Лигандное сверхтонкое взаимодействие в тетрагональных центрах Gd^{3+} в CaF_2 и SrF_2 и структура ближайшего окружения примеси

© А.Д. Горлов

Научно-исследовательский институт физики и прикладной математики Уральского государственного университета, 620083 Екатеринбург, Россия

E-mail: Anatoliy.Gorlov@usu.ru

(Поступила в Редакцию 12 февраля 2002 г. В окончательной редакции 18 мая 2002 г.)

Из экспериментальных спектров ДЭЯР тетрагональных примесных центров Gd^{3+} в кристаллах CaF_2 и SrF₂ определены константы суперсверхтонкого взаимодействия (ССТВ) примеси с ядерными спинами ¹⁹F первой координационной сферы окружения и ионом-компенсатором. В модели для изотропных констант ССТВ, предложенной в [1], оценены расстояния в комплексе $Cd^{3+}F_9^-$. Анализ результатов по ССТВ и констант спинового гамильтониана [2] в суперпозиционной модели указывает на существенные изменения вкладов из-за смешивания состояний иона Gd^{3+} в эти параметры для тетрагональных центров по сравнению с кубическими и тригональными в тех же кристаллах.

Работа выполнена при частичной поддержке Американского фонда гражданских исследований и развития для независимых государств бывшего Советского Союза (грант N REC-005).

Тетрагональные примесные центры (ПЦ) Gd³⁺ в кристаллах CaF₂ и SrF₂ характеризуются тем, что ион фтора (F⁻), расположенный в ближайшем междоузлии кристалла по оси C_4 , является компенсатором (F^k) избыточного положительного заряда примеси. Кулоновское взаимодействие ПЦ и F^k приводит к смещению как Gd^{3+} из центра куба из $8F^-$, так и F^k , причем они сдвигаются навстречу друг другу [3]. Сравнение координат ядер ¹⁹F, находящихся во 2-4 сферах окружения (здесь и далее подразумевается анионное окружение), с положениями лигандов в неискаженной решетке и кубических центрах Gd³⁺ в тех же кристаллах [4] показывает, что наибольшие их смещения происходят в области, близкой к компенсатору. Рассмотрим сдвиги ближайших лигандов и компенсатора, опираясь на результаты ДЭЯР исследований суперсверхтонкого взаимодействия (ССТВ) Gd³⁺ (электронный спин S = 7/2) с ядрами ¹⁹ F (ядерный спин I = 1/2), излучения параметров начального расщепления, квадрупольного и собственного сверхтонкого взаимодействия (СТВ) [2] Gd¹⁵⁷ в CaF₂ и SrF₂.

Результаты ДЭЯР исследований и их обсуждение

В кристаллах, выращенных методом Стокбаргера, с примесью GdF₃ (0.015% по весу в шихте) наблюдались тетрагональные и кубические спектры ЭПР Gd³⁺ в CaF₂, а в SrF₂ — еще и тригональный с соотношением интенсивностей 3:1 и 5:1:4 соответственно. ЭПР тетрагональных центров в диапазоне 3 ст при температуре T = 4.2 К описывался стандартным спиновым гамильтонианом (СГ) с параметрами, приведенными в работе [2], в лабораторной системе координат, где главная ось симметрии центра $C_4 \parallel Z \parallel [001]$, а оси $X \parallel [100]$, $Y \parallel [010]$.

Исследовались спектры ДЭЯР в ориентациях внешнего магнитного поля **H** вдоль осей симметрии кристалла (C_4, C_3, C_2) и угловые зависимости в плоскости {001}. Смещение ПЦ вдоль оси C_4 , обусловленное F^k , приводит к тому, что восемь ближайших к Gd^{3+} ядер фтора с локальной симметрией C_s разбиваются на две группы. В ориентациях **H** || C_2 , C_4 и **H** \perp C_4 сигналы ДЭЯР, связанные с каждой из этих групп ¹⁹F, представляющих правильные четырехугольники над (ядра типа 111, близкие к компенсатору) и под (типа $\overline{1}\overline{1}\overline{1}$) плоскостью {001}, имели тонкую структуру, обусловленную косвенным ядер-ядерным взаимодействием через примесный ион [5,6], центр которой совпадает с положениями сигналов при отсутствии такого взаимодействия.

