряжения, возникающие в процессе быстрого затвердевания аморфного сплава, σ_{ex} — внешние растягивающие напряжения. Также предполагается наличие внутренних скручивающих напряжений, которые соответствуют воздействию растяжения и сжатия $\pm \sigma_t$, направленных перпендикулярно друг другу и под углом в 45° по отношению к оси провода. Именно наличие скручивающих растяжений позволяет ввести понятие обобщенной геликоидальной магнитной анизотропии и описать с его помощью возможный переход от осевой к циркулярной анизотропии под действием внешних растяжений. Магнитная энергия *U_m* записывается в виде

$$U_m = -K\cos^2\theta - \frac{3}{2}\lambda\sigma_a\cos^2\theta - \frac{3}{2}\lambda\sigma_t\left[\cos^2\left(\theta - \frac{\pi}{4}\right) - \cos^2\left(\theta + \frac{\pi}{4}\right)\right].$$
(1)

Здесь *К* — константа одноосной анизотропии, которая не связана с магнитострикционными взаимодействиями,

 θ — угол между намагниченностью и осью провода, λ — константа магнитострикции, которая для аморфных сплавов может существенно зависеть от растягивающих напряжений [17–19]

$$\lambda(\sigma_{ex}) = \lambda(0) - \beta \sigma_{ex}.$$
 (2)

Параметр β находится в пределах $(1-6) \cdot 10^{-10}$ MPa⁻¹. Аналогичные эффекты зависимости магнитострикции от механических напряжений были обнаружены в нанокристаллических сплавах [20].

После несложных преобразований, выражение (1) можно записать в виде, характерном для одноосной анизотропии

$$U_m = -|\tilde{K}|\cos^2(\alpha - \theta), \qquad (3)$$

где α — угол наклона легкой оси анизотропии к оси провода, \tilde{K} — эквивалентная константа одноосной анизотропии

$$\tilde{K} = \frac{K + (3/2)\lambda\sigma_a}{\cos(2\tilde{\alpha})}, \quad \tilde{\alpha} = \frac{1}{2}\operatorname{arctg}\frac{3|\lambda\sigma_t|}{|K + (3/2)\lambda\sigma_a|}.$$
 (4)

Угол α в уравнении (3) определяется следующим образом

a)
$$K + (3/2)\lambda\sigma_a > 0$$
, $\alpha = \tilde{\alpha}$,
b) $K + (3/2)\lambda\sigma_a = 0$, $\alpha = 45^\circ$, $\tilde{K} = 3\lambda\sigma_t$,
c) $K + (3/2)\lambda\sigma_a < 0$, $\alpha = 90^\circ - \tilde{\alpha}$. (5)

При положительных значениях констант магнитной анизотропии K и магнитострикции λ угол $\alpha < 45^{\circ}$, и легкая ось анизотропии близка к оси провода, если $\sigma_i > \sigma_t$. При изменении знака магнитострикции под действием σ_{ex} и выполнении условия $K - (3/2)\lambda\sigma_a > 0$ легкая ось анизотропии приближается к циркулярному направлению. Одновременно с этим меняется характер кривых намагничивания: прямоугольная петля преобразуется в наклонную, область гистерезиса значительно уменьшается.

3. Материалы и методики измерений

Исследовались микропровода в стеклянной оболочке [21] состава $Co_{71}Fe_5B_{11}Si_{10}Cr_3$ с различной геометрией: общим диаметром 29.5 и 41.5 μ m и толщиной металлического сердечника 23.9 и 36.3 μ m, обозначаемые в дальнейшем как образцы № 1 и 2 соответственно. Для сплава выбранного состава в аморфном состоянии характерна почти нулевая магнитострикция, порядка $10^{-8}-10^{-7}$ [22,23]. При исследовании влияния механических напряжений к проводам прикладывались нагрузки до 80 g (что соответствует механическому напряжению в более тонком образце 1 GPa). Для модификации магнитной структуры провода отжигались при температуре 573 K в течение 60 min.

Рис. 1. Влияние растягивающего напряжения на петлю гистерезиса аморфного микропровода $Co_{71}Fe_3B_{11}Si_{10}Cr_3$ в стеклянной оболочке (образец № 1) при осевом намагничивании: *a*) в исходном состоянии; *b*) после отжига при 573 К в течение 60 min.

