# Спектры инфракрасного отражения пленок топологического изолятора $Pb_{1-x}Sn_xSe$ (x = 0.2, 0.34) на подложке ZnTe/GaAs и колебательные моды многослойных структур

© Н.Н. Новикова<sup>1</sup>, В.А. Яковлев<sup>1</sup>, И.В. Кучеренко<sup>2,¶</sup>, В.С. Виноградов<sup>2</sup>, Ю.А. Алещенко<sup>2,4</sup>, A.B. Муратов<sup>2</sup>, G. Karczewski<sup>3</sup>, S. Chusnutdinow<sup>3</sup>

<sup>1</sup> Институт спектроскопии Российской академии наук,

108840 Москва, Троицк, Россия

<sup>2</sup> Физический институт им. П.Н. Лебедева Российской академии наук,

119991 Москва, Россия

<sup>3</sup> Institute of Physics, Polish Academy of Sciences,

PL-02668 Warsaw, Poland

<sup>4</sup> Национальный исследовательский ядерный университет "МИФИ",

115409 Москва, Россия

<sup>¶</sup> E-mail: kucheren@sci.lebedev.ru, vvs@sci.lebedev.ru

(Получена 8 июня 2017 г. Принята к печати 15 июня 2017 г.)

Измерены спектры коэффициента отражения пленок топологического изолятора  $Pb_{1-x}Sn_xSe$  (x = 0.2, 0.34), выращенных методом молекулярно-лучевой эпитаксии на подложке ZnTe/GaAs. Измерения проводились в диапазоне  $12-2500 \text{ cm}^{-1}$  при комнатной температуре. Методом дисперсионного анализа определены частоты поперечных оптических фононов, плазменные частоты, высокочастотные диэлектрические проницаемости и толщины слоев. В квазистатическом приближении рассчитаны частоты интерфейсных мод четырехслойной структуры в функции параметра перекрытия  $\chi_1$  ( $0 \le \chi_1 \le 1$ ). Параметр описывает степень перекрытия двух интерфейсных мод, локализованных на плоскостях, ограничивающих слой справа и слева. Наличие в структуре взаимодействующих интерфейсных мод делает ее спектр отличным от суммы спектров составляющих ее компонент. Эти отличия проявляются в эксперименте. Обсуждаются условия взаимодействия интерфейсных мод с ИК излучением.

DOI: 10.21883/FTP.2018.01.45316.8593

## 1. Введение

Узкозонные сплавы типа IV–VI, такие как PbSnSe, PbSnTe, вызывали большой интерес как с фундаментальной, так и с прикладной точек зрения в 70-х–80-х годах прошлого века. Изменяя концентрацию Sn и температуру среды, можно варьировать величину запрещенной зоны в *L*-точке зоны Бриллюэна, достигая бесщелевого состояния. Зависимость  $E_g$  от температуры и состава (x) сплавов PbSnSe приведена в формуле [1]:

$$E_{g} (\text{eV}) = 0.13 + 4.5x \cdot 10^{-4} T (\text{K}) - 0.89x.$$
 (1)

Согласно формуле, значения  $E_g$  могут быть как положительными, так и отрицательными. Это означает, что в первом случае волновые функции, описывающие зону проводимости и валентную зону в *L*-точке, имеют симметрию  $L^-$  и  $L^+$  соответственно. Во втором случае происходит инверсия зон, и их симметрии соответствуют  $L^+$  (зона проводимости) и  $L^-$  (валентная зона).

Полупроводники типа IV–VI Pb<sub>1-x</sub>Sn<sub>x</sub>Se в отличие от Pb<sub>1-x</sub>Sn<sub>x</sub>Te не образуют непрерывный ряд твердых растворов. При комнатной температуре кристаллы с содержанием олова x < 0.43 кристаллизуются в кубической фазе типа NaCl, а кристаллы с x > 0.8 образуют фазу с пониженной симметрией — орторомбическую решетку типа B29 [1,2]. Исследования фононных спектров кристаллов Pb<sub>1-x</sub>Sn<sub>x</sub>Se в кубической фазе с x = 0, 0.07

и 0.2 проводились методом рассеяния медленных нейтронов [3,4] в интервале температур 300-10 К. В этих соединениях температура структурного фазового перехода лежит в отрицательной области шкалы Кельвина. В кристалле с x = 0.41 наблюдался структурный фазовый переход, начало которого соответствовало скачку сопротивления на 5 порядков в интервале температур 250-170 К при изменении концентрации носителей от  $3 \cdot 10^{18}$  до  $7.2 \cdot 10^{18}$  см<sup>-3</sup> [5]. Теория предсказывает, что температура фазового перехода Т<sub>с</sub> плавно уменьшается при увеличении концентрации свободных носителей в результате электрон-ТО фононного взаимодействия [6-8]. Кроме того, при достижении бесщелевого состояния ( $E_{e}=0$ ) может наблюдаться размягчение ТО фонона. Мы наблюдали методом рассеяния медленных нейтронов уменьшение частоты ТО фонона в монокристалле с x = 0.20 при  $\sim 100$  K, соответствующей точке инверсии зон [5].

Сравнительно недавно, в 2012 г. [9] при исследовании спектров отражения методом ARPES обнаружилось, что на поверхности соединений PbSnSe с инверсным расположением зон в объеме на поверхности имеются состояния с дираковским спектром. Такие соединения в настоящее время стали относить к топологическим изоляторам.

