07,01

Влияние отжига на микроструктуру и механические свойства ультрамелкозернистого технически чистого AI

© А.М. Мавлютов¹, Т.А. Латынина^{1,2}, М.Ю. Мурашкин^{3,4}, Р.З. Валиев^{3,4}, Т.С. Орлова^{1,2,¶}

1 Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики,

Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

³ Санкт-Петербургский государственный университет,

Санкт-Петербург, Россия

⁴ Уфимский государственный авиационный технический университет,

Институт физики перспективных материалов,

Уфа, Россия

[¶] E-mail: orlova.t@mail.ioffe.ru

(Поступила в Редакцию 27 марта 2017 г.)

Исследовано влияние отжига на микроструктуру и механические свойства ультрамелкозернистого (УМЗ) технически чистого Al, предварительно подвергнутого интенсивной пластической деформации кручением под давлением. Установлено, что отжиг УМЗ-образцов в диапазоне температур 363–473 K в течение 1 h приводит к повышению условного предела текучести и предела прочности, прирост которых достигает максимального значения (до 50 и 30% соответственно) после отжига при 423 K. Обсуждается ключевая роль неравновесных большеугловых границ зерен в полученном эффекте упрочнения УМЗ-Al путем отжига. Увеличение прочности сопровождается значительным снижением пластичности. Предложен новый подход для улучшения пластичности УМЗ-Al при сохранении высокого уровня прочности. Он заключается во введении дополнительной плотности дислокаций в релаксированную отжигом УМЗ-структуру.

Авторы (М.Ю.М. и Р.З.В.) выражают благодарность Министерству образования и науки РФ за финансовую поддержку в рамках проекта № 14.Б25.31.0017.

Рентгеноструктурные исследования проведены с использованием оборудования Ресурсного центра научного парка СПбГУ "Рентгенодифракционные методы исследования".

DOI: 10.21883/FTT.2017.10.44964.094

1. Введение

Сплавы на основе алюминия являются перспективными материалами для электротехнических приложений благодаря таким свойствам, как высокая электропроводность, коррозионная стойкость, высокая пластичность и легкость вследствие относительно низкой плотности. В ряде случаев сочетание высокой прочности и пластичности является необходимым условием для практического применения алюминиевых сплавов. В последние годы были проведены исследования влияния интенсивной пластической деформации (ИПД) на механические свойства A1 и сплавов на его основе [1-10]. Было показано, что ИПД приводит к повышению прочности и микротвердости за счет измельчения зерен до ультрамелкого масштаба и повышения плотности дефектов кристаллической решетки [1,2,5-8], а также за счет формирования особой структуры границ зерен (ГЗ) [1]. Существенным недостатком ультрамелкозернистой (УМЗ) структуры является значительное снижение пластичности по сравнению с пластичностью в крупнозернистом (КЗ) состоянии [6]. Для оптимизации прочностных и пластических свойств в последнее время активно проводятся исследования влияния отжига на механические свойства Al [11-16]. Однако результаты этих исследований достаточно противоречивы. Так, в ряде работ наблюдалось повышение прочности УМЗ-материалов при отжиге [11–14]. Например, в работе [11] обнаружено повышение прочности в результате отжига при 423 К высокочистого (99.99 wt.%) и технически чистого (99.2 wt.%) Al, предварительно обработанных специальной прокаткой (accumulative roll-bonding). Авторы связывают повышение прочности с уменьшением источников подвижных дислокаций за счет их стока в процессе отжига в близкостоящие большеугловые границы зерен (БУГЗ) [11]. В работе [14] показано, что отжиг при 423 К УМЗ-образцов технически чистого Аl, подвергнутого интенсивной пластической деформации кручением (ИПДК), приводит к повышению микротвердости на 13%. В работе [15] исследован технически чистый A1 (99.5 wt.%), в котором УМЗ-структура получена ротационной ковкой, и показано, что последующий отжиг при температурах до 448 К не приводит к изменению микротвердости. Противоречивость имеющихся в научной литературе данных по влиянию отжига на прочность алюминия, по-видимому, связана с особенностями УМЗ-структур, полученных разными методами и режимами ИПД.