Процедура определения констант ССТВ та же, что и в [1], а часть гамильтониана H_n , хорошо описывающая электронно-ядерное взаимодействие $Gd^{3+}-^{19}F$, имеет вид

$$\begin{aligned} H_n &= (A_s + 2A_p) \cdot O_1^0(S) O_1^0(I) + (A_s - A_p - A_E) \\ &\times O_1^1(S) O_1^1(I) + (A_s - A_p + A_E) \cdot \Omega_1^1(S) \Omega_1^1(I) \\ &+ (A_1 + 4A_2) \cdot O_3^0(S) O_1^0(I) + (A_1 - 3A_2) \\ &\times \left(O_3^1(S) O_1^1(I) + \Omega_3^1(S) \Omega_1^1(I)\right) + (A_3 + A_4) \\ &\times \left(O_3^1(S) O_1^1(I) - \Omega_3^1(S) \Omega_1^1(I)\right) - g_n \beta_n \cdot (H \cdot I). \end{aligned}$$

Все обозначения в (1) общеизвестны [5,6]. Отметим, что в H_n мы оставили лишь те члены, вклад которых в частоты ДЭЯР превышает экспериментальные ошибки, поэтому (1) на самом деле соответствует более высокой

7	7	
/	1	

Кристалл	CaF ₂			SrF_2		
Тип ядра	111	111	F^k	111	111	\mathbf{F}^k
Локальная симметрия лигандов	C_s	C_s	C_{4v}	C_s	C_s	C_{4v}
A_s , MHz	-1.994(3)	-1.315(3)	-0.842(3)	-2.236(4)	-1.179(4)	-0.522(3)
A_p , MHz	4.984(3)	4.576(3)	4.391(3)	4.841(2)	4.279(3)	3.919(3)
A_E , kHz	-42(4)	-50(3)	—	-55(6)	-31(4)	—
$A_1 \cdot 10$, kHz	-4(3)	0.9(19)	-9(2)	-4(3)	-0.7(32)	-4(2)
$A_2 \cdot 10$, kHz	-0.8(4)	0.2(35)	0(1)	-1.6(6)	-0.8(6)	0(1)
$A_3 \cdot 10$, kHz	1.8(4)	0(7)	_	1(4)	0.6(6)	—
$A_4 \cdot 10$, kHz	5(2)	0(7)	_	0(2)	6(3)	—
θ , deg	63.7(1)	129.1(1)	0	63.8(1)	129.4(1)	0
A_s , MHz, pacчет	-1.99	-1.27	-0.80	-2.22	-1.22	-0.47
R, Å, расчет	2.30	2.40	2.32	2.33	2.42	2.35
D_i (eÅ), расчет	0.14	0.08	0.2	0.125	0.085	0.21
$D \cdot \cos \theta$ (eÅ), расчет	0.035	-0.05	0.08	0.033	-0.048	0.075

Экспериментальные константы ССТВ и угловые координаты ближайших лигандов в тетрагональных центрах Gd^{3+} в CaF₂ и SrF₂; модельные значения изотропных констант, расстояний и индуцированных дипольных моментов

Примечание. α — поляризуемость ионов F⁻ взята из [7]; для ПЦ $\alpha = 1$.

локальной симметрии ядер C_{2v} . СГ для F^k с локальной симметрией C_{4v} получается из (1) при $A_E = 0$ и $A_2 = A_4 = 0$. Константы ССТВ заданы в локальной системе координат выделенного ядра (ось *z* параллельна оси связи $\mathrm{Gd}^{3+}-{}^{19}\mathrm{F}$, ось *x* лежит в плоскости, содержащей ось связи и C_3). Угловые координаты лигандов, т.е. углы θ и φ (это углы между осью связи $\mathrm{Gd}^{3+}-{}^{19}F$ и осью *Z*, проекцией оси связи на плоскость *XY* и осью *X*), определялись как и в [1]. В тетрагональных центрах сохраняется ось C_4 , поэтому для ближайших лигандов $\varphi = 45^{\circ}$.