Рис. 2. Влияние растягивающего напряжения на петлю гистерезиса микропровода Co₇₁Fe₅B₁₁Si₁₀Cr₃ в стеклянной оболочке (образец № 2) при осевом намагничивании: *a*) в исходном состоянии, *b*) после отжига при 573 К в течение 60 min (частичная кристаллизация).

Структурные параметры проводов исследовались методом дифференциальной сканирующей калориметрии (ДСК). Измерения проводились в атмосфере Ar при скорости нагрева 10 K/min с помощью высокочувствительного калориметра Netzsch DSC 204 F1 Phoenix. Температуры Кюри ($T_c = 637$ K) и кристаллизации ($T_{cr} = 787$ K) проводов были определены по графику ДСК с помощью стандартных приложений.

Процессы намагничивания проводов исследовались индукционным методом с использованием двух миниатюрных дифференциальных катушек с внутренним диаметром 3 mm. Частота тока в намагничивающих катушках составляла 500 Hz, максимальная амплитуда намагничивающего поля — 1000 А/т. Для построения петли гистерезиса индуцированный электрический сигнал оцифровывался и интегрировался как функция магнитного поля. Высшие гармоники в индуцированном при перемагничивании сигнале напряжения детектировались с помощью селективного усилителя (Signal Recovery 5210) и функциональных генераторов. Зависимость высокочастотного импеданса от магнитного поля исследовалась в диапазоне частот 1–100 MHz с помощью векторного анализатора цепей (Hewlett-Packard 8753E) путем измерения параметра S12 (коэффициента передачи) в цепи, содержащей микропровод в специально разработанной микроволновой полосковой ячейке.

4. Результаты и обсуждение

Исследование кривых ДСК показывает, что оба типа проводов изначально обладали в основном аморфной структурой, а их кристаллизация проходит в два этапа. При этом на графиках для образца большего диаметра (№ 2) в области кристаллизации наблюдаются два широких пика, что свидетельствует о его частичной

(около 15%) кристаллизации в исходном состоянии. Это приводит к различным значениям константы магнитострикции: 1.2 · 10⁻⁸ и 1.7 · 10⁻⁶ в образцах № 1 и 2 соответственно. В исходном состоянии и в отсутствие внешних механических напряжений оба образца имеют почти прямоугольную петлю гистерезиса (рис. 1, a и 2, a) с небольшой коэрцитивностью (около 25 А/m), что обусловлено осевой анизотропией, характерной для $\lambda > 0$. Под воздействием внешних механических напряжений кривая намагничивания для образца № 1 резко меняется и становится наклонной, если $\sigma_{ex} > 200 \,\mathrm{MPa}$. Это можно объяснить изменением знака константы магнитострикции и переходом магнитной анизотропии от осевого типа к циркулярному, как следует из уравнений (4) и (5). С другой стороны, магнитные свойства образца № 2 под действием внешних механических напряжений не претерпевают существенных изменений, так как в нем характер магнитной анизотропии не изменяется.

Отжиг при температуре $T_{an} = 573$ K, значительно меньшей, чем температура кристаллизации, приводит к стабилизации осевой анизотропии и усилению бистабильных свойств, как видно из рис. 1, *b* и 2, *b*. Можно предположить, что частичная релаксация внутренних

Рис. 3. Зависимость действительной части импеданса микропроводов $Co_{71}Fe_5B_{11}Si_{10}Cr_3$ (аморфного № 1 и частично кристаллизованного в результате отжига № 2) от магнитного поля в исходном состоянии и после отжига при 573 К в течение 60 min. Частота тока возбуждения 50 MHz.

напряжений при отжиге приводит к увеличению константы магнитострикции. Об этом также свидетельствует поведение кривых гистерезиса под нагрузкой для образца № 1, которые характеризуются бистабильностью и отличаются только небольшим увеличением коэрцитивной силы, т.е. в таких проводах изменения типа анизотропии не происходит. Интересно отметить, что для образца № 2 после отжига наблюдается весьма чувствительное поведение коэрцитивности по отношению к σ_{ex} . Видно также, что при увеличении σ_{ex} кривые намагничивания становятся асимметричными. В этом случае сказывается влияние частичной кристаллизации, степень которой могла возрасти при отжиге, и различие поведения кристаллических и аморфных областей при их намагничивании [24].