В связи с этим важной задачей представляется выявление ключевых микроструктурных параметров, ответственных за упрочнение УМЗ-А1 при отжиге, а также действующих в этом случае механизмов упрочнения. В настоящей работе проведены детальные исследования изменения прочности и пластичности в корреляции с эволюцией микроструктуры в результате отжига технически чистого Al (99.5 wt.%), предварительно подвергнутого ИПДК. Показано, что отжиг УМЗ-А1 при температурах 363-473 К в течение 1 h приводит к значительному повышению условного предела текучести и предела прочности, что связано с уменьшением источников подвижных дислокаций в результате релаксации дислокационной структуры неравновесных БУГЗ в процессе отжига. Впервые показано, что небольшая дополнительная деформация УМЗ-А1 после отжига при 423 К позволяет значительно (до уровня КЗ-А1) повысить его пластичность при сохранении высокого уровня прочности, что наиболее вероятно связано с введением дополнительных подвижных дислокаций. Это открывает новый подход для одновременного повышения прочности и пластичности УМЗ-металлов.

Образцы и экспериментальные методики

В работе исследовались образцы технически чистого Al (99.5 wt.%). Из исходного прутка, имеющего K3-структуру, были вырезаны заготовки в виде цилиндров диаметром 9 mm и высотой 8 mm. Далее заготовки были обработаны ИПДК с помощью пресса Walter Klement GmbH HPT-07. ИПДК-обработка на десять оборотов (n = 10) была проведена при комнатной температуре (KT) под давлением 6 GPa [1,5]. В результате ИПДК обработки получились диски диаметром 20 mm и толщиной 1.5 mm, степень истинной деформации в области на расстоянии 5 mm от центра диска составила $e \approx 6.6$ [5].

Затем был проведен отжиг образцов при различных температурах из интервала 363-673 К в течение 1 h. Далее образцы после ИПДК-обработки и без последующего отжига обозначены как Al_RT, а образцы после ИПДК и последующего отжига — как Al_ T_{an} , где T_{an} — температура отжига в К. Исходный КЗ-образец обозначен как Al_CG (CG — coarse-grained).

Подробный анализ микроструктуры полученных образцов был проведен нами ранее [14,17], основные параметры микроструктуры, такие как средний размер зерна и распределение границ зерен по разориентировкам, представлены в табл. 1. Как видно из этой таблицы, в результате ИПДК-обработки в образцах сформировалась УМЗ-структура преимущественно с БУГЗ ($f_{>15} \approx 77\%$) со средним размером зерна ~ 810 nm, отжиг при температурах до 473 К не приводит к существенному росту зерна и изменению разориентировок ГЗ, однако в структуре происходят процессы возврата, о чем свидетельствует снижение плотности дислокаций [14,17].

Таблица 1. Пар	ам	етры	микрост	руктуры	обра	ізцов А	1 после
ИПДК-обработки	И	посл	едующег	ю отжи	а по	данным	и рабо-
ты [14]							

Образец	d_{av} , nm	$f_{\leq 15}$, %	$f_{>15}$, %
Al_RT	810 ± 9	23	77
Al_363	850 ± 11	22	78
Al_403	1130 ± 17	20	80
Al_423	1160 ± 9	24	76
Al_473	1090 ± 18	28	72
Al_673	7200 ± 525	69	31

Примечание. $d_{\rm av}$ — средний размер зерен, $f_{\leq 15}$ — доля малоугловых границ зерен, $f_{>15}$ — доля большеугловых границ зерен с разориентацией $\leq\!15$ и $>15^\circ$ соответственно.

В работе был проведен ряд дополнительных структурных исследований методами рентгеноструктурного анализа (PCA) и растровой электронной микроскопии.

РСА проводился на дифрактометре Bruker D8 DISCOVER в режиме симметричного $\theta - 2\theta$ -сканирования с использованием параллельного пучка излучения Cu K_{α} (40 kV, 40 mA). Шаг сканирования составил $\Delta 2\theta = 0.02^{\circ}$, а время экспозиции — 0.5 s. Полнопрофильным моделированием методом Паули с использованием программного обеспечения "TOPAS 5.0" определялись средний размер областей когерентного рассеяния *C* и уровень микроискажений кристаллической решетки $\langle \varepsilon^2 \rangle^{1/2}$. На основе данных PCA определялась плотность дислокаций по формуле [18]

$$L_{\rm dis} = \frac{2\sqrt{3}\langle \varepsilon^2 \rangle^{1/2}}{Cb},\tag{1}$$

где *b* — вектор Бюргерса.