Цель настоящей работы — исследование пленок  $Pb_{1-x}Sn_xSe$  с x = 0.2 (нормальная зонная структура) и 0.34 (инвертированная зонная структура) методом ИК

спектроскопии и определение частот поперечных оптических фононов в зависимости от концентрации олова. Проведены предварительные исследования спектров нарушенного полного внутреннего отражения (НПВО). Пленки были выращены методом молекулярно-лучевой эпитаксии на подложке ZnTe/GaAs. Толщина буферного слоя ZnTe составляла 3–4 мкм. Насколько нам известно, такие измерения на пленках типа IV–VI проводятся впервые.

## 2. Образцы и методика измерений

Измерения коэффициента отражения проводились в спектральном диапазоне 50-2500 см<sup>-1</sup> на фурьеспектрометре фирмы Брукер IFS66V/S при падении излучения, близком к нормальному при комнатной температуре. Спектральное разрешение составляло  $1.5 \, \text{см}^{-1}$ , а также на фурье-спектрометре Bruker IFS 125HR с разрешением до 1 см<sup>-1</sup> в интервале волновых чисел 12-1000 см<sup>-1</sup> (833-10 мкм). В качестве детектора использовался охлаждаемый жидким гелием кремниевый болометр HDL-5 (Infrared Laboratories, Inc.) с фильтрами с отсечкой при 800 и 60 см<sup>-1</sup>, предотвращающими попадание на чувствительный элемент болометра фонового излучения от нагретых до комнатной температуры частей спектрометра. В измерениях использовались универсальный широкополосный многослойный светоделитель, а также светоделитель из майлара толщиной 75 мкм на самый дальний ИК диапазон. Измеренные спектры нормировались на спектр отражения золотого зеркала.

Исследованные гетероструктуры  $Pb_{1-x}Sn_xSe/ZnTe$  были выращены методом молекулярно-лучевой эпитаксии (МЛЭ) из ультрачистых источников Zn(7N), Te(7N), Se(7N), Sn(7N) и Pb(6N). Установка МЛЭ состоит из двух ростовых камер с ультравысоким вакуумом  $(10^{-9}-10^{-10}$  Topp), соединенных между собой высоковакуумным рукавом. Вначале толстый (4 мкм) нелегированный буферный слой ZnTe осаждался на очищенную от окислов поверхность подложки (100) GaAs. Температура подложки составляла 360°C. Затем во второй камере слои  $Pb_{1-x}Sn_xSe$  (x = 0.2-0.4) толщиной  $\approx$  700 нм осаждались на буферный слой ZnTe. Перед ростом буферный слой скалывался и травился в 0.01% растворе бромин-метанола. Температура роста слоев составляла 340°C.

# 3. Результаты измерений и их обсуждение

Параметры оптических фононов и плазмонов для пленок  $Pb_{1-x}Sn_xSe$  (x = 0.2 и 0.34) определялись из дисперсионного анализа спектра отражения. Экспериментальный спектр сравнивался с расчетом, использующим формулы Френеля для отражения от многослойной структуры. Частотная зависимость диэлектрической



**Рис. 1.** *а* — спектр отражения пленки  $Pb_{0.8}Sn_{0.2}Se$  в интервале  $30-2500 \text{ см}^{-1}$ , осажденной на подложку ZnTe/GaAs. Эксперимент и расчет; *b* — спектр отражения пленки  $Pb_{0.8}Sn_{0.2}Se$  в интервале  $12-500 \text{ см}^{-1}$ , осажденной на подложку ZnTe/GaAs. Эксперимент и расчет.

проницаемости каждого слоя была представлена в виде суммы высокочастотной диэлектрической проницаемости  $\varepsilon_{\infty}$ , вклада свободных носителей (формула Друде) и затухающего лоренцевского осциллятора:

$$\varepsilon(\omega) = \varepsilon_{\infty} \left( 1 - \omega_p^2 / (\omega^2 + i\omega\omega_{\tau}) + S^2 / (\omega_{\text{TO}}^2 - \omega^2 - i\omega\gamma) \right).$$
(2)

Здесь  $\omega_{\rm TO}$  — частота TO фонона, *S* — сила осциллятора,  $\gamma$  — затухание поперечной (TO) моды,  $\omega_p$  — плазменная частота,  $\omega_{\tau}$  — частота соударений свободных носителей. Эти параметры подбирались таким образом, чтобы получить наилучшее согласие с экспериментом. Для этого использовалась программа SCOUT [10,11].

На рис. 1, *a*, *b* и 2, *a*, *b* представлены спектры ИК отражения (эксперимент и расчет) для пленок  $Pb_{1-x}Sn_xSe$  (x = 0.2 и 0.34), выращенных на подложке ZnTe/GaAs. В пленке с x = 0.2 электронный спектр в *L*-точке при

 $T = 300 \,\mathrm{K}$  является прямым, а в пленке с x = 0.34 инверсным, согласно формуле (1).

