10,11,05

Критические свойства антиферромагнитной слоистой модели Изинга на кубической решетке с конкурирующими взаимодействиями

© А.К. Муртазаев^{1,2}, М.К. Рамазанов^{1,¶}

¹ Институт физики им. Х.И. Амирханова ДагНЦ РАН, Махачкала, Россия ² Дагестанский государственный университет, Махачкала, Россия [¶] E-mail: sheikh77@mail.ru

(Поступила в Редакцию 21 февраля 2017 г.)

На основе репличного алгоритма методом Монте-Карло выполнены исследования критических свойств антиферромагнитной слоистой модели Изинга на кубической решетке с учетом взаимодействий ближайших и следующих за ближайшими соседей. Исследования проведены для соотношений величин обменных взаимодействий следующих и ближайших соседей $r = J_2/J_1$ в диапазоне значений $0 \le r \le 1.0$. В рамках теории конечно-размерного скейлинга рассчитаны статические критические индексы теплоемкости α , параметра порядка β , восприимчивости γ , радиуса корреляции ν , а также индекс Фишера η . Показано, что класс универсальности критического поведения этой модели сохраняется в диапазоне значений $0 \le r \le 0.4$. Установлено, что изменение величины взаимодействия следующих ближайших соседей в данной модели в диапазоне r > 0.8 приводит к тому же классу универсальности критического поведения, что и трехмерная полностью фрустрированная модель Изинга на кубической решетке.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-02-00214-а.

DOI: 10.21883/FTT.2017.09.44854.048

1. Введение

Проблема исследования фазовых переходов (ФП) и критических свойств в спиновых системах с конкурирующим обменным взаимодействием является одной из центральных в современной физике конденсированного состояния [1–3]. Конкуренция обменного взаимодействия может привести к фрустрации.

Известно, что фрустрированные системы (Φ C) во многом проявляют свойства, отличные от соответствующих нефрустрированных систем. Это отличие выражается в богатом разнообразии фаз и Φ П, что обусловлено сильным вырождением и высокой чувствительностью Φ C к различного рода возмущающим взаимодействиям. Кроме того, можно отметить проблемы связанные с определением характера Φ П, с особенностями и факторами влияющими на формирование классов универсальности магнитного и кирального критического поведения фрустрированных систем и др. [4,5].

Одним из наиболее интенсивно исследуемых в последние годы фрустрированных моделей является двумерная модель Изинга на квадратной решетке с учетом взаимодействий следующих ближайших соседей [5–13]. Эта модель изучена достаточно хорошо и почти все ее свойства известны. ФП и критические свойства этой модели для трехмерного случая практически не исследованы. При учете антиферромагнитных взаимодействий следующих ближайших соседей в классической трехмерной модели Изинга сопровождается вырождением основного состояния и появлением различных фаз и ФП. Кроме того, учет взаимодействия следующих ближайших соседей может также влиять на критическое поведение модели [4].

В работах [14,15] нами были проведены исследования ФП и критических свойств антиферромагнитной слоистой модели Изинга на кубической решетке с учетом взаимодействий следующих ближайших соседей внутри слоев решетки. Эта модель является частным случаем модели исследуемой в работах [16,17], когда взаимодействие следующих ближайших соседей между слоями равно нулю. В работе [14] был рассмотрен случай, когда *r* = 1.0 (*J*₁ и *J*₂ — константы обменного взаимодействия ближайших и следующих за ближайшими соседей соответственно), где $r = J_2/J_1$ — величина взаимодействия следующих за ближайшими соседей. Было показано, что для случая r = 1.0 в исследуемой модели переход из суперантиферромагнитной фазы в парамагнитную реализуется как ФП второго рода. Рассчитаны все основные статические критические индексы для случая r = 1.0. Было показано, что эта модель принадлежит к тому же классу универсальности критического поведения, что и трехмерная полностью фрустрированная модель Изинга. В работе [15] было показано, что в диапазоне $0 \le r \le 0.5$, а также для значения r = 0.9 наблюдается $\Phi\Pi$ второго рода, а в диапазоне $0.6 \le r \le 0.8$ наблюдается ФП первого рода.

