О подвижности носителей заряда определенной энергии

© Ю.М. Белоусов, В.Н. Горелкин, И.В. Черноусов

Московский физико-технический институт (государственный университет), 141701 Долгопрудный, Россия E-mail: ichernousov@inbox.ru

(Получена 8 сентября 2016 г. Принята к печати 27 апреля 2017 г.)

Рассматривается функция квазиподвижности носителей заряда с заданной энергией для описания их динамики с помощью кинетического уравнения в важном случае изотропного двухмоментного приближения. В стационарном случае функция квазиподвижности не зависит от функции источника носителей и позволяет вычислить интегральную подвижность. Анализируется связь квазиподвижности с параметрами системы. Доказывается, что в общем случае эта характеристика не описывает вклад в подвижность носителей с определенной энергией. Как известно, в случае почти упругого рассеяния понятие квазиподвижности может иметь красивый физический смысл, однако для случая рассеяния носителей на акустических фононах в твердом теле такая интерпретация квазиподвижности оказывается неверной из-за особенностей интеграла столкновений и вида функции квазиподвижности.

DOI: 10.21883/FTP.2018.01.45314.8404

1. Введение

В последнее десятилетие происходит бурное развитие электроники на основе алмаза, которое связано с уникальными характеристиками этого широкозонного полупроводникового материала: рекордными значениями твердости, скорости звука, теплопроводности, ширины запрещенной зоны, напряженности пробоя, подвижности носителей, устойчивости к радиационному излучению [1]. Такие характеристики позволяют применять созданные на его основе приборы (как пассивные, типа детекторов частиц, так и активные, типа электронных вентилей) в экстремальных условиях высоких температур, сильного радиационного облучения и большого проходящего тока [2-5]. Это делает алмаз перспективным для использования в атомной промышленности, космических исследованиях, экспериментальной физике плазмы и физике высоких энергий, системах радиолокации и связи.

Технологический прогресс позволяет в настоящее время как синтезировать образцы заданных характеристик, высокого качества и повторяемости [2,4], так и надежно создавать на их основе нужные структуры и комбинировать их с элементами из других материалов, в том числе с электрическими контактами.

Как для конструирования приборов с нужными свойствами, так и для разработки новых устройств с уникальными характеристиками необходимо правильно описывать и рассчитывать кинетику движения носителей заряда в алмазе при различных концентрациях и составе примесей в различных внешних полях и при разных геометриях образца. Уникальные свойства алмаза указывают на то, что в нем могут значительно, по сравнению с обычными полупроводниками, проявляться некоторые необычные кинетические эффекты. Так, при исследовании алмаза мюонным методом [6,7] были получены результаты, которые могли объясняться возникновением у носителей заряда абсолютной отрицательной подвижности (АОП), при которой носители в среднем двигаются против приложенного электрического поля [8-11]. Предполагалось, что возможная АОП в алмазе связана с сильной неупругостью рассеяния носителей заряда на акустических фононах, вызванной рекордной скоростью звука в алмазе, при температурах порядка 10 К [12]. На первом этапе этих исследований в почти упругом, диффузионно-дрейфовом приближении [12] была, следуя [13], введена характеристика носителей с заданной энергией, которая первоначально считалась подвижностью таких носителей. Эта функция при некоторых энергиях частиц оказывалась отрицательной и приводила к возможности существования интегральной АОП. Последовательный учет неупругости актов взаимодействия носителей с фононами сначала в пространственно однородном случае [14,15], а потом и в пространственно неоднородном случае [16-18] показал, что интегральной АОП добиться не удается. Тем не менее оставался открытым вопрос о смысле функции, характеризующей носители данной энергии и могущей принимать отрицательные значения.

Кинетическое уравнение Больцмана в двухмоментном приближении и квазиподвижность

Запишем уравнение Больцмана для функции распределения носителей заряда $f \equiv f(\mathbf{r}, \mathbf{k}, t)$ в электрическом поле в виде:

$$\partial f / \partial t + \hbar \mathbf{k} / m \cdot \partial f / \partial \mathbf{r} + e_q \mathbf{E} / \hbar \cdot \partial f / \partial \mathbf{k}$$
$$= J_{\text{st}} \{ f \} + q(\varepsilon) - \nu_{\text{cap}}(\varepsilon) f, \quad (1)$$

где e_q — заряд носителя, **E** — самосогласованное электрического поле, **k** — волновой вектор носителей

заряда, $J_{st}{f}$ — интеграл столкновений, $q(\varepsilon)$ плотность источников носителей заряда с энергией ε , $v_{cap}(\varepsilon)$ — частота захвата носителей с энергией $\varepsilon = \hbar^2 k^2/2m$, m — эффективная масса носителя заряда.