Анализ поверхности изломов разрушенных образцов проводился на сканирующем электронном микроскопе JSM-6490LV (JEOL) при ускоряющем напряжении 20 kV.

Для проведения механических испытаний из полученных в результате ИПДК-обработки дисков на электроэрозионном станке были вырезаны образцы в виде

Рис. 1. Схема вырезки образцов для испытаний на растяжение.

Образец	$\sigma_{0.2}$, MPa	$\sigma_{\rm UTS}$, MPa	δ, %	$\delta_1, \%$
Al_CG	33	46	38	29
Al_RT	135	184	18	2
Al_363	184	223	14	2
A1_403	185	222	9	1
A1_423	201	237	1	0.5
Al_473	203	207	1	0.5
A1_673	28	55	42	26
$A1_{423} + 0.25$	130	180	34	19
$A1_{423} + 0.25 + 423$	202	231	13	1
$A1_{423} + 0.25 + 423 + 0.25$	125	167	41	23
$A1_{423} + 0.25 + 423 + 0.25 + 423$	205	221	18	1

Таблица 2. Механические свойства образцов Аl после ИПДК-обработки и отжига

Примечание. Приведены средние значения условного предела текучести $\sigma_{0.2}$, предела прочности $\sigma_{\rm UTS}$, относительного удлинения до разрушения δ , относительного равномерного удлинения δ_1 .

лопаток с шириной рабочей части 2 mm и длиной 6 mm. Схема вырезки и конфигурация образцов представлены на рис. 1. Испытания образцов на одноосное растяжение были проведены на машине Shimadzu AG-XD Plus с постоянной скоростью деформации $5 \cdot 10^{-4} \, {\rm s}^{-1}$. Деформация образцов регистрировалась с помощью видеоэкстензометра TRViewX 55S. Для каждого состояния было испытано, как минимум, по четыре образца. На основе полученных диаграмм напряжение—деформация были определены условный предел текучести $\sigma_{0.2}$, соответствующий 0.2% деформации, предел прочности $\sigma_{\rm UTS}$, относительное удлинение до разрушения δ и относительное равномерное удлинение δ_1 образца.

3. Экспериментальные результаты и их обсуждение

На рис. 2 представлены диаграммы напряжениедеформация образцов А1 в исходном КЗ-состоянии, в

Рис. 2. Диаграммы напряжение – деформация образцов Al после ИПДК-обработки на 10 оборотов при КТ (*I*), после последующего отжига при температурах 363 (*2*), 403 (*3*), 423 (*4*), 473 (*5*) и 673 К (*6*), а также в исходном КЗ-состоянии (*7*).

Рис. 3. Зависимости условного предела текучести $\sigma_{0.2}$ и предела прочности σ_{UTS} образцов УМЗ-А1 от температуры отжига.

УМЗ-состоянии, полученном ИПДК-обработкой, а также после различных отжигов УМЗ-состояния. В исходном КЗ-состоянии образцы Al CG демонстрируют довольно низкий условный предел текучести $\sigma_{0.2} \approx 33 \,\mathrm{MPa}$, низкую предельную прочность $\sigma_{\rm UTS} \approx 46 \, {\rm MPa}$ и высокую пластичность до разрушения $\delta \approx 38\%$. В результате ИПДК-обработки наблюдается повышение предела прочности и условного предела текучести в ~ 4 раза, однако пластичность образцов снижается до $\delta \approx 18\%$. Данные результаты хорошо согласуются с результатами работ [2-4,11-13,15], в которых ИПД образцов АІ была выполнена другими методами, такими, например как специальная прокатка (accumulative roll-bonding), ротационная ковка, равноканальное угловое прессование. В соответствии с соотношением Холла-Петча [19,20] высокие показатели условного предела текучести образцов Al_RT связаны с измельчением зерен в результате ИПДК-обработки и, как следствие, увеличения объемной плотности ГЗ в структуре. Вклад в упрочнение также вносит увеличение плотности дислокаций

Рис. 4. Изменение относительного удлинения до разрушения (a) и относительного удлинения до начала разупрочнения (b) образцов УМЗ-А1 в зависимости от температуры отжига (1). 2 — исходное КЗ-состояние, 3 — состояние Al_423 + 0.25.