В настоящей работе нами предпринята попытка на основе репличного алгоритма метода Монте-Карло (МК) изучить критическое поведение и вычислить полный набор статических критических индексов антиферромагнитной слоистой модели Изинга на кубической решетке с учетом взаимодействий ближайших и следующих за ближайшими соседей внутри слоев решетки в диапазоне $0 \le r \le 0.5$, а также для значений r = 0.9 и r = 1.0, где наблюдается $\Phi\Pi$ второго рода [14,15].

Интерес к этой модели обусловлен тем, что многие физические свойства ΦC сильно зависят от величины взаимодействия следующих ближайших соседей. Кроме того, антиферромагнитная слоистая модель Изинга на кубической решетке с учетом взаимодействия следующих ближайших соседей до сих пор является малоизученной. Таким образом, исследование этой модели на основе современных методов позволит получить ответ на ряд вопросов, связанных с критическими свойствами фрустрированных спиновых систем.

2. Модель и метод исследования

Антиферромагнитная модель Изинга на кубической решетке с учетом взаимодействий следующих ближайших соседей описывается следующим гамильтонианом [14,15]:

$$H = J_1 \sum_{\langle i,j \rangle} (S_i \cdot S_j) + J_2 \sum_{\langle i,j \rangle} (S_i \cdot S_l), \tag{1}$$

где $S = \pm 1$ — изинговский спин. Решетка состоит из двумерных квадратных слоев, сложенных по ортогональной оси. Первый член в формуле (1) учитывает обменное взаимодействие ближайших соседей, которое берется одинаковым как внутри слоев решетки, так и между слоями ($J_1 > 0$), второй — следующих за ближайшими соседей, находящихся в том же слое решетки ($J_2 > 0$).

Модель Изинга на кубической решетке при учете антиферромагнитных взаимодействий следующих ближайших соседей внутри слоев решетки становится фрустрированной. Фрустрации в этой модели обусловлены конкуренцией обменных взаимодействий между ближайшими и следующими за ближайшими соседями.

Исследование критических свойств фрустрированных спиновых систем традиционными теоретическими, экспериментальными и численными методами сталкиваются с рядом труднопреодолимых проблем. Это связано с тем, что для таких систем характерна проблема многочисленных долин локальных минимумов энергии. Строго и последовательно на основе микроскопических гамильтонианов такие системы могут быть изучены методами МК [18–24]. Наиболее мощными и эффективными в исследовании ФП и критических явлений в ФС оказались репличные алгоритмы метода МК [25,26]. Поэтому в данном исследовании был использован высокоэффективный репличный обменный алгоритм метода МК. Более подробно этот алгоритм описан нами в работе [9].

Расчеты проводились для систем с периодическими граничными условиями и линейными размерами $L \times L \times L = N$, где L = 24-48 и измеряется в размерах элементарной ячейки. Соотношение обменного взаимодействия следующих и ближайших соседей менялось в интервале $0 \le r \le 1.0$. Для вывода системы в состояние термодинамического равновесия отсекался участок длиной $\tau_0 = 4 \cdot 10^5$ шагов МК на спин, что в несколько раз больше длины неравновесного участка. Усреднение термодинамических параметров проводилось вдоль марковской цепи длиной до $\tau = 500\tau_0$ шагов МК на спин.

3. Результаты моделирования

Для наблюдения за температурным ходом теплоемкости C и восприимчивости χ использовались выражения [27]:

$$C = (NK^2) \left(\left\langle U^2 \right\rangle - \left\langle U \right\rangle^2 \right), \tag{2}$$

$$\chi = \begin{cases} (NK) \left(\langle m^2 \rangle - \langle |m| \rangle^2 \right), & T < T_N \\ (NK) \langle m^2 \rangle, & T \ge T_N \end{cases},$$
(3)

где $K = |J_1|/k_BT$, N — число частиц, T_N — критическая температура, U — внутренняя энергия, m — параметр порядка (U и m являются нормированными величинами).