На рис. 1, *b* (полоса *I*) видна низкочастотная полоса поперечных колебаний PbSnSe (x = 0.2) с максимумом при 47.7 см<sup>-1</sup>, полоса TO фонона ZnTe ( $\omega_{TO} = 176$  см<sup>-1</sup>) и линия с максимумом при 166 см<sup>-1</sup>. Важно отметить, что на спектре отражения подложки (рис. 3) присутствуют только полосы TO фононов ZnTe и GaAs. Возможно, эта линия в спектре отражения пленок связана с тонким слоем ZnTeSe, образовавшимся на границе пленка — ZnTe в результате диффузии Se. Сдвиг частоты в слое ZnTeSe в красную сторону на 12 см<sup>-1</sup> может быть связан с деформацией растяжения из-за большого рассогласования постоянных решеток ZnTe и ZnSe. Такая же деформация наблюдалась в сверхрешетках ZnTe/ZnSe на границе слоев [12].

Но есть и другое объяснение, которое нам представляется более правильным: линия с максимумом при



**Рис. 2.** *а* — спектр отражения пленки  $Pb_{0.66}Sn_{0.34}Se$  в интервале  $30-2500 \text{ см}^{-1}$ , осажденной на подложку ZnTe/GaAs. Эксперимент и расчет. *b* — спектр отражения пленки  $Pb_{0.66}Sn_{0.34}Se$  в интервале  $12-500 \text{ см}^{-1}$ , осажденной на подложку ZnTe/GaAs. Эксперимент и расчет.



Рис. 3. Спектр отражения подложки ZnTe/GaAs.

 $\approx 166 \,\mathrm{cm^{-1}}$  связана с интерфейсной модой, которая, как будет показано в разд. 4, появляется на границе пленка — ZnTe (табл. 1, граница 2–3, частота  $\omega_4$ ). Наилучшее согласие с экспериментом выполняется для параметра  $\chi_1 = e^{-0.015}$ .

На спектре отражения пленки с x = 0.34 (рис. 2, *b* (полоса 1)) полоса ТО фонона PbSnSe с максимумом при 38 см<sup>-1</sup> сдвинута в сторону меньших частот, что объясняется уменьшением частоты ТО фонона с ростом концентрации олова и приближением к структурному фазовому переходу, который при 300 К происходит при  $x \approx 0.43$ . Остальные линии в спектре имеют те же частоты, что и в пленке с x = 0.2. На спектрах отражения при частотах 500–2500 см<sup>-1</sup> (рис. 1, *a* и 2, *a*) видны биения, связанные с интерференцией в слое PbSnSe и буферном слое ZnTe. Из этих спектров мы определяли толщины слоев и высокочастотные диэлектрические проницаемости. Эти параметры были использованы при подгонке низкочастотных спектров.

Параметры пленок (x = 0.2 и 0.34) и подложки ZnTe/GaAs, рассчитанные из дисперсионного анализа, представлены в табл. 2 и 3. Параметры  $\omega_{TO}$ , S,  $\gamma$ ,  $\omega_p$ ,  $\omega_\tau$ имеют размерность см<sup>-1</sup>. В табл. 4 представлены частоты TO фононов в сплавах PbSnSe, измеренные методом рассеяния медленных нейтронов [5] и из спектров ИК отражения пленок. Как видно из таблицы,  $\omega_{TO} = 49$  и 37 см<sup>-1</sup> в пленках с x = 0.2 и 0.34 соответственно.

Концентрации свободных носителей и их подвижности в пленках вычислялись с учетом значений плазменной частоты  $\omega_p$  и параметра затухания  $\omega_\tau$  [13,14]. Они составляют:  $p = 4.3 \cdot 10^{18}$  см<sup>-3</sup>,  $\mu = 650$  см<sup>2</sup>/В · с (x = 0.2) и  $p = 7.8 \cdot 10^{18}$  см<sup>-3</sup>,  $\mu = 1000$  см<sup>2</sup>/В · с (x = 0.34) для  $m^* = 0.1m_0$ , где  $m_0$  — масса свободного электрона.

Объемные плазмон—LO фононные моды в слое ZnTe  $\omega_{-}$  и  $\omega_{+}$  равны 48 и 208 см<sup>-1</sup> соответственно (плазменная частота  $\omega_{p} = 54.3 \text{ см}^{-1}$ ,  $\omega_{\text{LO}} = 206 \text{ см}^{-1}$ ,  $\omega_{\text{TO}} = 168 \text{ см}^{-1}$ , табл. 3). Расчет частот этих мод ( $\omega_{\pm}$ ) проводился по аналитической формуле, приведенной в [15,16]. Объемные плазмон-фононные моды плен-ки  $Pb_{0.76}\text{Sn}_{0.34}$ Se, согласно расчету, имеют частоты