в результате ИПД [1,3,6–8]. Последующие отжиги при температурах 363–473 К приводят к дополнительному повышению предела прочности и условного предела текучести до 30 и 50% соответственно (рис. 3), однако пластичность образцов значительно снижается (рис. 4). Подробные данные испытаний на растяжение приведены в табл. 2. Отметим, что максимальное повышение прочности получено после отжига при 423 К, при котором пластичность падает до минимального значения $\delta \approx 1\%$. Данное состояние было выбрано для дальнейшего исследования.

На рис. 5 представлены результаты исследования поверхности разрушения образцов Al методом сканирующей электронной микроскопии. Образец Al_CG

продемонстрировал очень высокую степень относительного сужения (рис. 5, a) и характерный для вязкого материала ямочный излом (рис. 5, b): глубокие ямки, наличие и развитость бороздок на боковых поверхностях ямок (рис. 5, b, вставка) являются показателем высокой пластичности образцов [21].

Для образцов Al, подвергнутых ИПДК (образцы Al_RT), разрушение происходило при небольшом относительном сужении (рис. 5, c), при этом на изломах наблюдалось большое количество малых по протяженности и глубине ямок (рис. 5, d), что характерно для прочного материала с относительно невысокой пластичностью [21]. Образец А1_423 продемонстрировал разрушение с очень низким относительным сужением (рис. 5, e) и как следствие самую короткую стадию локализованной деформации (кривая 4 на рис. 2 и рис. 4, b) среди изученных образцов. Следует отметить, что в данном образце существует много зон с малоразвитым рельефом, которые расположены достаточно однородно по поверхности (рис. 5, е). Сотовый рельеф поверхности излома у образца Al_423, представляющий собой мелкие равноосные неглубокие ямки (рис. 5, f), является признаком практически хрупкого разрушения [21].

Как показали проведенные нами ранее [14,17] исследования микроструктуры, в результате отжига образцов Al_RT, имеющих УМЗ-структуру, происходит снижение плотности дислокаций. Более того, ранее [17] методом просвечивающей электронной микроскопии нами было показано, что измеренные методом РСА плотности дислокаций относятся главным образом к ГЗ и прилегающим областям, а в теле зерен дислокации практически отсутствуют. При низкотемпературном отжиге (363-403 К) понижение плотности дислокаций происходит, по-видимому, главным образом за счет перестройки структуры ГЗ из неравновесной в более равновесную [17]. Такая перестройка структуры ГЗ может быть причиной повышения предела текучести и одновременного снижения пластичности образцов после отжигов. Действительно, после ИПДК ГЗ являются источниками упругих искажений решетки и как следствие локальных внутренних упругих напряжений [17]. После соответствующего низкотемпературного отжига ГЗ релаксируют в более равновесное состояние, уменьшая при этом поля упругих напряжений [17]. Поэтому для того чтобы дислокации из ГЗ начали скольжение в образце Al_423, необходимо повысить в нем уровень напряжения по сравнению с пределом текучести образца Al RT. По-видимому, низкая пластичность объясняется тем, что количество источников подвижных дислокаций после отжига сильно уменьшается. Уменьшение количества источников дислокаций после низкотемпературного отжига образцов технически чистого A1 (99.2 wt.%), предварительно обработанных специальной прокаткой (accumulative roll-bonding) на большую степень деформации e = 4.8, отмечалось ранее в работе [11]. Авторы [11] полагают, что уменьшение количества источников дислокаций происходит в результате стока подвижных внутризеренных дислокаций в близкостоящие БУГЗ, которые преобладают в УМЗ-структуре этих образцов. Это

Рис. 5. Данные сканирующей электронной микроскопии. Фрактография образцов Al: *a*, *b* — в исходном КЗ-состоянии; *c*, *d* — после ИПДК-обработки на 10 оборотов при КТ, *e*, *f* — после отжига УМЗ-образцов при 423 К в течение 1 h.