Параметр порядка системы *m* вычислялся с помощью следующих выражений:

$$m_{\lambda} = rac{4}{N} \sum_{i \in \lambda} (-1)^z S_i,$$
 где $\lambda = 1, 2, 3, 4,$ (4)

$$m^a = [m_1 + m_2 - (m_3 - m_4)]/4,$$
 (5)

$$m^b = [m_1 + m_4 - (m_2 + m_3)]/4,$$
 (6)

$$m = \sqrt{(m^a)^2 + (m^b)^2},$$
 (7)

где *m*₁, *m*₂, *m*₃, *m*₄ — параметры порядка по подрешеткам, *z* — номер слоя решетки.

На рис. 1, 2, 3 и 4 представлены температурные зависимости теплоемкости и восприимчивости, полученные при L = 30 для различных значений r (здесь и далее статистическая погрешность не превышает размеров символ, использованных для построения зависимостей). Отметим, что увеличение значения r в интервале $0 \le r \le 0.5$ сопровождается сдвигом максимумов в сторону более низких температур, одновременно с этим наблюдается рост абсолютных значений максимумов как теплоемкости, так и восприимчивости. Рост абсолютных значений максимумов происходит за счет конкуренции ближайших и следующих ближайших соседей. В случае, когда $0.6 \le r \le 1.0$, наблюдаем противоположную картину. С увеличением r от 0.6 до 1.0 температура фазового перехода смещается в сторону более высоких температур, при этом наблюдается спад абсолютных значений максимумов теплоемкости и восприимчивости. Увеличение взаимодействия следующих ближайших соседей в этом интервале, приводит к увеличению энергии взаимодействия по модулю, что укрепляет жесткость системы и соответственно повышается температура фазового перехода.

Рис. 1. Зависимость теплоемкости $C/k_{\rm B}$ от температуры $k_{\rm B}T/|J_1|$ для различных r.

Рис. 2. Зависимость теплоемкости $C/k_{\rm B}$ от температуры $k_{\rm B}T/|J_1|$ для различных r.

Рис. 3. Зависимость восприимчивости χ от температуры $k_{\rm B}T/|J_1|$ для различных r.

Рис. 4. Зависимость восприимчивости χ от температуры $k_{\rm B}T/|J_1|$ для различных r.

Рис. 5. Зависимости кумулянта Биндера U_L от температуры $k_B T/|J_1|$ для r = 0.1 при различных L.

Рис. 6. Зависимости кумулянта Биндера U_L от температуры $k_B T/|J_1|$ для r = 0.9 при различных L.

r	$k_{\rm B}T_N/ J_1 $	ν	α	β	γ	η	$lpha+2eta+\gamma=2$
Нефрустрированная модель Изинга	4.5111(3)	0.6305(25)	0.108(9)	0.3265(25)	1.239(4)	0.037(3)	2
0.0	4.5110(2)	0.630(5)	0.110(5)	0.320(5)	1.241(5)	0.03(1)	1.991
0.1	4.1020(2)	0.625(5)	0.115(5)	0.317(5)	1.238(5)	0.02(1)	1.986
0.2	3.4440(2)	0.633(5)	0.119(5)	0.328(5)	1.237(5)	0.04(1)	2.012
0.3	3.2050(2)	0.624(5)	0.118(5)	0.319(5)	1.243(5)	0.02(1)	1.999
0.4	2.6820(2)	0.632(5)	0.110(5)	0.322(5)	1.245(5)	0.02(1)	1.999
0.9	3.8250(2)	0.550(5)	0.339(5)	0.249(5)	1.188(5)	-0.14(1)	2.025
1.0	4.1730(2)	0.549(5)	0.330(5)	0.245(5)	1.190(5)	-0.16(5)	2
1.0 [34]	1.355(2)	0.55(2)	0.33(5)	—	_	-0.28(6)	—
1.0 [35]	1.347(1)	0.56(2)	0.32(2)	0.25(2)	_	-0.10(2)	—

Значения критических параметров для антиферромагнитной слоистой модели Изинга на кубической решетке

Для определения критической температуры T_N , нами использовался метод кумулянтов Биндера U_L четвертого порядка [28]

$$U_L = 1 - \frac{\langle m^4 \rangle_L}{3 \langle m^2 \rangle_L^2}.$$
(8)

Согласно теории конечно-размерного скейлинга точка пересечения всех кривых $U_L(T)$ является критической точкой [28]. Выражение (8) позволяет определить критическую температуру T_N с большой точностью.