В пространственно однородном случае второй член в левой части (1) отсутствует, и уравнение упрощается:

$$\partial f/\partial t + e_q \mathbf{E}/\hbar \cdot \partial f/\partial \mathbf{k} = J_{\rm st}\{f\} + q - v_{\rm cap}f.$$
 (2)

Будем считать внешнее электрическое поле и, следовательно, самосогласованное поле слабыми, когда можно пренебречь квадратичными по нему слагаемыми. В двухмоментном приближении функция распределения представляется в виде суммы первых двух членов разложения по полиномам Лежандра — изотропной (сферически симметричной) и дипольной части¹:

$$f(\mathbf{k}, t) = f_0(\varepsilon, t) + (\mathbf{E}\mathbf{k})\varphi(\varepsilon, t).$$
(3)

Как обычно, $f_0(\varepsilon, t)$ нормируется на плотность носителей, а $\varphi(\varepsilon, t)$ — на плотность тока носителей:

$$n(t) = \int f(\mathbf{k}, t) d\mathbf{k} / (2\pi)^3 = C_f \int_0^\infty \sqrt{\varepsilon} f_0(\varepsilon, t) d\varepsilon, \quad (4)$$

$$\mathbf{j} = \frac{2e_q}{3\hbar} C_f \mathbf{E} \int_0^\infty \varepsilon^{3/2} \varphi(\varepsilon, t) d\varepsilon = e_q n \mu \mathbf{E}, \qquad (5)$$

где $C_f = (2m)^{3/2}/4\pi^2\hbar^3$,

$$\mu = \frac{2}{3\hbar} \int_{0}^{\infty} \varepsilon^{3/2} \varphi(\varepsilon, t) d\varepsilon \Big/ \int_{0}^{\infty} \sqrt{\varepsilon} f_0(\varepsilon, t) d\varepsilon \qquad (6)$$

— подвижность системы носителей заряда.

Уравнение (1) при этом сводится к системе двух уравнений, которая в стационарном случае имеет вид

$$0 = J_{\rm st}^{(0)} \{f_0\} + q - \nu_{\rm cap} \cdot \{f_0\}$$
(7)

$$e_q \hbar/m \cdot \partial f_0 / \partial \varepsilon = J_{\rm st}^{(1)} \{\varphi\} - v_{\rm cap} \cdot \varphi \tag{8}$$

где $J_{\mathrm{st}}^{(0)}\{\ldots\}, J_{\mathrm{st}}^{(1)}\{\ldots\}$ — некоторые функционалы.

Функцию φ , необходимую для нахождения подвижности, получим из (8) с помощью функции Грина $G(\varepsilon, \varepsilon_0)$:

$$\varphi(\varepsilon) = -\int_{0}^{+\infty} \frac{e_q \hbar}{m} \frac{\partial f_0(\varepsilon_0)}{\partial \varepsilon_0} G(\varepsilon, \varepsilon_0) d\varepsilon_0.$$
(9)

 $G(\varepsilon, \varepsilon_0)$ удовлетворяет уравнению

$$-\delta(\varepsilon - \varepsilon_0) = -J_{\rm st}^{(1)} \big\{ G(\varepsilon, \varepsilon_0) \big\} + \nu_{\rm cap}(\varepsilon) G(\varepsilon, \varepsilon_0).$$
(10)

Преобразуем выражение для подвижности (6), поменяв порядок интегрирования и выполнив интегрирование по частям. Для интеграла в числителе имеем:

$$\int_{0}^{\infty} \varepsilon^{3/2} \varphi d\varepsilon = -\int_{0}^{\infty} \varepsilon^{3/2} \left[\int_{0}^{+\infty} \frac{e_{q}\hbar}{m} \frac{\partial f_{0}(\varepsilon_{0})}{\partial \varepsilon_{0}} G(\varepsilon, \varepsilon_{0}) d\varepsilon_{0} \right] d\varepsilon$$
$$= -\frac{e_{q}\hbar}{m} f_{0}(\varepsilon_{0}) \int_{0}^{+\infty} \varepsilon^{3/2} G(\varepsilon, \varepsilon_{0}) d\varepsilon \Big|_{0}^{+\infty}$$
$$+ \frac{e_{q}\hbar}{m} \int_{0}^{+\infty} f_{0}(\varepsilon_{0}) \frac{\partial}{\partial \varepsilon_{0}} \left[\int_{0}^{+\infty} \varepsilon^{3/2} G(\varepsilon, \varepsilon_{0}) d\varepsilon \right] d\varepsilon_{0}.$$
(11)

В разумных практических случаях первое слагаемое обращается в нуль, поэтому

$$\mu = \frac{2}{3\hbar} \int_{0}^{\infty} \varepsilon^{3/2} \varphi d\varepsilon \Big/ \int_{0}^{\infty} \sqrt{\varepsilon} f_0 d\varepsilon$$
$$= \int_{0}^{\infty} K(\varepsilon_0) \sqrt{\varepsilon_0} f_0(\varepsilon_0) d\varepsilon_0 \Big/ \int_{0}^{\infty} \sqrt{\varepsilon} f_0(\varepsilon) d\varepsilon, \qquad (12)$$

где функцию

С

$$K(\varepsilon_0) = \frac{2e_q}{3m} \frac{1}{\sqrt{\varepsilon_0}} \int_0^{+\infty} \varepsilon^{3/2} G(\varepsilon, \varepsilon_0) d\varepsilon$$
(13)

назовем квазиподвижностью.