**Таблица 1.** Зависимость частот колебательных мод четырехслойной структуры (1 -вакуум, 2 -PbSnSe, 3 -ZnTe, 4 -GaAs) от параметра  $\chi_1 = \exp(-qd_1)$ , где  $q^{-1} -$ длина локализации,  $d_1 -$ ширина слоя 2 (PbSnSe). В первой строке приведены частоты интерфейсных мод для случая  $\chi_1 = 0$ . Под значениями частот располагаются две цифры, которые обозначают номера слоев, прилегающих к данной границе. В нижней строке ( $\chi_1 = 1$ ) расположены частоты мод разного типа. Это моды продольных колебаний слоев 2 и 3, расщепленные взаимодействием с собственными электронами —  $L\pm$ , а также частоты поперечных мод — T. В колонке  $\omega_7$  располагается частота единственной в этом случае интерфейсной моды. (частоты  $\omega$  имеют размерность см<sup>-1</sup>)

| χ1            | $\omega_1$  | $\omega_2$              | $\omega_3$        | $\omega_4$            | $\omega_5$         | $\omega_6$             | $\omega_7$   | $\omega_8$             |
|---------------|-------------|-------------------------|-------------------|-----------------------|--------------------|------------------------|--------------|------------------------|
| 0             | 31.3<br>3-4 | 39185<br>1-2            | 39.186<br>2-3     | 176.3<br>2-3          | 185.4<br>3-4       | 283.5<br>3-4           | 519.0<br>2-3 | 575.0<br>1-2           |
| 0.3           | 31.3        | 39.185                  | 39.186            | 176.1                 | 185.4              | 283.5                  | 505.5        | 577.2                  |
| 0.5           | 31.3        | 39.185                  | 39.186            | 175.8                 | 185.4              | 283.5                  | 479.0        | 579.9                  |
| 0.7           | 31.8        | 39.185                  | 39.186            | 174.9                 | 185.6              | 283.1                  | 426.5        | 582.5                  |
| 0.9           | 37.1        | 39.184                  | 39.225            | 171.2                 | 186.7              | 262.5                  | 312.0        | 584.9                  |
| $e^{-0.015}$  | 39.2        | 39.189                  | 45.381            | 166.4                 | 193.1              | 213.6                  | 298.6        | 585.3                  |
| $e^{-0.0135}$ | 39.2        | 39.189                  | 45.579            | 163.9                 | 191.0              | 209.0                  | 297.2        | 585.3                  |
| $e^{-0.01}$   | 39.1        | 39.188                  | 46.053            | 151.7                 | 184.3              | 203.6                  | 294.5        | 585.5                  |
| 1             | 0           | 39.185<br><i>L</i> -, 2 | 40<br><i>T</i> ,2 | 47.6<br><i>L</i> -, 3 | 177<br><i>T</i> ,3 | 202.0<br><i>L</i> +, 3 | 290.0<br>1-4 | 585.9<br><i>L</i> +, 2 |

**Таблица 2.** Параметры пленки  $Pb_{0.8}Sn_{0.2}Se$  и подложки ( $\omega_{TO}$ , *S*,  $\gamma$ ,  $\omega_p$ ,  $\omega_{\tau}$  в см<sup>-1</sup>)

|         | Слой   | $\omega_{\mathrm{TO}}$ | S   | γ   | $\omega_p$ | $\omega_{\tau}$ | $\varepsilon_{\tau}$ | d, мкм |
|---------|--------|------------------------|-----|-----|------------|-----------------|----------------------|--------|
|         | PbSnSe | 49                     | 715 | 18  | 451.3      | 171             | 24.3                 | 0.85   |
| x = 0.2 | ZnTe   | 176                    | 296 | 4.6 | 34.2       | 26              | 9.65                 | 3.44   |
|         | GaAs   | 262                    | 827 | 21  | _          | _               | 11.6                 | 420    |

**Таблица 3.** Параметры пленки Pb<sub>0.66</sub>Sn<sub>0.34</sub>Se и подложки ( $\omega_{TO}$ , *S*, *y*,  $\omega_{p}$ ,  $\omega_{r}$  в см<sup>-1</sup>)

|                 | Слой   | $\omega_{\mathrm{TO}}$ | S   | γ   | $\omega_p$ | $\omega_{	au}$ | $\varepsilon_{\tau}$ | <i>d</i> , мкм |
|-----------------|--------|------------------------|-----|-----|------------|----------------|----------------------|----------------|
| <i>x</i> = 0.34 | PbSnSe | 37                     | 836 | 7.6 | 574        | 130            | 26.5                 | 0.74           |
|                 | GaAs   | 262                    | 827 | 21  | _          |                | 11.6                 | 420            |

**Таблица 4.** Частоты ТО фононов в сплавах PbSnSe (x = 0 - 0.34) при T = 300 K

| 0 54 Теория [13]                                                                                                                                                                                                                                      | x                | x $\omega_{\rm TO}$ , cm <sup>-1</sup>   | Данные экспериментов и теории                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 0.07         58         Рассеяние медленных нейтронов [4]           0.2         50         Рассеяние медленных нейтронов [4]           0.4         49         ИК отражение (наши данные)           0.34         37         ИК отражение (наши данные) | 0<br>0.07<br>0.2 | 54<br>0.07 58<br>0.2 50<br>49<br>0.34 37 | Теория [13]<br>Рассеяние медленных нейтронов [4]<br>Рассеяние медленных нейтронов [4]<br>ИК отражение (наши данные) |



**Рис. 4.** Спектр НПВО (ATR) образца с x = 0.34 при угле падения света  $30^{\circ}$ .

590 ( $\omega_+$ ) и 34 ( $\omega_-$ ) см<sup>-1</sup>. Частота LO фонона принималась равной 140 см<sup>-1</sup> [17]. Плазмон–LO фононное взаимодействие в GaAs отсутствует из-за низкой частоты плазмонов. По данным предварительных измерений спектров НПВО (методика измерений описана в [18]), в пленке с x = 0.34 в *p*-поляризованном свете при угле падения 30° проявляются два минимума при частотах 210 и 48 см<sup>-1</sup>, которые можно связать с плазмон–LO фононными модами  $\omega_{\pm}$  в слое ZnTe (рис. 4). Эти данные находятся в удовлетворительном согласии с предсказанием теории (табл. 4,  $\chi_1 = 1$ , слои  $\omega_4$  и  $\omega_6$ ).