В таблице представлены полученные из экспериментов константы ССТВ и угловые координаты ближайших анионов и F^k (ПЦ расположен в начале координат). Видно, что ядра типа 111 $(\bar{1}\bar{1}\bar{1})$ имеют углы $\theta > 54.74^{\circ}$ (125.24°), т.е. заметно большие, чем в кубических центрах. Понятно, что это связано как с расталкиванием F^k ядер типа 111, так и смещением ПЦ к компенсатору. Результаты работы [4] показывают, что положения ¹⁹F, далеких от компенсатора (2-4 сферы окружения ПЦ), в пределах ошибок эксперимента практически совпадают с координатами тех же анионов в кубических ПЦ в этих кристаллах, если учесть сдвиг Gd³⁺. Предполагая, что смещения ближайших лигандов типа 111 также малы по сравнению с кубическими ПЦ, а увеличение θ обусловлено лишь смещением Gd^{3+} вдоль оси C_4 , мы определили расстояние $R(\bar{1}\bar{1}\bar{1}) \approx 2.40 \text{ Å}(\text{CaF}_2)$ и $R(\bar{1}\bar{1}\bar{1}) \approx 2.42 \text{ Å}(\text{SrF}_2)$. Такой же результат был ранее получен в [3] при теоретических расчетах локальной структуры тетрагональных редкоземельных примесных центров (RE^{3+}) в MeF₂. R для F^{19} во 2–4-й сферах окружения, близких

R для F^{19} во 2–4-й сферах окружения, близких к компенсатору, меньше, чем в кубических ПЦ, в этих кристаллах. Это возможно лишь при условии, что F^k

значительно смещен к Gd³⁺ из центра ближайшего междоузлия, иначе кулоновское растаскивание одноименных зарядов привело бы не только к изменению углов θ , но и увеличению R для этих ¹⁹F по сравнению с кубическими ПЦ даже при сдвиге Gd³⁺ вдоль оси C_4 . Как уже отмечено в [3], $R(111) \approx R(k)$ — расстояние от ПЦ до F^k .

2. Анализ констант изотропного ССТВ и СГ

При оценке R(111) и R(k) использована модель [1], где константа A_s определяется выражением (3), которое мы изменили следующим образом:

$$A_{s} = [A_{s}(R_{0}) + K'_{s} \cdot D \cdot \cos \theta_{i}] \cdot (1 + K_{s} \cdot D_{i}) \cdot (R_{0}/R_{i})^{3}.$$
 (2)

Параметры $A_s(R_0)$, K_s , K'_s имеют тот же смысл, что и в [1]. Аналогично определены и дипольные моменты $F^- - D_i$ и Gd³⁺ - D. Радиальной зависимостью параметра K'_s для грубых оценок мы пренебрегаем из-за малого вклада ($K'_s = -50(4)$ MHz/eÅ для тригонального центра в этом приближении). Это выражение более справедливо, поскольку точнее отражает зависимость A_s от перекрывания внешних электронов поляризованного примесного центра с электронами поляризованного лиганда [8].

Для оценки величин A_s варьировались значения R(111), R(k), D_i и D расчитывались как и в [1]. Координаты ¹⁹F второй и более далеких сфер окружения брались из [4]. Положения катионов для CaF₂ были взяты в [3], но с учетом того, что минимальное расстояние Ca²⁺-¹⁹F не меньше суммы их ионных радиусов

(для SrF₂-расстояния были увеличены пропорционально параметру решетки).

Расчеты A_s с модельными параметрами [1] показали, что нет таких разумных значений R для ближайших к ПЦ лигандов, при которых одновременно расчетные константы A_s двух групп ближайших к Gd³⁺ ядер фтора и компенсатора близки к экспериментальным. С другой стороны, если взять структуру ближайшего окружения ПЦ, близкую к рассчитанной в [3], и из экспериментальных величин А_s вычесть вклады, определяемые поляризацией F⁻, с модельным параметром K_s из [1], то полученные значения закономерно, в соответствии со знаком проекций $D_z = D \cos \theta_i$ на направления осей связи Gd³⁺-¹⁹F, расположатся относительно $A_s(R)$ для кубических центров Gd³⁺ в кристаллах со структурой флюорита. Это означает, что предложенная для тригональных центров модель применима и для тетрагональных центров, однако вклады в изотропное ССТВ, связанные с поляризацией и смешиванием электронных оболочек Gd^{3+} , отличаются от предложенных в [1].