3. Квазиподвижность и плотность тока

Введенная выше функция квазиподвижности имеет смысл, отличный от функции реальной подвижности $K_{\text{real}}(\varepsilon)$, определяемой через плотность тока в соответствии с общепринятой формулой:

$$K_{\text{real}}(\varepsilon) = dj/dN$$

= $2C_f/3\hbar \cdot \varepsilon^{3/2}\varphi(\varepsilon)d\varepsilon / \left(C_f\sqrt{\varepsilon}f_0(\varepsilon)d\varepsilon\right)$
= $2/3\hbar \cdot \varepsilon\varphi/f_0.$ (14)

Из формул (13) и (14) видно, что функции $K(\varepsilon)$ и $K_{real}(\varepsilon)$ могут иметь разный вид и смысл. Заметим прежде всего, что, в отличие от $K_{real}(\varepsilon)$ функция $K(\varepsilon)$ не зависит от функции источника носителей $q(\varepsilon)$ и поэтому более универсальна. Действительно, $K(\varepsilon)$ определяется только интегралом столкновений и стоком носителей и не зависит от $q(\varepsilon)$, в то время как вид $K_{real}(\varepsilon)$ явно определяется $f_0(\varepsilon)$, зависящей от $q(\varepsilon)$. При этом, несмотря на произвол в выборе $q(\varepsilon)$, стационарная $f_0(\varepsilon)$ не может получиться произвольной, поскольку она также определяется зависимостью скорости захвата от энергии $\nu_{cap}(\varepsilon)$.

¹ В пространственно неоднородных задачах даже в очень слабых полях для описания функции распределения могут быть существенно необходимы члены разложения высших порядков. Также двухмоментное приближение может не давать количественно правильные результаты при сильной неупругости рассеяния [19].

В приближении упругих столкновений функция $K(\varepsilon)$ и ее смысл были впервые подробно изучены Хаксли и Кромптоном (см., например, [13]). В приближении времени релаксации

$$J_{\rm st}^{(1)}\{\varphi\} = -\nu_{\rm tr} \cdot \varphi, \qquad (15)$$

где *v*_{tr} — транспортная частота. Тогда (8) принимает вид

$$e_{q}\hbar/m\cdot\partial f_{0}/\partial\varepsilon = -\nu_{\text{tot}}\cdot\varphi,\tag{16}$$

где $\nu_{tot}(\varepsilon) = \nu_{tr}(\varepsilon) + \nu_{cap}(\varepsilon)$ — полная частота. Из (16) и (6) имеем

$$\mu = -\frac{2e_q}{3m} \int_0^\infty \frac{\varepsilon^{3/2}}{\nu_{\text{tot}}(\varepsilon)} \frac{\partial f_0(\varepsilon)}{\partial \varepsilon} d\varepsilon \Big/ \int_0^\infty \sqrt{\varepsilon} f_0(\varepsilon) d\varepsilon.$$
(17)

Следуя [13], проинтегрируем числитель по частям, тогда при разумных предположениях о поведении $\nu_{tot}(\varepsilon)$ в 0 и ∞ по энергии получим, что

$$K(\varepsilon) = \frac{2e_q}{3m} \frac{1}{\sqrt{\varepsilon}} \left(\frac{\varepsilon^{3/2}}{\nu_{\text{tot}}(\varepsilon)} \right)' = \frac{e_q}{m} \cdot \frac{1}{\nu_{\text{tot}}(\varepsilon)} \left(1 - \frac{2}{3} \frac{\nu_{\text{tot}}'(\varepsilon)}{\nu_{\text{tot}}(\varepsilon)} \varepsilon \right).$$
(18)

Здесь и далее для краткости $(...)' \equiv \partial(...)/\partial \varepsilon$. Заметим, (18) можно также сразу получить из (13) с помощью функции Грина.

Истинная подвижность частиц с определенной энергией в этом случае равна

$$K_{\text{real}}(\varepsilon) = dj/dN = -\frac{2e_q}{3m} \frac{\varepsilon}{\nu_{\text{tot}}(\varepsilon)} \frac{\partial f_0/\partial\varepsilon}{f_0}.$$
 (19)

Видно, что частицы с энергией, при которой $\partial f_0(\varepsilon)/\partial \varepsilon > 0$, будут иметь отрицательную подвижность (условие реализуется в заведомо неравновесном случае), что может существенно повлиять на интегральную подвижность.