# 4. Колебательные моды многослойных структур

При попытке описать наблюдаемые спектры ИК отражения набором тех осцилляторов, которые входят в диэлектрические функции составляющих структуру веществ, не удалось воспроизвести некоторые его детали. Требовался учет дополнительных осцилляторов. Такие осцилляторы, в частности, могут появляться за счет интерфейсных мод, локализованных на границах между слоями. Нами был предпринят расчет частот таких мод в нескольких вариантах структур (трех- и четырехслойных). Расчет производился в квазистатическом приближении, когда переменное во времени и пространстве электрическое поле волны  $\mathbf{E}(\omega, \mathbf{r})$  подчиняется уравнению div **D** = 0, где **D**( $\omega$ , **r**) =  $\varepsilon(\omega)\mathbf{E}(\omega, \mathbf{r})$ . Так как диэлектрические функции слоев считаем однородными, для потенциала  $\varphi$  ( $\mathbf{E} = -\partial \varphi / \partial \mathbf{r}$ ) получим уравнение  $\Delta \varphi = 0$ . Будем считать, что волна  $\varphi \sim \exp(i\mathbf{qr})$  распространяется так, что компонента волнового вектора  $q_x$ направлена вдоль слоев, а  $q_z$  перпендикулярно слоям. Тогда из уравнения Пуассона следует, что  $q_x^2 + q_z^2 = 0$ , т.е.  $q_z = \pm i |q_x| \equiv \pm i q$ . Это означает, что для  $\varphi$  получается общее решение вида

$$\varphi \sim (A \exp(-qz) + B \exp(qz)) \exp(-iq_x x).$$
 (3)

Будем считать, что самый левый полубесконечный слой является вакуумом. Решение в этом слое дается выражением (3) с A = 0, а самый правый слой состоит из GaAs, который также считается бесконечным в направлении  $z \to \infty$ . Решение в этом слое дается (3) с B = 0. Решение для внутренних слоев получается при  $A \neq 0$ ,  $B \neq 0$ . Для определения коэффициентов  $A_i$ ,  $B_i$  в каждом слое *i* используем условие непрерывности компонент электрического поля вдоль поверхности ( $E_x = -\partial \varphi/\partial x$ )

$$E_{xi} = E_{xk},\tag{4}$$

где *i* и *k* — номера соседних слоев, а также условие непрерывности индукции для компонент поля, перпендикулярных поверхности ( $E_z = -\partial \varphi / \partial z$ ),

$$\varepsilon(\omega)_i E_{xi} = E_{xk} \varepsilon(\omega)_k. \tag{5}$$

Получается система уравнений для коэффициентов  $A_i$ ,  $B_i$ , условием разрешения которой является равенство нулю ее детерминанта. В случае трехслойной структуры (I — вакуум, 2 — PbSnSe или ZnTe, 3 — GaAs) это условие имеет вид

$$(\varepsilon_1 + \varepsilon_2)(\varepsilon_2 + \varepsilon_3) + \chi^2(\varepsilon_1 - \varepsilon_2)(\varepsilon_2 - \varepsilon_3) = 0,$$
 (6)

где  $\chi = \exp(-qd)$ , d — ширина внутреннего слоя,  $\varepsilon_i \equiv \varepsilon_i(\omega)$ . Для четырехслойной структуры (1 — вакуум, 2 — PbSnSe, 3 — ZnTe, 4 — GaAs) аналогичное условие имеет вид

$$(\varepsilon_{1} + \varepsilon_{2})(\varepsilon_{2} + \varepsilon_{3})(\varepsilon_{3} + \varepsilon_{4}) + \chi_{1}^{2}(\varepsilon_{1} - \varepsilon_{2})(\varepsilon_{2} - \varepsilon_{3})(\varepsilon_{3} + \varepsilon_{4})$$
$$+ \chi_{2}^{2}(\varepsilon_{1} + \varepsilon_{2})(\varepsilon_{2} - \varepsilon_{3})(\varepsilon_{3} - \varepsilon_{4})$$
$$+ \chi_{2}^{2}\chi_{2}^{2}(\varepsilon_{1} - \varepsilon_{2})(\varepsilon_{2} + \varepsilon_{3})(\varepsilon_{3} - \varepsilon_{4}) = \mathbf{0}, \quad (7)$$