Для определения параметра K'_s использовались три уравнения для A_s (2), взятые попарно при условии, что R(111) = R(k) = 2.305 Å для CaF₂, поскольку R(111) вряд ли меньше, чем в кубическом ПЦ. Полученные величины были различными и оказалась меньше по модулю, чем в [1]. Аналогичны были результаты для SrF₂ при тех же условиях. Лишь положив R(111) < R(k) и варьируя их, удалось описать полный набор экспериментальных констант A_s (см. таблицу), причем для обоих кристаллов с одинаковым параметром $K'_s = -32(3)$ MHz/eÅ. Однако K'_s в 1.56 раза меньше, чем для тригонального центра [1].

Такое различие, на наш взгляд, качественно объясняется более эффективным смешиванием основного $4f^7$ состояния Gd^{3+} не только с незаполненным 5d-, но и заполненным 5p-состоянием, поскольку матричные элементы от четных и нечетных компонент кристаллического поля (КП) A_n^m , связывающих такие электронные состояния [5,6,9-11], здесь больше $(A_n^m(\text{тетр.}) > A_n^m(\text{триг.})$ [3,6]). Это заметно меняет параметры перекрывания внешних электронных оболочек RE³⁺ с электронными оболочками иона F⁻ по сравнению с тригональными ПЦ. Оптические спектры в MeF₂:RE³⁺ разной локальной симметрии также свидетельствуют о увеличении силы КП при переходе от тригональных к тетрагональным центрам в указанных кристаллах [3]. Небольшие изменения радиального распределения электронной плотности внешних 5*р*-электронов (четные A_n^m связывают состояния 4*f* и 5р [5,9,10]) приводят к редукции неспаренной спиновой плотности как в области, где расположены лиганды, так и на ядре иона RE^{3+} , что может приводить к изменению как ССТВ, так и СТВ [5-8,10-13]. Действительно, исследования СТВ тетрагональных ПЦ ¹⁵⁷Gd³⁺ в CaF₂ и SrF₂ [1,2] показали, что сверхтонкие изотропные константы A(s) = (A + 2B)/3 заметно больше, чем в тригональных и кубических ПЦ. Увеличение A(s), несомненно, обусловлено изменением неспаренной спиновой плотности электронов внешних оболочек на ядре Gd³⁺, как наиболее чувствительных к КП лигандов [5,6,9–12]. Следует также заметить, что увеличение A(s) не может быть связано с изменением спиновой плотности 6*s*-электронов (если она имеется), вклад которых уменьшал бы эту константу [5,11,12]. Электронная плотность заполненных 5р-состояний за счет смешивания лишь уменьшается, что объясняет увеличение A(s) из-за понижения доли отрицательного вклада в A(s), обусловленного взаимодействием 5(s, p)-электронных оболочек, имеющего место и в свободном ионе Gd³⁺ [11,12]. Редукция неспаренной спиновой плотности 5р-электронов на лигандах приведет к положительному вкладу в A_s [11,13], т.е. к уменьшению $|K'_s|$ в нашей модели, поскольку сейчас этот параметр описывает два вклада: отрицательный определяется смешиванием состояний нечетным КП (или поляризацией Gd³⁺), положительный связан с действием четного КП на уже смешанные состояния.

Заметим также, что в работах [9,10] показано при микроскопических расчетах величин A_2^0 , что вклад от смешивания 4f - 5p противоположен по знаку вкладу от смешивания 4f - 5d электронных состояний. Аналогичный вывод можно сделать и относительно вкладов в A_s из результатов работы [14], где рассматривалось ССТВ тетрагонального ПЩ Се³⁺ в СаF₂. Все эти факты, как нам кажется, объясняют уменьшение $|K'_s|$ для тетрагональных ПЦ.