На рис. 5 и 6 представлены характерные зависимости U_L от температуры при r = 0.1 и r = 0.9 для разных значений L. Эти рисунки демонстрируют точность определения критической температуры. Видно, что в критической области наблюдаются четко выраженные точки пересечения ($T_N = 4.1020(2)$ для r = 0.1 и $T_N = 3.8250(2)$ для r = 0.9; здесь и далее температура дана в единицах $|J_1|/k_B$). Аналогичным образом были определены критические температуры и для остальных значений r, для которых согласно фазовой диаграмме полученной в работе [15], наблюдается ФП второго рода.

Для расчета статических критических индексов теплоемкости α , параметра порядка β , восприимчивости γ и радиуса корреляции ν применялись соотношения теории конечно-размерного скейлинга. Из теории конечноразмерного скейлинга следует, что в системе с размерами $L \times L \times L$ при $k_{\rm B}T/|J_1| = k_{\rm B}T_N/|J_1|$ и достаточно больших L выполняются следующие условия [29–31]:

$$m \sim L^{-\beta/\nu},$$
 (9)

$$\chi \sim L^{\gamma/\nu},\tag{10}$$

$$V_i \sim L^{1/\nu} g_{V_i},\tag{11}$$

где g_{V_i} — постоянная, а в качестве V_i могут выступать

$$V_i = \frac{\langle m^i E \rangle}{\langle m^i \rangle} - \langle E \rangle, \qquad (i = 1, 2, 3).$$
(12)

Эти выражения были нами использованы для определения β , γ и ν . Для аппроксимации температурной зависимости теплоемкости от L на практике, как правило, используется выражение [6]

$$C_{\max}(L) = A_1 - A_2 L^{\alpha/\nu},$$
 (13)

где A₁ и A₂ — некоторые коэффициенты.

На рис. 7 и 8 в двойном логарифмическом масштабе представлены характерные зависимости параметров V_i при i = 1, 2, 3 от линейных размеров решетки L для r = 0.1 и r = 0.9. Как видно из рисунков все точки на графиках в пределах погрешности хорошо ложатся на прямую. Зависимости на рисунках, проведенные в соответствии с методом наименыших квадратов, параллельны друг другу. Угол наклона прямой определяет значения 1/v. Вычисленное таким образом значение v использовалось для определения критических индексов теплоемкости α , параметра порядка β и восприимчивости γ .

На рис. 9, 10, 11 и 12 в двойном логарифмическом масштабе представлены характерные зависимости магнитного параметра порядка *m* и восприимчивости χ от линейных размеров решетки *L* для r = 0.1 и r = 0.9. Все точки в пределах погрешности ложатся на прямые. Углы наклона этих прямых определяют значения β/ν и γ/ν . По этой схеме были определены значения и для теплоемкости α/ν . На основе данных по ν вычислялись статические критические индексы α , β и γ .

Эта процедура использовалась для расчета критических индексов при значениях r = 1.0; 0.9; 0.4; 0.3; 0.2, 0.1 и 0.0. Все значения статических критических индексов, полученные таким образом, представлены в таблице.

Особо следует отметить процедуру, использованную нами для определения индекса Фишера η . Используя отношение между восприимчивостью χ и радиусом корреляции ξ [32]

$$\boldsymbol{\chi} \propto \boldsymbol{\xi}^{\boldsymbol{\gamma}/\boldsymbol{\nu}},\tag{14}$$

а также соотношение $\eta = 2 - \gamma/\nu$, связывающее индексы η и ν , мы получим

$$\ln\left(\chi/\xi^2\right) = c - \eta \ln\xi,\tag{15}$$

Рис. 7. Зависимость параметра V_i от линейных размеров системы L при $T = T_N$ для r = 0.1.