Одна и та же функция квазиподвижности $K(\varepsilon)$ может определяться разными $v(\varepsilon)$. Действительно, пусть две функции $v(\varepsilon)$ и $\tilde{v}(\varepsilon)$ дают одну и ту же $K(\varepsilon)$:

$$K(\varepsilon) = \frac{2e_q}{3m} \frac{1}{\sqrt{\varepsilon}} \left(\frac{\varepsilon^{3/2}}{\nu(\varepsilon)}\right)' \equiv \frac{2e_q}{3m} \frac{1}{\sqrt{\varepsilon}} \left(\frac{\varepsilon^{3/2}}{\tilde{\nu}(\varepsilon)}\right)'.$$
 (20)

Тогда получаем связь между этими частотами:

$$(\varepsilon^{3/2}/\nu(\varepsilon))' \equiv (\varepsilon^{3/2}/\tilde{\nu}(\varepsilon))',$$

$$1/\nu(\varepsilon) \equiv 1/\tilde{\nu}(\varepsilon) + C/\varepsilon^{3/2},$$
(21)

где С — некоторая константа.

Из (15) и (18) следует правило сложения квазиподвижностей. Пусть есть *N* независимых физических механизмов, за счет которых происходит рассеяние носителей, каждый из которых определяет свой интеграл столкновений $J^{(i)}\{\varphi\}$ и свою квазиподвижность $K^{(i)}$, $i = \overline{1, N}$. Пусть $K^{(\text{tot})}$ — квазиподвижность в системе, где имеются все N механизмов рассеяния. Нам интересно, как выражается $K^{(\text{tot})}$ непосредственно через $K^{(i)}$, $i = \overline{1, N}$. В общем случае найти эту связь затруднительно. Однако в случае, когда элементарные акты почти упругие, работает приближение времени релаксации. Будем считать известными транспортные частоты $v^{(i)}$, $i = \overline{1, N}$ для всех механизмов рассеяния, при этом частоту захвата включим в одну из транспортных частот. Тогда из (15) имеем:

$$J^{(i)}\{\varphi\} = -\nu^{(i)} \cdot \varphi, \quad i = \overline{1, N}; \quad J^{(\text{tot})}\{\varphi\} = -\nu^{(\text{tot})} \cdot \varphi,$$

где

$$\nu^{(\text{tot})} = \sum_{i=1}^{N} \nu^{(i)}; \quad K^{(i)}(\varepsilon) = \frac{2e_q}{m} \frac{1}{\sqrt{\varepsilon}} \left(\frac{\varepsilon^{3/2}}{\nu^{(i)}}\right),$$
$$\nu^{(i)}(\varepsilon) = 2e_q \varepsilon^{3/2} / \left(3mH^{(i)}(\varepsilon)\right). \tag{22}$$

Здесь $H^{(i)}(\varepsilon) = \int_{d^{(i)}}^{\varepsilon} x^{\frac{1}{2}} K^{(i)}(x) dx + C^{(i)}$, а $d^{(i)}$, $C^{(i)}$ — неко-

торые постояные, обеспечивающие, при известной функции $K^{(i)}(x)$, правильное поведение транспортной частоты. Заметим, что в случае $v^{(i)}(\varepsilon) \propto \varepsilon^{\alpha}$, $0 < \alpha < 3/2$, можно положить $d^{(i)} = C^{(i)} = 0$. Тогла

$$K^{(\text{tot})}(\varepsilon) = \frac{2e_q}{3m} \frac{1}{\sqrt{\varepsilon}} \frac{\partial}{\partial \varepsilon} \frac{\varepsilon^{3/2}}{\varepsilon^{(\text{tot})}}$$
$$= \frac{2e_q}{3m} \frac{1}{\sqrt{\varepsilon}} \frac{\partial}{\partial \varepsilon} \left\{ \varepsilon^{3/2} / \left[\sum_{i=1}^N 2e_q \varepsilon^{3/2} / \left(3mH^{(i)} \right) \right] \right\}$$
$$= \frac{1}{\sqrt{\varepsilon}} \frac{\partial}{\partial \varepsilon} \left\{ 1 / \left[\sum_{i=1}^N 1/H^{(i)} \right] \right\}. \tag{23}$$

Окончательно получаем общую формулу для сложения квазиподвижностей, обусловленных *N* независимыми механизмами, в приближении времени релаксации:

$$K^{(\text{tot})}(\varepsilon) = \frac{1}{\sqrt{\varepsilon}} \left(1 \sum_{i=1}^{N} 1 / H^{(i)} \right)'$$
$$= \left(\sum_{i=1}^{N} K^{(i)} / \left(H^{(i)} \right)^2 \right) / \left(\sum_{i=1}^{N} 1 / H^{(i)} \right)^2. \quad (24)$$

Универсальность функции квазиподвижности при рассеянии на акустических фононах в твердых телах

Рассмотрим теперь случай неупругого рассеяния носителей на акустических фононах в кристаллах в

Рис. 1. *а* — зависимость модуля обезразмеренной квазиподвижности от обезразмеренной энергии при $\kappa = 16$. Для иллюстрации "перескоков" носителей по энергии вертикальными линиями отмечены начальная энергия носителей (крайне правая линия) и энергии, куда в основном переходят носители при испускании фононов; *b* — зависимость модуля обезразмеренной квазиподвижности от обезразмеренной энергии при $\kappa = 1.6$; *c* — зависимость модуля обезразмеренной квазиподвижности от обезразмеренной энергии при $\kappa = 0.32$.