где  $\chi_1 = \exp(-qd_1), d_1$  — ширина слоя 2,  $\chi_2 = \exp(-qd_2),$ d<sub>2</sub> — ширина слоя 3. Так как компоненты волнового вектора излучения  $q_x$ , а следовательно, и q зависят от угла падения излучения на поверхность образца, а с другой — дефекты на поверхности образца могут влиять на величины qx, q, т.е. величины  $\chi$ ,  $\chi_1$ ,  $\chi_2$  нам точно не известны, уравнения (4), (5) решались во всем диапазоне изменения величин  $\chi, \chi_1$  от  $\chi, \chi_1 = 0 \; (qd, qd_1 
ightarrow \infty)$ до  $\chi$ ,  $\chi_1 = 1$   $(qd, qd_1 \rightarrow 0)$ ,  $\chi_2$  выражалось через  $\chi_1$  с помощью соотношения  $\chi_2 = (\chi_1)^{d_2/d_1}$ . Выражения для диэлектрических функций брались в виде  $\varepsilon(\omega)_i = \varepsilon_{\infty i}$  $+(\varepsilon_{0i}-\varepsilon_{\infty i})/[1-(\omega/\omega_{oi})^2]-\varepsilon_{\infty i}(\omega_{pi}/\omega)^2$ . Чтобы избавиться от полюсов в уравнениях (6), (7), эти уравнения умножались на произведения  $\Pi(\omega_i/\omega_{pi})^2 [1 - (\omega/\omega_{0i})^2]$ . Получались алгебраические уравнения вида  $\Phi(x, \chi) = 0$ для трехслойной структуры и  $\Phi(y, \chi_1) = 0$  для четырехслойной. В первом случае получается уравнение 5-го порядка для безразмерной переменной  $x = \left[ \omega / (\omega_{02} \omega_{03})^{1/2} \right]^2$ , а во втором — уравнение 8-го порядка для переменной  $y = [\omega/(\omega_{02}\omega_{03}\omega_{04})^{1/2}]^2$ . Уравнения решались при следующих значениях параметров: PbSnSe —  $\varepsilon_0 = 250$  [19],  $\varepsilon_{\infty} = 26, \omega_0 = 40 \text{ см}^{-1}, \omega_p = 574 \text{ см}^{-1};$  ZnTe —  $\varepsilon_0 = 9.6, \varepsilon_{\infty} = 7.5, \omega_0 = 177 \text{ см}^{-1}, \omega_p = 54.3 \text{ см}^{-1};$  GaAs —  $\varepsilon_0 = 12.9, \varepsilon_{\infty} = 10.9, \omega_0 = 268 \text{ см}^{-1}, \omega_p = 0; d_1 = 0.8 \text{ мкм}, d_2 = 4 \text{ мкм}.$ 

Перед тем как обсуждать результаты расчетов и сравнивать их с данными эксперимента, отметим некоторые интересные свойства уравнений (6), (7). При  $\chi = 0 \ (qd \to \infty)$ для уравнения (6),  $\chi_1 = 0 \ (qd_1 \to \infty)$ для (7) эти уравнения превращаются соответственно в уравнения  $(\varepsilon_1 + \varepsilon_2)(\varepsilon_2 + \varepsilon_3) = 0$  и  $(\varepsilon_1 + \varepsilon_2)(\varepsilon_2$  $(\varepsilon_{i} + \varepsilon_{i+1}) = 0$ . Каждая скобка  $(\varepsilon_{i} + \varepsilon_{i+1}) = 0$  дает частоты сильно локализованных на границе (i, i + 1)интерфейсных мод. Эти моды не зависят от мод на других границах. При  $\chi$ ,  $\chi_1 = 1 (qd, qd_1 \rightarrow 0)$  уравнения (6), (7) превращаются соответственно в уравнения  $(\varepsilon_1 + \varepsilon_3)\varepsilon_2 = 0$  и  $(\varepsilon_1 + \varepsilon_4)\varepsilon_2\varepsilon_3 = 0$ . Крайние слои (1-3)и 1-4) дают частоты интерфейсных мод, а внутренние слои — частоты продольных мод этих слоев, расщепленных взаимодействием с собственными электронами. Интересно, что в данном случае две половинки волновой функции локализованного состояния, экспоненциально спадающие на ±, разносятся в пространстве на расстояние нескольких слоев (вместо того, чтобы быть прикрепленными к одной границе, как это было бы в случае двухслойной структуры). Эта ситуация похожа на ту, которая была обнаружена при анализе свойств структур с майорановскими фермионами и названная "телепортацией".

Рассчитанные частоты мод  $\omega_i$  четырехслойной структуры в зависимости от параметра  $\chi_1$  (назовем его параметром перекрытия "волновых функций" интерфейсных состояний, локализованных на соседних границах) приведены в табл. 1.