Рис. 8. Зависимость параметра V_i от линейных размеров системы L при $T = T_N$ для r = 0.9.

Рис. 9. Зависимость параметра порядка m от линейных размеров системы L при $T = T_N$ для r = 0.1.

Рис. 10. Зависимость параметра порядка m от линейных размеров системы L при $T = T_N$ для r = 0.9.

Рис. 11. Зависимость восприимчивости χ от линейных размеров системы *L* при $T = T_N$ для r = 0.1.

Рис. 12. Зависимость восприимчивости χ от линейных размеров системы *L* при $T = T_N$ для r = 0.9.

где c — некоторая константа. Для систем с конечными размерами $\xi = L$. Тогда при $k_{\rm B}T/|J_1| = k_{\rm B}T_N/|J_1|$ имеем

$$\ln\left(\chi/L^2\right) = c - \eta \ln L. \tag{16}$$

На основе выражения (16) было определено значение индекса Фишера η . Эти данные также представлены в таблице.

В настоящей статье, мы рассчитали критические параметры в интервале $0 \le r \le 0.4$ и для r = 0.9 и r = 1.0, где согласно результатам работы [15] исследуемая модель демонстрирует ФП второго рода. Для r = 0.5рассчитать критические параметры с допустимой погрешностью не удалось. Предполагаем, что это связано с тем, что в этой точке сосуществуют три различные фазы.

Сравнение численных значений критических индексов, полученные нами в данной работе с литературными данными показывает хорошее соответствие, причем многие критические параметры для данной модели для различных значений *r* рассчитаны нами впервые.

Как видно в таблице, критическая температура $k_{\rm B}T_N/|J_1|$ уменьшается с увеличением величины взаимодействия следующих соседей вплоть до значения r = 0.4. При дальнейшем увеличении r критическая температура начинает расти. Все значения критических индексов, рассчитанные нами в интервале $0 \le r \le 0.4$, в пределах погрешности совпадают со значениями критических индексов трехмерной нефрустрированной модели Изинга [33]. Это свидетельствует о принадлежности данной модели в интервале 0 < r < 0.4 к тому же классу универсальности критического поведения, что и нефрустрированная модель Изинга. Значения критических индексов, рассчитанные нами для r = 0.9 и r = 1.0, хорошо согласуются с теми, что получены в работах [34,35] для полностью фрустрированной трехмерной модели Изинга на кубической решетке, но они сильно отличаются от данных, полученных нами для этой модели в интервале $0 \le r \le 0.4$. Можно предположить, что учет взаимодействий следующих ближайших соседей внутри слоев решетки для антиферромагнитной слоистой модели Изинга на кубической решетке приводит к тому же классу универсальности критического поведения, что и трехмерная полностью фрустрированная модель Изинга на кубической решетке.

4. Заключение

Исследование критического поведения антиферромагнитной слоистой модели Изинга на кубической решетке с учетом взаимодействия следующих ближайших соседей внутри слоев решетки выполнено с использованием высокоэффективного репличного алгоритма метода Монте-Карло. Определены значения критических температур и рассчитаны значения всех основных статических критических индексов в интервале $0 \le r \le 0.4$ и для r = 0.9 и r = 1.0. Установлены закономерности изменения критических параметров в рассмотренном интервале r. Обнаружено, что в интервале $0 \le r \le 0.4$ система проявляет универсальное критическое поведение. Показано, что в антиферромагнитной слоистой модели Изинга на кубической решетке с учетом взаимодействий следующих ближайших соседей внутри слоев решетки для значений r = 0.9 и r = 1.0 наблюдается другое критическое поведение.