изотропном случае. Выражения для входящих в (7) и (8) интегралов столкновений были получены в [14] в двухмоментном приближении методом потенциала деформации:

$$J_{\rm st}^{(0)}{f_0} = C(\varepsilon) \int_{q_0-q_\varepsilon}^{q_0+q_\varepsilon} {\rm sign}(q) \Big\{ f_0(\varepsilon + \hbar s q) \\ \times (\overline{n}(q) + 1) - f_0(\varepsilon) \overline{n}(q) \Big\} q^2 dq, \qquad (25)$$

$$J_{\rm st}^{(1)}\{\varphi\} = C(\varepsilon) \int_{q_0-q_\varepsilon}^{q_0+q_\varepsilon} {\rm sign}(q) \Big\{ \varphi(\varepsilon + \hbar s q) \\ \times \Big[1 - \big(\hbar^2 q^2 / 2m - \hbar s q \big) / 2\varepsilon \Big] \big(\overline{n}(q) + 1 \big) - \varphi(\varepsilon) \overline{n}(q) \Big\} q^2 dq,$$
(26)

где $q_0 = 2ms/\hbar$, $q_{\varepsilon} = 2\sqrt{2m\varepsilon}/\hbar$, $C(\varepsilon) = \hbar^2 \times \sqrt{ms^2/2\varepsilon}/(8\tau_0 m^3 s^3)$, $\tau_0 = \pi \rho \hbar^4/2\Xi^2 m^3 s$ дает харак-

Физика и техника полупроводников, 2018, том 52, вып. 1

терное время рассеяния носителя на акустическом фононе [14], Ξ — константа деформационного потенциала, ρ — плотность материала, s — скорость звука в кристалле, $\overline{n}(q) = 1/(\exp(\hbar s q/k_{\rm B}T) - 1)$ — среднее число фононов с волновым вектором q, T — температура кристалла, $k_{\rm B}$ — постоянная Больцмана, $\hbar s q$ — энергия фонона. Как показано далее, эти формулы справедливы, когда можно пренебречь конечностью температуры Дебая $\Theta_{\rm D}$.

Интегралы столкновений для f_0 и φ (25), (26) можно переписать в безразмерных переменных, сделав замену: $\varepsilon \rightarrow 2\varepsilon/ms^2$, $q \rightarrow q/q_0$, $\kappa \rightarrow 2ms^2/k_{\rm B}T$, $t \rightarrow t/\tau_0$, $\varphi \rightarrow \varphi m^2 s^2/(2e_q \hbar \tau_0)$:

$$J_{\rm st}\{f_0\} = \frac{1}{\sqrt{\varepsilon}} \int_{1-\sqrt{\varepsilon}}^{1+\sqrt{\varepsilon}} \operatorname{sign}(q) \Big\{ f_0(\varepsilon + 4q, t)(\overline{n}(q) + 1) - f_0(\varepsilon, t)\overline{n}(q) \Big\} q^2 dq,$$
(27)

Рис. 2. Зависимость подвижности от времени для носителей с начальной энергией $2\varepsilon/ms^2 = 125$ при $\kappa = 16$ (что соответствует отрицательной квазиподвижности — см. рис. 1, *a*) и при $\kappa \approx 0.5, 0.25, 0.125$ (для параметров алмаза и носителей, взятых из [15], это соответствует T = 2, 64, 128 и 256 K).

$$J_{\rm st}\{\varphi\} = \frac{1}{\sqrt{\varepsilon}} \int_{1-\sqrt{\varepsilon}}^{1+\sqrt{\varepsilon}} \operatorname{sign}(q) \Big\{\varphi(\varepsilon+4q,t) \Big[1-\frac{2}{\varepsilon} \left(q^2-q\right)\Big] \\ \times \left(\overline{n}(q)+1\right) - \varphi(\varepsilon,t)\overline{n}(q) \Big\} q^2 dq.$$
(28)

В рамках принятых приближений обезразмеривание позволяет получить универсальные для любых материалов зависимости обезразмеренной $K(\varepsilon)$. Опуская громоздкое описание численных расчетов, проведенных при вычислении функции (13), приведем полученные универсальные графики для чистого образца при различных κ (рис. 1, *a, b, c*).