В верхней строке ( $\chi_1 = 0$ ) приведены значения частот интерфейсных мод, локализованных на различных границах. Положение границы отмечается двумя цифрами, номерами двух слоев, прилегающих к границе слева и справа. Эти цифры помещены в той же строке под значениями частот. В нижней строке ( $\chi_1 = 1$ ) приведены значения частот продольных (L) колебаний поляризации в слоях 2 и 3, значки + и - обозначают компоненты, возникающие вследствие взаимодействия продольных колебаний слоев с собственной электронной плазмой. В колонке  $\omega_7$  помещена частота единственной в этом случае интерфейсной моды, связанной с взаимодействием слоев 1 и 4 (см. уравнения (6), (7) в случае  $\chi$ ,  $\chi_1 = 1$ ). Все эти моды не взаимодействуют ни между собой, ни с падающим перпендикулярно плоскости излучением. Также в этой строке помещены значения частот, соответствующих полюсам диэлектрических функций (столбцы  $\omega_1, \omega_3, \omega_5$ ). Эти моды отмечены буквой *Т*. Из таблицы видно, что имеются области изменения параметра  $\chi_1$ , где частоты мод изменяются плавно, а есть такие его значения, вблизи которых они изменяются резко (см., например, столбцы  $\omega_4$  и  $\omega_6$ ). Чтобы качественно объяснить такое поведение мод, рассмотрим одну из мод, которая возникает на границе i-k и имеет частоту  $\omega_{ik}$ . При  $\chi_1 = 0$  она подчиняется уравнению  $(\varepsilon_i(\omega_{ik}) + \varepsilon_k(\omega_{ik})) = 0$ . Его решения можно трактовать как результат пересечения кривой, задаваемой функцией от  $\omega^2$  в левой части уравнения, с горизонтальной прямой, совпадающей сначала с осью абсцисс. При  $\chi_1 \neq 0$  она смещается вниз и, может быть, немного наклоняется. Возникают новые точки пересечения измененные решения уравнения. Если прямая пересекает дисперсионные кривые в тех областях, где они идут почти вертикально (например, вблизи частот поперечных фононов  $\omega_{0i}$ ,  $\omega_{0k}$ ), то решения изменяются плавно. Если же кривая дисперсии идет почти горизонтально (интервал между частотами  $\omega_{0i}$ ,  $\omega_{0k}$ ), то частота решения изменяется быстро, почти скачком (см. например, колонка  $\omega_4$  таблицы).

Займемся теперь сравнением расчетных данных с экспериментальными. Рассмотрим прежде всего моду  $\sim 166 \,{
m cm}^{-1}$  (рис. 1, *b* и 2, *b*). Ее частота не входит в набор частот изолированных слоев и является результатом взаимодействия между ними. Близкие по величине частоты содержатся в колонке  $\omega_4$  и строках со значениями параметра  $\chi_1 = e^{-0.015}$  и  $e^{-0.0135}$ . На этих же рисунках при частоте  $\sim 250 \, {\rm cm}^{-1}$  имеется "полочка", которая не описывается кривыми дисперсионного анализа. Близкие по частоте моды содержатся в колонке  $\omega_6$ . Предварительные результаты измерений спектров при наклонном падении в 30° *р*-поляризованного излучения (метод НПВО, [17]) в образцах с x = 0.34 (рис. 4) показывают, что при частоте  $\sim 47\,{
m cm}^{-1}$  имеется глубокий провал. Его положение совпадает с частотами мод в колонке  $\omega_3$ , (строки 7–8). Из рассмотрения эволюции частот в колонках  $\omega_2$ ,  $\omega_3$  видно, что обсуждаемая мода возникает скачком из двух почти вырожденных при увеличении параметра перекрытия  $\chi_1$ . При ее формировании может иметь значение также резонанс с плазмон-фононной модой L-, 3. Вернемся теперь к моде  $\sim 166 \, {\rm cm}^{-1}$ , измеренной при падении света, близком к нормальному. Из величины показателя экспоненты параметра  $\chi_1$  можно определить угол падения излучения. Положив  $qd_1 = 2\pi\lambda^{-1}\sin\theta d_1 = 0.0135$ , где  $\theta$  — угол между нормалью и волновым вектором падающего излучения. Подставляя в последнее равенство частоту излучения  $\lambda^{-1} \sim 200 \,\mathrm{cm}^{-1}$  и ширину слоя  $2 - d_1 = 0.8 \,\mathrm{мкм}$ , получим величину угла  $\theta = 8^\circ$ . При проведении эксперимента угол  $\theta$  составляет  $10 \pm 3^{\circ}$ . Обе величины неплохо согласуются друг с другом.

## 5. Заключение

Из спектров ИК отражения и дисперсионного анализа были определены частоты ТО фононов пленок  $Pb_{1-x}Sn_xSe$  (x = 0.2 и 0.34). Показано, что частота "мягкой" моды заметно уменьшается при увеличении концентрации олова. Используя значения сил осциллятора для ТО фононов и величины  $\epsilon_{\infty}$  (табл. 2 и 3), мы оценили

Физика и техника полупроводников, 2018, том 52, вып. 1

величины статической диэлектрической проницаемости. Согласно оценке, усредненные значения  $\epsilon_0 = 235$  и 450 для пленок с x = 0.2 и 0.34 соответственно. Частоты продольных оптических фононов, рассчитанные из соотношения Лиддейна-Сакса-Теллера, составяют 150.2 (x = 0.2) и 150.3 см<sup>-1</sup> (x = 0.34). Эти данные представляют интерес, так как комбинационное рассеяние света 1-го порядка запрещено в структурах типа NaCl...

В квазистатическом приближении рассчитаны частоты интерфейсных мод исследуемой четырехслойной структуры в функции параметра перекрытия  $\chi_1 \ (0 \le \chi_1 \le 1)$ . Этот параметр описывает степень перекрытия двух кусков "волновых функций", прилежащих к плоскостям, ограничивающим слой справа и слева. Чем больше  $\chi_1$ , тем больше связь "волновых функций" с состояниями своего слоя и меньше с состояниями соседних слоев и, следовательно, тем меньше степень локализации интерфейсных мод. В интервале  $0 < \chi_1 \le 1$  существуют интерфейсные состояния с различной степенью локализации и частотами, отличающимися от частот, характеризующих вещество слоя. Часть этих состояний со значением параметра χ<sub>1</sub> вблизи единицы взаимодействует с ИК излучением. Моды с рассчитанными частотами 47, 166 и 209 см<sup>-1</sup> наблюдались в эксперименте. Используя значения частоты и параметра χ<sub>1</sub> можно также рассчитать абсолютную величину и наклон волнового вектора излучения. Рассчитанные величины удовлетворительно согласуются с экспериментальными.