Интересно сравнить поведение МИ в обоих типах образцов до и после отжига, так как это дает более полное представление о характере изменения анизотропии. Зависимости МИ от магнитного поля представлены на рис. 3. Для обоих типов проводов импеданс имеет максимум в нулевом поле, что характерно для систем с осью анизотропии, параллельной высокочастотному току и внешнему магнитному полю [6]. Значение импеданса в максимуме определяется магнитной восприимчивостью, которая на невысоких частотах (порядка десятков MHz) увеличивается с уменьшением константы анизотропии. Как видно из рис. 3, после отжига значение импеданса уменьшается приблизительно в 3 раза для образца № 1 и совсем незначительно изменяется для образца № 2. Таким образом, в первом случае происходит столь значительное усиление одноосной анизотропии, что внешние напряжения не могут оказать существенного влияния на поведение намагниченности.

5. Ферромагнитные микропровода как сенсоры механических напряжений

При перемагничивании бистабильных микропроводов генерируется узкий сигнал напряжения, имеющий в спектре гармоники высоких порядков. Амплитуда гармоник может зависеть от внешних параметров, таких как деформация, механическое напряжение, температура. Следовательно, подобные провода, установленные на поверхности изделий либо размещенные внутри материалов, могут использоваться в качестве датчиков с дистанционным опросом. Можно было бы предположить, что при наличии зависимости коэрцитивности от внешних факторов подобное поведение должны проявлять также и амплитуды высших гармоник. Однако, как показывает опыт, гармонический спектр слабо зависит от величины коэрцитивности и определяется типом кривых квазистатического намагничивания.

Как видно из рис. 4, *а* наибольшие изменения в гармоническом спектре под действием механических напряжений наблюдаются для образца № 1 в исходном состоянии. Так, под действием нагрузки в 485 МРа амплитуда

Рис. 4. Зависимость амплитуды высших гармоник от приложенного растягивающего напряжения для аморфного микропровода (образец № 1): *a*) в исходном состоянии, *b*) после отжига при 573 К в течение 60 min.

3-й гармоники изменяется в 3 раза, а амплитуда 5-й гармоники — в 4 раза. Такое поведение обусловлено изменением типа кривых намагничивания при изменении знака магнитострикции. После отжига кривые намагничивания слабо изменяются при воздействии нагрузки, а соответственно слабо меняется и гармонический спектр. Это подтверждает вывод о том, что изменение гармонического спектра проводов в аморфном состоянии обусловлено именно изменением магнитострикции под действием механических напряжений.

Интересно отметить, что после отжига в спектре появляются четные гармоники, что обусловлено асимметрией кривых намагничивания (рис. 4, *b*). Их амплитуды пропорциональны внешним механическим напряжениям. Наиболее значительно этот эффект выражен в частично кристаллизованном микропроводе (образец № 2 после отжига), процессы перемагничивания которого обнаруживают сильную асимметрию при увеличении σ_{ex} .

Изменение знака магнитострикции под действием нагрузки усиливает зависимость микроволнового импеданса от σ_{ex} , что также может быть использовано в сенсорных приложениях. Провод конечной длины ведет себя как симметричная антенна, параметр релаксации которой зависит от внешних факторов из-за модуляции импеданса. При переходе частоты возбуждения в микроволновую область основной вклад в МИ вносит изменение статической намагниченности под действием внешних факторов. Как видно из рис. 1, *a*, зависимость магнитострикции от внешней нагрузки приводит к соответствующей зависимости ориентации намагниченности, что и обеспечивает чувствительность МИ к изменению σ_{ex} .