объясняет увеличение предела текучести и одновременное падение пластичности у структурированного такой деформацией Al [11]. В наших образцах Al, структурированных ИПДК, также наблюдается преобладающее количество БУГЗ ($\sim 77\%$), однако количество внутризеренных дислокаций пренебрежимо мало [17]. Как отмечалось выше, основной структурной перестройкой при низкотемпературном отжиге (363–403 K) в данном случае является перестройка структуры ГЗ из неравновесной в более равновесную. Доминирующее количество БУГЗ, по-видимому, является обязательным условием для достижения упрочнения УМЗ-А1 путем низкотемпературного отжига. Действительно, в работе [15], в которой не наблюдался эффект упрочнения УМЗ-А1 отжигом, большинство ГЗ — малоугловые границы. Полученные в нашей работе результаты свидетельствуют также в пользу того, что неравновесность БУГЗ в УМЗ-структуре, полученной ИПДК, играет существенную роль для проявления эффекта упрочнения при отжиге. Вероятно, релаксация БУГЗ может происходить за счет аннигиляции в них подвижных внутризеренных дислокаций или за счет перестройки зернограничной

Образец	C, nm	$\langle \varepsilon^2 \rangle^{1/2}$, %	$L_{\rm dis},{\rm m}^{-2}$
Al_RT	240 ± 40	0.008 ± 0.003	$\sim 4.1\cdot 10^{12}$
Al_423	250 ± 50	0.003 ± 0.003	$\sim 1.5 \cdot 10^{12}$
Al_423+0.25	300 ± 60	0.01 ± 0.003	$\sim 4.1\cdot 10^{12}$

Таблица 3. Результаты рентгеноструктурного анализа образцов Аl после ИПДК-обработки и отжига

Примечание. C — средний размер областей когерентного рассеяния, $\langle \varepsilon^2 \rangle^{1/2}$ — уровень микроискажений кристаллической решетки, $L_{\rm dis}$ — плотность дислокаций.

дислокационной структуры, что приводит к уменьшению внутренних упругих напряжений от границ зерен и уменьшению источников подвижных дислокаций.

Образцы А1_423 продемонстрировали наилучшие прочностные характеристики $(\sigma_{0.2} \approx 201 \text{ MPa})$ И $\sigma_{\rm UTS} \approx 237 \,{\rm MPa}$), однако при этом пластичность упала до минимальных значений $\delta \approx 1\%$. С целью увеличения пластичности была предпринята попытка введения новых дислокаций в отожженные образцы Al_423 путем их дополнительной обработки ИПДК на четверть оборота (n = 0.25) при КТ (образец Al 423 + 0.25). Как было показано ранее для сплава системы Al-Mg-Si [9], результате такой небольшой дополнительной В деформации значительно (в ~3 раза) повышалась плотность дислокаций, при этом остальные параметры микроструктуры (размер зерна, размер и распределение вторичных фаз и т.д.) образцов сохранялись. В нашей работе был проведен РСА с определением плотности дислокаций в образцах до отжига (Al RT), после отжига (А1_423) и после дополнительной деформации отожженного образца на четверть оборота (A1_423 + 0.25). Результаты РСА приведены в табл. 3. Как и отмечалось ранее, отжиг приводит к значительному понижению плотности дислокаций (приблизительно в 2.7 раза). Последующая небольшая дополнительная деформация, как и ожидалось, обеспечила значительное повышение плотности дислокаций (практически до уровня, характерного для неотожженной УМЗ-структуры).

Образцы Al_423 + 0.25 также были испытаны на одноосное растяжение. Типичная диаграмма растяжения образца Al_423 + 0.25 показана на рис. 6 (кривая 4.1). Видно, что дополнительная деформация кручением на n = 0.25 оборота привела к значительному увеличению пластичности до $\delta \approx 34\%$, при этом уровень прочностных свойств (значения $\sigma_{0.2}$ и $\sigma_{\rm UTS}$) хотя и уменьшился по сравнению с образцом Al_423 (кривая 4 на рис. 6), но сохранился на уровне, характерном для образца Al_RT (кривая 1 на рис. 6), структурированного ИПДК.