При $\kappa < 0.75$ областей отрицательных значений $K(\varepsilon)$ нет (последняя исчезает в районе $2\varepsilon/ms^2 \approx 10$). При понижении температуры (т.е. при $\kappa \ge 0.75$) в области малых энергий начинают возникать осцилляции функции $K(\varepsilon)$, и появляются области отрицательной квазиподвижности. С уменьшением *T* в районе относительно небольших энергий происходит увеличение абсолютных значений функции $K(\varepsilon)$; ее осцилляции распространяются в область больших энергий. При $\kappa \approx 16$ зоны квазиподвижности определенного знака в области малых энергий начинают разбиваться на отдельные, более узкие зоны.

В работе [13] было показано, что в приближении упругих столкновений квазиподвижность имеет смысл подвижности ансамбля носителей, имеющих фиксированную энергию, вычисленную через среднее смещение в пространстве после большого числа актов рассеяния носителей. При этом считалось, что энергия носителей меняется только за счет работы электрического поля при абсолютно упругом рассеянии. Возникает вопрос — можно ли в случае рассеяния носителей заряда в твердом теле на акустических фононах приписывать $K(\varepsilon)$ такой физический смысл.

Рассмотрим эволюцию ансамбля носителей, имеющих определенную начальную энергию, с помощью временно́го уравнения Больцмана [15] в чистом образце. График подвижности, полученной в каждый момент времени, показан на рис. 2.

Ни одна из кривых не демонстрирует ни АОП, ни даже дифференциальной отрицательной подвижности, хотя, например, для $\kappa = 16$ начальная энергия носителей дает отрицательную квазиподвижность.

5. Обсуждение результатов

Оказывается, что причиной неприменимости физической интерпретации $K(\varepsilon)$, введенной в [13], в данном случае является существенная неупругость рассеяния на акустических фононах и, самое главное, слишком узкие по энергии зоны квазиподвижности определенного знака.

Действительно, пусть в начальный момент времени все частицы имеют определенную энергию: $f_0(\varepsilon) = C \cdot \delta(\varepsilon - \varepsilon_0)$. Для такого распределения выражение (27) принимает вид:

$$J_{\rm st}\{f_0\} = \begin{cases} C \cdot \operatorname{sign}(z) (\overline{n}(z) + 1) z^2 / (4\sqrt{\varepsilon_0 - 4z}), & \varepsilon \in I; \\ 0, & \varepsilon \neq I. \end{cases}$$
(29)

Здесь

$$I = \left(\left(\sqrt{\varepsilon_0} - 2\right)^2; \left(\sqrt{\varepsilon_0} + 2\right)^2\right), \quad z = (\varepsilon_0 - \varepsilon)/4$$

 $\overline{n}(z) = 1/(\exp(\kappa z) - 1)$. Таким образом, за один элементарный акт носитель с энергией ε_0 может менять ее в пределах "области перескока" *I*, что следует напрямую из законов сохранения энергии и квазиимпульса (см. рис. 3).

Заметим, что функция $g(z) = \text{sign}(z)(\overline{n}(z) + 1)z^2$ определяет поведение (29) при всех энергиях, кроме значений, близких к нулю, где поведение интеграла столкновений сильно зависит от множителя $1/\sqrt{\varepsilon_0 - 4z} \equiv 1/\sqrt{\varepsilon}$. Функция g(z) не меняет знак при изменении знака z из-за множителя sign(z). Асимптотики g(z):

$$\begin{aligned} &\kappa z \to 0: \qquad g(z) \to z \operatorname{sign}(z) / \kappa, \\ &\kappa z \to +\infty: \qquad g(z) \to z^2, \\ &\kappa z \to -\infty: \qquad g(z) \to z^2 \exp(-\kappa |z|). \end{aligned} \tag{30}$$

Левой границе "области перескока" $(\sqrt{\varepsilon_0 - 2})^2$ соответствует $z = \sqrt{\varepsilon_0} - 1$, правой границе "области перескока" $(\sqrt{\varepsilon_0 + 2})^2$ соответствует $z = \sqrt{\varepsilon_0} + 1$, поэтому интеграл столкновений будет стремиться на левой и правой границах "области перескока" к указанным выше асимптотическим значениям при условиях

Рис. 3. Интеграл столкновений $J_{st}\{f_0\}$ для симметричной части функции распределения при $f_0(\varepsilon) = C \cdot \delta(\varepsilon - \varepsilon_0)$, $\varepsilon = 50$, $\kappa = 0.5$, C = 1. Видно, что частицы с наибольшей вероятностью переходят на левую границу "области перескока".

 $\kappa (\sqrt{\varepsilon_0} - 1) > 1, \kappa (\sqrt{\varepsilon_0} + 1) > 1$ соответственно. Можно показать, что при таких условиях значение $J_{\rm st}$ на левой границе будет максимальным по сравнению со значениями при любых других энергиях (см. рис. 3).