В ИК измерениях использовано оборудование ЦКП ФИАН.

Ю.А. Алещенко благодарит за поддержку Программу повышения конкурентоспособности НИЯУ МИФИ.

Исследования в Польше были частично поддержаны Национальным и Научным Центром (гранты № DEC-2012/06/A/ST3/00247 и DEC-2014/14/M/ST3/00484).

#### Список литературы

- [1] A.J. Strauss. Phys. Rev., **157**, 608 (1967).
- [2] L.C. Woolley, O. Berolo. Mat. Res. Bull., 3, 445 (1968).
- [3] A. Okasaki. J. Proc. Soc. Jpn, 13, 1151 (1958).
- [4] Zhiting Tian, Jivtesh Garg, Keivan Esfarjani, Takuma Shiga, Junichiro Shiomi, Gang Chen. Phys. Rev. B, 85, 184303 (2012)
- [5] Л.К. Водопьянов, И.В. Кучеренко, А.П. Шотов, Р. Шерм. Письма ЖЭТФ, 27, 101 (1978).
- [6] Б.А. Волков, И.В. Кучеренко. В.Н. Моисеенко, А.П. Шотов. Письма ЖЭТФ, 27, 396 (1978).
- [7] K.L.I. Kobayashi, Y. Kato, Y. Katayama, K.F. Komatsubara. Phys. Rev. Lett., 37, 772 (1976).
- [8] K.L.I. Kobayashi, Y. Kato, Y. Katayama, K.F. Komatsubara. Sol. St. Commun., 17, 875 (1975).
- [9] P. Dziawa, B.J. Kowalski, K. Dybko, R. Buczko, A. Szczerbakow, M. Szot, E. Tusakowska, T. Balasubramanian, B.M. Wojek, M.H. Berntsen, O. Tjernberg, T. Story. Nature Materials, **11**, 1023 (2012).
- [10] W. Theiß. The SCOUT through CHAOS, Manual of the Windows application SCOUT.

- [11] W. Theiß. Surf. Sci. Reports, 29, 91 (1997).
- [12] C.S. Chen, C.S. Ro, J.L. Shen. Phys. Rev. B, 59, 8128 (1999).
- [13] Ondrey Kilian, Guy Allan, Ludger Wirtz. Phys. Rev. B, 80, 245208 (2009).
- [14] Н.Н. Новикова, В.А. Яковлев, И.В. Кучеренко. ФТП, **50**, 1173 (2016).
- [15] Н.Н. Сырбу, А.П. Сничур, В.А. Чумак, С.Б. Хачатурова. ФТП, 25, 1146 (1991).
- [16] A. Mooradian, G.B. Wright. Phys. Rev. Lett., 16, 999 (1966).
- [17] Ю.И. Равич, Б.А. Ефимова, И.А. Смирнов. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS (М., Наука, 1968). Приложение В.
- [18] Н.Н. Новикова, В.А. Яковлев, И.В. Кучеренко. Письма ЖЭТФ, **102**, 253 (2015).
- [19] Ю.И. Равич, Б.А. Ефимова, И.А. Смирнов. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS (М., Наука, 1968) гл. 2, с. 69.

Редактор Г.А. Оганесян

# Infrared reflection spectra of the films of topological insulator $Pb_{1-x}Sn_xSe$ on the substrate ZnTe/GaAs and vibrational modes of multilayer structures

N.N. Novikova<sup>1</sup>, V.A. Yakovlev<sup>1</sup>, I.V. Kucherenko<sup>2</sup>, V.S. Vinogradov<sup>2</sup>, Yu.A. Aleschenko<sup>2,4</sup>, A.V. Muratov<sup>2</sup>, G. Karczewski<sup>3</sup>, S. Chusnutdinow<sup>3</sup>

<sup>1</sup> Institute for Spectroskopy
Russian Academy of Sciences,
142190 Moscow, Troitsk, Russia
<sup>2</sup> Lebedev Physical Institute
Russian Academy of Sciences,
119991 Moscow, Russia
<sup>3</sup> Institute of Physics, Polish Academy of Sciences,
02-668 Warszawa, Poland
<sup>4</sup> National Research Nuclear University MEPhI
(Moscow Engineering Physics Institute),
115409 Moscow, Russia

**Abstract** Infrared reflectivity spectra of the topological insulator  $Pb_{1-x}Sn_xSe$  (x = 0.2, 0.34) films grown by the molecular beam epitaxy technique on ZnTe/GaAs substrate were studied. Using dispersion analysis of reflectivity spectra plasmon and phonon parameters for the samples under study were obtained. Interface mode frequencies were calculated in quasi-static approximation for four-layer structure as a function of overlapping parameter  $\chi_1$  ( $0 \le \chi \le 1$ ). Spectrum of multilayer structure differs from the spectrum of the sum of noninteracting layers. Several interface modes were observed in the experimental spectra.