Рассмотрим более детально диаграмму растяжения образца Al_423 + 0.25 (кривая 4.1 на рис. 6). На ней можно выделить три участка. На участке I происходит упрочнение материала до достижения 7% деформации. Далее на участке II наблюдается незначительное разупрочнение, практически на этом участке кривой образец деформируется почти при постоянном напряжении до

достижения деформации $\delta_1 \approx 19\%$. На участке III происходит существенное разупрочнение, свидетельствующее о локализации деформации, а при достижении деформации $\delta \approx 34\%$ — разрушение образца. По-видимому, введенные дополнительной деформацией дислокации могут начать свое скольжение при напряжениях значительно более низких, чем значения $\sigma_{0.2}$, характерные для образ-

Рис. 6. Диаграммы напряжение—деформация для образцов Al. *1* — после ИПДК-обработки на 10 оборотов при КТ, *4* — после ИПДК-обработки и отжига при 423 К. Кривая *4.1* — обработка, аналогичная обработке для кривой *4*, плюс ИПДК-обработка на 0.25 оборота при КТ, кривая *4.1*^{*} — участок III кривой *4.1*, сдвинутый для сравнения с кривой *1*. Номера кривых *1, 4* соответствуют приведенным на рис. 2.

Рис. 7. Диаграммы напряжение—деформация для образцов Al. 1 — после ИПДК-обработки на 10 оборотов при КТ, 4 — после ИПДК-обработки и отжига при 423 К. Кривая 4.1 — обработка, аналогичная обработке для кривой 4, плюс ИПДК-обработка на 0.25 оборота при КТ, кривая 4.2 — та же обработка, что для 4.1, плюс отжиг при 423 К в течение 1 h, кривая 4.3 — та же обработка, что для 4.2, плюс ИПДК-обработка на 0.25 оборота при КТ, кривая 4.4 — та же обработка, что для 4.3, плюс отжиг при 423 К в течение 1 h. Кривая 7 исходное КЗ-состояние. Номера кривых 1, 4, 7 соответствуют приведенным на рис. 2.

цов Al_423, и сравнимых с $\sigma_{0.2} \approx 135$ MPa для образца Al_RT. Стадия II, происходящая при почти постоянном значении деформирующего напряжения, вероятно, связана с относительно однородным пластическим течением в большом количестве зон образца до того, как происходит стадия локализации деформации (стадия III), завершающаяся разрушением. Примечательно, что участок III на кривой деформации образца Al_423 + 0.25 фактически идентичен стадии разупрочнения у образца Al_RT (кривая 4.1* на рис. 6).

Далее образцы A1 423 + 0.25 были вновь подвергнуты отжигу при 423 К в течение 1h (образец обозначен как А1_423 + 0.25 + 423), а затем вновь обработаны ИПДК на 0.25 оборота при КТ (образец A1 423 + 0.25 + 423 + 0.25) и снова отожжены при 423 K в течение 1 h (образец A1_423 + 0.25 + 423 + 0.25 + 423). После каждого этапа обработки были проведены испытания на растяжение, результаты которых приведены на рис. 7 и в табл. 2. Как видно из рис. 7 и табл. 2, каждый этап обработки ИПДК на 0.25 оборота при КТ приводил к существенному увеличению пластичности образцов с УМЗ-структурой (кривые 4.1 и 4.3 на рис. 7), при этом условный предел текучести и предел прочности сохранялись на высоком уровне, соизмеримом с соответствующими значениями в образцах Al_RT (табл. 2). Отжиг при 423 К на каждом этапе приводил к повышению прочности и снижению пластичности (кривые 4.2 и 4.4 на рис. 7, табл. 2). Таким образом, дополнительная термомеханическая обработка, состоящая из серии отжигов и дополнительных деформаций, позволила повысить пластичность до уровня, характерного для исходного КЗ-образца, и даже несколько превысить его, достигнув значения $\delta \approx 41\%$ (кривая 4.3 на рис. 7), при этом значения предела текучести и предела прочности ($\sigma_{0.2} \approx 125 \text{ MPa}$ и $\sigma_{\text{UTS}} \approx 167 \text{ MPa}$ соответственно) были соизмеримы с подобными характеристиками для УМЗ-А1 после ИПДК (образец Al_RT). Насколько нам известно, одновременное достижение таких высоких значений прочности и пластичности получено для технически чистого Аl впервые. Возможно, что предложенный в работе подход для одновременного увеличения прочности и пластичности будет эффективным и в случае других металлических материалов.