Таким образом, за один акт частицы из начального положения ε_0 переходят в основном в область левой границы $(\sqrt{\varepsilon_0 - 2})^2$. За следующий акт значительная часть этих частиц перейдет в область $(\sqrt{(\sqrt{\varepsilon_0} - 2)^2} - 2)^2$ и т.п., за *n* актов заметное число частиц прорелаксирует до энергии $(\sqrt{\varepsilon_0} - 2n)^2$. Таким образом, эти частицы уменьшат свою энергию относительно исходной ε_0 на

$$\Delta(n) = \varepsilon_0 - (\sqrt{\varepsilon_0} - 2n)^2 = 4n (\sqrt{\varepsilon_0} - n)$$
$$= -4 (n - \sqrt{\varepsilon_0}/2)^2 + \varepsilon_0, \qquad (31)$$

значит, примерно за $[\sqrt{\epsilon_0}/2]$ актов они полностью потеряют энергию. Например, тяжелым дыркам в кремнии ($ms^2/k_B \approx 3 \text{ K}$) с начальной энергией 0.5 эВ может понадобиться всего примерно 20 актов, чтобы достичь нулевой энергии.

Описанная особенность динамики частиц в энергетическом пространстве проясняет проблему с физической интерпретацией $K(\varepsilon)$, предложенной в [13]. Действительно, пусть $\kappa = 16$, и все частицы имеют начальную энергию, равную $375ms^2/2$. На рис. 1, *а* вертикальными линиями отмечена энергия исходного ансамбля носителей (крайне правая линия) и энергии, в которые преимущественно будут переходить носители при испускании фононов. Эти энергии определяются полученной выше формулой $(\sqrt{\varepsilon_0} - 2n)^2$. Легко видеть, что размер отдельного перескока по энергии $\Delta(1) = 4(\sqrt{\varepsilon_0} - 1)$ соизмерим с размером области подвижности фиксированного знака, т.е., грубо говоря, за один акт носитель уйдет из области, например, положительной $K(\varepsilon)$

в область отрицательной $K(\varepsilon)$. Заметим, что чисто формально, при достаточно больших ε_0 , перескок за один акт $\Delta(1) = 4(\sqrt{\varepsilon_0} - 1) \ll \varepsilon_0$, т.е. носители относительно слабо меняют энергию за один акт, и, значит, столкновения можно считать упругими. Однако такой упругости оказывается недостаточно: за один перескок $K(\varepsilon)$ тоже должна измениться незначительно, что в случае рассеяния носителей на акустических фононах не имеет места. Физическая интерпретация $K(\varepsilon)$, предложенная в [13], становится неприменимой, так как она неявно основывалась на том, что за много столкновений квазиподвижность носителей не должна сильно меняться. В нашем примере за один акт она может не только сильно измениться по величине, но и вообще поменять знак.

Проведем оценку энергии носителя, при которой пренебрежение конечностью Θ_D в интеграле столкновений на акустических фононах законно. Для этого нужно, чтобы энергия испущенного или поглощенного фонона была значительно меньше энергии Дебая.

Из (29) и рис. З видно, что частицы с начальной энергией ε_0 за один элементарный акт меняют ее не больше чем на $\max(\varepsilon_0 - (\sqrt{\varepsilon_0} - 2)^2, (\sqrt{\varepsilon_0} + 2)^2 - \varepsilon_0) = 4(\sqrt{\varepsilon_0} + 1)$. Значит, должно выполняться $\Theta_D > 4 \times (\sqrt{\varepsilon_0} + 1) \Leftrightarrow \varepsilon_0 < (\Theta_D/4 - 1)^2$, где Θ_D , также как и ε_0 , обезразмеренна на $ms^2/2$.

Например, в алмазе $\Theta_{\rm D} \approx 2000$ К, для тяжелых дырок и продольных акустических фононов $m_{p,h} = 1.08m_c$, $S_{\rm LA} = 1.833 \cdot 10^6$ см/с [20], откуда легко получаем оценку $\varepsilon_0 < 1600$. В наших расчетах $K(\varepsilon)$ считалась до $\varepsilon \approx 600-700$, значит, в этом случае пренебрежение конечностью $\Theta_{\rm D}$ в интеграле столкновений законно.

Необходимо также отметить, что при достаточно высоких температурах (в алмазе при $T \approx 300 \,\mathrm{K}$) на подвижность начинает существенно влиять рассеяние на оптических фононах, которое в нашей модели не учитывалось.

6. Заключение

Введено понятие квазиподвижности, обобщающее характеристику носителей заряда, предложенную Хаксли и Кромптоном, на случай неупругого рассеяния, и позволяющее в стационарном случае посчитать интегральную подвижность. В приближении времени релаксации получена формула сложения квазиподвижностей, обусловленных разными физическими механизмами.

Рассмотрена функция обезразмеренной квазиподвижности носителей заряда в твердых телах при рассеянии на акустических фононах, показана универсальность этой функции, рассмотрены ее ключевые особенности, в том числе чередование зон положительной и отрицательной квазиподвижности при достаточно низких температурах. Уточнен критерий возможности понимания квазиподвижности как подвижности ансамбля носителей определенной энергии. Полученные результаты важны для численных расчетов и обработки экспериментальных данных по кинетике носителей заряда в твердых телах.