6. Заключение

В работе было изучено влияние внешних механических напряжений и отжига на процессы намагничивания и магнитоимпеданс в аморфных и частично кристаллизованных микропроводах состава Co₇₁Fe₅B₁₁Si₁₀Cr₃, имеющих положительную магнитострикцию. Показано, что при увеличении нагрузки магнитострикция проводов в аморфном состоянии изменяет знак, что приводит к резкому изменению типа магнитной анизотропии и поведения кривых намагничивания. Это обусловливает высокую чувствительность гармонического спектра индуцированного сигнала напряжения и магнитоимпеданса к внешней нагрузке. Влияние отжига при температурах, меньших температуры кристаллизации, усиливает осевую анизотропию, и при любых допустимых внешних механических напряжениях кривые намагничивания имеют бистабильный характер. Однако при увеличении нагрузки кривые намагничивания становятся асимметричными, а в гармоническом спектре появляются четные гармоники, амплитуды которых пропорциональны приложенным напряжениям. Обнаруженные эффекты могут быть перспективными для разработки миниатюрных встраиваемых сенсоров механических напряжений.

Список литературы

- M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, T. Uchiyama. Phys. Status Solidi A 208, 493 (2011).
- [2] A. Zhukov, V. Zhukova. Magnetic properties and applications of ferromagnetic microwires with amorpheous and nanocrystalline structure. Nova Science Publishers, N.Y. (2009).
- [3] R. Varga, K.L. Garcia, M. Vazques. Phys. Rev. Lett. 94, 017201 (2005).
- [4] M. Ipatov, N.A. Usov, A. Zhukov, J. González. Physica B 403, 379 (2008).
- [5] L. Panina, K. Mohri. Appl. Phys. Lett. 65, 1189 (1994).
- [6] D.P. Makhnovskiy, L.V. Panina, D.J. Mapps. Phys. Rev. B 63, 144424 (2001).
- [7] K.G. Ong, M. Paulose, C.A. Grimes. Sensors 3, 11 (2003).

- [8] D. Markhnovskiy, N. Fry, A. Zhukov. Sensor Actuators A 166, 133 (2011).
- [9] S.A. Baranov. Surf. Eng. Appl. Electrochem. 49, 189 (2013).
- [10] K. Mohri, Y. Honkura, L.V. Panina, T. Uchiyama. J. Nanosci. Nanotechnology 12, 7491 (2012).
- [11] K. Mohri, T. Uchiyama, L.P. Shen, C.M. Cai, L.V. Panina. Sensors Actuators 91, 1–2, 85 (2001).
- [12] N. Bayri, S. Atalay. J. Alloy Comp. 381, 1-2, 245 (2004).
- [13] C. Appino, C. Beatrice, P. Tiberto, F. Vinai. J. Magn. Magn. Mater. 215–216, 6, 349 (2000).
- [14] L. Kraus, Z. Frait, K.R. Pirota, H. Chiriac. J. Magn. Magn. Mater. 254–255, 1, 399 (2003).
- [15] J. Liu, F. Qin, D. Chen, H. Shen, H. Wang, D. Xing, M.-H. Phan. J. Sun. J. Appl. Phys. 115, 17, 17A326 (2014).
- [16] V. Zhukova, A. Talaat, M. Ipatov, A. Zhukov. IEEE Transactions Magn. 50, 1 (2014).
- [17] H. Szymczak. J. Magn. Magn. Mater. 67, 2, 227 (1987).
- [18] J.M. Barandiarán, A. Hernando, V. Madurga, O.V. Nielsen, M. Vazguez, H. Vazguez-Lopez. Phys. Rev. B 35, 5066 (1987).
- [19] A. Zhukov, M. Churyukanova, S. Kaloshkin, V. Sudarchikova, S. Gudoshnikov, M. Ipatov, A. Talaat, J.H. Blanco, V. Zhukova. J. Electronic Mater. 45, 1, 226 (2016).
- [20] G. Herzer, S. Flohrer, C. Polak. IEEE Trans. Magn. 46, 2, 341 (2010).
- [21] H. Chiriac, T.A. Ovari. Prog. Mater. Sci. 40, 333 (1996).
- [22] M.M. Salem, M.G. Nematov, A. Uddin, L.V. Panina, M.N. Churyukanova, A.T. Morchenko. J. Phys. Conf. Ser. (2017). In press.
- [23] М.М. Салем, М.Г. Неъматов, А. Уддин, Л.В. Панина, А.Т. Морченко, В.А. Скиданов. МЭС-2016. VII Всерос. научно-техн. конф. Сб. тр. 4, 207 (2016).
- [24] N.A. Buznikov, C.G. Kim, C.O. Kim, S.S. Yoon. Phys. Met. Metallography 99, 1, S69 (2005).