4. Заключение

Обнаружено значительное повышение предела текучести (до 50%) и предела прочности (до 30%) для УМЗ-Аl, структурированного методом ИПДК, при отжиге в интервале температур 363-473 К в течение l h, что указывает на существование особого механизма упрочнения в УМЗ-структуре, ключевую роль в котором наиболее вероятно играют неравновесные большеугловые границы зерен.

Впервые достигнуто одновременное увеличение прочности (в ~ 3.6 раза) и пластичности (до ~ 42%) технически чистого Al. С этой целью обработка исходных КЗ-образцов была проведена в несколько этапов,

включающих ИПДК на 10 оборотов при КТ, отжиг УМЗ-образцов в интервале температур 363–673 К и дополнительную ИПДК-обработку на 0.25 оборота при КТ. Показано, что такая дополнительная термомеханическая обработка УМЗ-А1 позволяет существенно повысить пластичность материала при сохранении высоких значений предела текучести и предела прочности за счет введения в структуру дополнительных дислокаций.

Список литературы

- [1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov. Prog. Mater. Sci. **45**, 103 (2000).
- [2] H. Miyamoto, K. Ota, T. Mimaki. Scripta Mater. 54, 1721 (2006).
- [3] E.A. El-Danaf, M.S. Soliman, A.A. Almajid, M.M. El-Rayes. Mater. Sci. Eng. A **458**, 226 (2007).
- [4] B. Talebanpour, R. Ebrahimi, K. Janghorban. Mater. Sci. Eng. A 527, 141 (2009).
- [5] A.P. Zhilyaev, T.G. Langdon. Prog. Mater. Sci. 53, 893 (2008).
- [6] I. Sabirov, M.Yu. Murashkin, R.Z. Valiev. Mater. Sci. Eng. A 560, 1 (2013).
- [7] R.Z. Valiev, M.Yu. Murashkin, I. Sabirov. Scripta Mater. 76, 13 (2014).
- [8] R. Reihanian, R. Ebrahimi, N. Tsuji, M.M. Moshksar. Mater. Sci. Eng. A 473, 189 (2008).
- [9] А.М. Мавлютов, И.А. Касаткин, М.Ю. Мурашкин, Р.З. Валиев, Т.С. Орлова. ФТТ 57, 1998 (2015).
- [10] M. Montazeri-Pour, M.H. Parsa, H.R. Jafarian, S. Taieban. Mater. Sci. Eng. A 639, 705 (2015).
- [11] X. Huang, N. Hansen, N. Tsuji. Science **312**, 249 (2006).
- [12] N. Kamikawa, X. Huang, N. Tsuji, N. Hansen. Acta Mater. 57, 4198 (2009).
- [13] Б.Н. Семенов, И.В. Смирнов, Ю.В. Судьенков, Н.В. Татаринова. ФММ 24, 319 (2015).
- [14] A.M. Mavlyutov, A.S. Bondarenko, M.Yu. Murashkin, E.V. Boltynjuk, R.Z. Valiev, T.S. Orlova. J. Alloys Compd. 698, 539 (2017).
- [15] M.A. Abdulstaar, E.A. El-Danaf, N.S. Waluyo, L. Wagner. Mater. Sci. Eng. A 565, 351 (2013).
- [16] Y. Cao, L. He, Y. Zhou, P. Wang, J. Cui. Mater. Sci. Eng. A 674, 193 (2016).
- [17] T.S. Orlova, A.M. Mavlyutov, A.S. Bondarenko, I.A. Kasatkin, M.Yu. Murashkin, R.Z. Valiev. Phil. Mag. 96, 2429 (2016).
- [18] G.K. Williamson, R.E. Smallman. Phil. Mag. 1, 34 (1956).
- [19] E.O. Hall. Proc. Phys. Soc. B 64, 747 (1951).
- [20] N.J. Petch. J. Iron. Steel Inst. 174, 25 (1953).
- [21] Т.А. Гордеева, И.П. Жегина. Анализ изломов при оценке надежности материалов. Машиностроение, М. (1978). 200 с.