Работа поддержана грантом Министерства образования и науки РФ (проектная часть государственного задания, проект № 3.679.2014/К). Работа выполнена при частичной поддержке Правительства РФ (соглашение № 05.Y09.21.0018).

Список литературы

- M.A. Prelas, G. Popovici, L.K. Bigelow (eds). *Handbook* of *Industrial Diamonds and Diamond Films* (N.Y., Marcel Deccer, 1998).
- [2] S. Koizumi, C.E. Nebel, M. Nesladek (eds). *Physics and Applications of CVD Diamond*. (Weinheim WILEY-VCH Verlag GmbH & Co.KGaA, 2008).
- [3] R.S. Balmer, I. Friel, S.M. Woollard, C.J.H. Wort, G.A. Scarsbrook, S.E. Coe, H. El-Hajj, A. Kaiser, A. Denisenko, E. Kohn, J. Isberg. Phil. Trans. R. Soc. A, 366, 251 (2008).
- [4] R.S. Sussmann. CVD Diamond for Electronic Devices and Sensors. (Wiley, Wiley Series in Materials for Electronic & Optoelectronic Applications, 2009).
- [5] V.D. Blank, V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, D.V. Teteruk, N.V. Kornilov, S.A. Terentiev, A.P. Volkov. Diamond Relat. Mater., 57, 32 (2015).
- [6] Т.Н. Мамедов, А.Г. Дутов, Д. Герлах, В.Н. Горелкин, К.И. Грицай, В.А. Жуков, А.В. Стойков, В.Б. Шипило, У. Циммерманн. Препринт ОИЯИ (Дубна, 2004) Р14-2004-104.
- [7] T.N. Mamedov, D. Andreika, A.S. Baturin, D. Herlach, V.N. Gorelkin, K.I. Gritsaj, V.G. Ralchenko, A.V. Stoykov, V.A. Zhukov, U. Zimmermann. Physica B, 374–375, 390 (2006).
- [8] В.Ф. Елесин. УФН, 175, 197 (2005).
- [9] А.С. Александров, Ю.А. Быковский, В.Ф. Елесин, Е.А. Протасов, А.Г. Родионов. Письма ЖЭТФ, 12, 57 (1970).
- [10] А.С. Александров, Ю.А. Быковский, В.Ф. Елесин, Е.А. Протасов, А.Г. Родионов. Письма ЖЭТФ, 64, 231 (1973).
- [11] А.С. Александров, А.Н. Кулямзин, А.П. Менушенков, Е.А. Протасов, П.А. Черемных. ФТТ, 19 (5), 1518 (1977).
- [12] A.S. Baturin, V.N. Gorelkin, V.S. Rastunkov, V.R. Soloviev. Physica B, 374–375, 340 (2006).
- [13] Л. Хаксли, Р. Кромптон. Диффузия и дрейф электронов в газах (М., Мир, 1977) с. 86, 198.
- [14] А.С. Батурин, В.Н. Горелкин, В.Р. Соловьев, И.В. Черноусов. Физика плазмы, 34, 431 (2008).
- [15] А.С. Батурин, В.Н. Горелкин, В.Р. Соловьев, И.В. Черноусов. ФТП, 44 (7), 897 (2010).
- [16] Ю.М. Белоусов, В.Р. Соловьев, И.В. Черноусов. ФТП, 47 (12), 1630 (2013).
- [17] И.А. Варфоломеев, В.Н. Горелкин, В.Р. Соловьев. Тр. МФТИ, 5 (3), 139 (2013).
- [18] Yu.M. Belousov, I.V. Chernousov, V.R. Soloviev, I.A. Varfolomeev. Proc. 2nd Int. Conf. Photonics, Optics and Laser Technology (7–9 January, Lisbon, Portugal, 2014) p. 122.
- [19] R.D. White, R.E. Robson, B. Schmidt, M.A. Morrison. J. Phys. D: Appl. Phys., 36, 3125 (2003).

[20] O. Madelung. Semiconductors: Data Handbook. (Berlin, Heidelberg, Springer–Verlag, 2004).

Редактор Г.А. Оганесян

On mobility of definite energy charge carriers

Yu.M. Belousov, V.N. Gorelkin, I.V. Chernousov

Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudniy, Russia

Abstract We consider a function of quasi-mobility of charge carriers with given energy for their dynamics description with the help of kinetic equation in an important case of isotropic two-term approximation. In stationary case this function is independent of charge carriers' source function, and allows one calculating integral mobility. The influence of system parameters on quasi-mobility function is analyzed. It is shown that generally this function does not describe a contribution of carriers with given energy to total mobility. It is known that in case of almost elastic scattering quasimobility function can have a clear physical meaning, but in case of carriers scattering on acoustic phonons in solids this interpretation proves to be wrong due to peculiarities of collision integral and quasi-mobility function.