Список литературы

- [1] В.С. Доценко. УФН 165, 481 (1995).
- [2] С.Е. Коршунов. УФН 176, 233 (2006).
- [3] A. Malakis, P. Kalozoumis, N. Tyraskis. Eur. Phys. J. B 50, 63 (2006).
- [4] D.P. Landau, K. Binder. Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2000).
 P. 384.
- [5] F.A. Kassan-Ogly, B.N. Filippov, A.K. Murtazaev, M.K. Ramazanov, M.K. Badiev. J. Mag. Mag. Mater. 324, 3418 (2012).
- [6] А.К. Муртазаев, М.К. Рамазанов, М.К. Бадиев. ФНТ 37, 1258 (2011).
- [7] K. Binder, D.P. Landau. Phys. Rev. B 21, 1941 (1980).
- [8] F.A. Kassan-Ogly, A.K. Murtazaev, A.K. Zhuravlev, M.K. Ramazanov, A.I. Proshkin. J. Mag. Mag. Mater. 384, 247 (2015).
- [9] А.К. Муртазаев, М.К. Рамазанов, Ф.А. Касан-Оглы, М.К. Бадиев. ЖЭТФ 144, 1239 (2013).
- [10] A. Kalz, A. Honecker. Phys. Rev. B 86, 134410 (2012).
- [11] S. Jin, A. Sen, A.W. Sandvik. Phys. Rev. Lett. 108, 045702 (2012).
- [12] S. Jin, A. Sen, W. Guo, A.W. Sandvik. Phys. Rev. B 87, 144406 (2013).
- [13] Р. Бэкстер. Точно решаемые модели в статистической механике. Мир, М. (1985). 488 с.
- [14] М.К. Рамазанов, А.К. Муртазаев. Письма в ЖЭТФ 101, 793 (2015).
- [15] М.К. Рамазанов, А.К. Муртазаев. Письма в ЖЭТФ 103, 522 (2016).
- [16] A.R. dos Anjos, J.R. Viana, J.R. de Sousa, J.A. Plascak. Phys. Rev. E 76, 022103 (2007).
- [17] D.R.O. Salmon, N. Crokidakis, A.M. Neto, T.I. Padilha, J.R. Viana, J.R. de Sousa. Int. J. Mod. Phys. B 27, 1350162 (2013).
- [18] А.К. Муртазаев, М.К. Рамазанов, М.К. Бадиев. ФТТ 52, 1557 (2010).
- [19] А.К. Муртазаев, М.К. Рамазанов. ФТТ 53, 1004 (2011).
- [20] А.К. Муртазаев, М.К. Рамазанов, М.К. Бадиев. ЖЭТФ 142, 338 (2012).
- [21] A.K. Murtazaev, M.K. Ramazanov, M.K. Badiev. Physica B 476, 1 (2015).
- [22] M.K. Ramazanov, A.K. Murtazaev, M.A. Magomedov. Solid State Commun. 233, 35 (2016).
- [23] М.К. Бадиев, А.К. Муртазаев, М.К. Рамазанов. ЖЭТФ 150, 722 (2016).
- [24] А.К. Муртазаев, М.К. Рамазанов, Д.Р. Курбанова, М.К. Бадиев, Я.К. Абуев. ФТТ 59, 1082 (2017).

- [25] A. Mitsutake, Y. Sugita, Y. Okamoto. Biopolymers (Peptide Sci.) 60, 96 (2001).
- [26] F. Wang, D.P. Landau. Phys. Rev. Lett. 86, 2015 (2001).
- [27] K. Binder, J.-Sh. Wang. J. Stat. Phys. 55, 87 (1989).
- [28] K. Binder, D.W. Heermann. Monte Carlo Simulation in Statistical Physics. Springer-Verlag, Berlin (1988); Nauka, M. (1995). P. 214.
- [29] A.E. Ferdinand, M.E. Fisher. Phys. Rev. 185, 832 (1969).
- [30] M.E. Fisher, M.N. Barber. Phys. Rev. Lett. 28, 1516 (1972).
- [31] P. Peczak, A.M. Ferrenberg, D.P. Landau. Phys. Rev. B 43, 6087 (1991).
- [32] Ch. Holm, W. Janke. Phys. Rev. B 48, 936 (1993).
- [33] J.C. Le Guillou, J. Zinn-Justin. Phys. Rev. B 21, 3976 (1980).
- [34] H.T. Diep, P. Lallemand, O. Nagai. J. Phys. C 18 1067 (1985).
- [35] L.W. Bernardi, K. Hukushima, H. Takayama. J. Phys. A 32, 1787 (1999).