Предполагая, что полученные величины R верны, мы рассчитали в суперпозиционной модели [9,15] значения Z_2^0 (здесь $Z_2^0 = A_2^0$, b_2^0 , P_2^0 (P_2^0 — константа квадрупольного взаимодействия)) для тетрагональных ПЦ ${
m Gd}^{157}$ в ${
m CaF}_2$ и ${
m SrF}_2$ с "intrinsic" параметрами Z_p и Z_s из [2,9]. Получено, что знаки A_2^0 и P_2^0 совпадают с экспериментальными [2,16], но величины в 3-4 раза больше, для b_2^0 — знаки тоже совпадают, а величины в 3 раза меньше экспериментальных. Изменяя Z_s, можно улучшить согласие с экспериментом для A_2^0 и b_2^0 , однако для P_2^0 этого добиться нельзя. Это не противоречит суперпозиционной модели, но указывает на необходимость включения дополнительных вкладов в Z_2^0 , индуцированных смешиванием полузаполненной 4f-оболочки с другими из-за действия КП, что не учитывалось в [9]. Такой подход может привести к изменению "intrinsic" параметров и радиальных зависимостей.

С другой стороны, оказалось, что экспериментальные величины Z_2^0 коррелируют между собой. Это можно видеть, если определять их, как

$$Z_2^0 = Z_p \cdot k(p) + Z_s \cdot k(s), \tag{3}$$

где k(p) и k(s) — эффективные параметры модели [16], включающие в себя радиальную и угловую зависимости точечных кулоновских вкладов и вкладов близкодействия в комплексе $\mathrm{Gd}^{3+}\mathrm{F}_9^-$. Решив систему двух уравнений относительно k(p,s) с Z_p и Z_s из [2,9], получим близкую к экспериментальной величину третьего Z_2^0 . Так, к примеру, рассчитанное значение $A_2^0 = 390$ и 190 сm⁻¹ для CaF₂ и SrF₂ соответственно, а экспериментальные величины 339 и 204 сm⁻¹ [16].

Таким образом, основные результаты работы следующие.

1) Из экспериментальных спектров ДЭЯР определены константы ССТВ для тетрагональных ПЦ Gd^{3+} в CaF_2 и SrF_2 , причем эти спектры хорошо описываются СГ, соответствующим более высокой локальной симметрии ядер фтора, чем реально существующая в комплексе $Gd^{3+}F_9^{-}$.

2) Эмпирическая модель, описывающая изотропные константы ССТВ в тригональном ПЦ Gd^{3+} в BaF_2 , применима и к рассмотренным тетрагональным ПЦ, если изменить вклад в изотропное ССТВ, связанный со смешиванием внешних электронных состояний ПЦ, обусловленным как четными (A_n^m) , так и нечетными $(A_1^0 \sim D)$ компонентами кристаллического поля лигандов.

3) В рамках этой модели определены расстояния до ближайших ядер F^{19} и фтора-компенсатора, причем полученная структура комплекса $Gd^{3+}F_9^-$ аналогична рассчитанной в модели обменных зарядов.

4) Анализ констант A_2^0 , b_2^0 , P_2^0 в суперпозиционной модели указывает на необходимость изменения "intrinsic" параметров, что также связано с влиянием четных и нечетных компонент КП на внешние электронные оболочки Gd³⁺, проявляющимся в тетрагональных ПЦ.

Автор благодарен А.И. Рокеаху и А.С. Москвину за предоставление экспериментальных материалов и полезные обсуждения.

Список литературы

- А.Д. Горлов, В.Б. Гусева, А.П. Потапов, И.А. Рокеах. ФТТ 43, 3, 456 (2001).
- [2] А.Д. Горлов, А.П. Потапов, В.И. Левин, В.А. Уланов. ФТТ
 33, 5, 1422 (1991); А.Д. Горлов, А.П. Потапов. ФТТ 42, 1, 49 (2000).
- [3] М.П. Давыдова, Б.З. Малкин, А.Л. Столов. В сб.: Спектроскопия кристаллов. Наука, Л. (1978). С. 27; С.М. Архипов, Б.З. Малкин. ФТТ 22, 5, 1471 (1980).
- [4] А.И. Рокеах, А.А. Мехоношин, Н.В. Легких, А.М. Батин. ФТТ 37, 10, 3135 (1995).
- [5] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Т. 1. Мир, М. (1972). 651 с.
- [6] С.А. Альтшуллер, Б.М. Козырев. Электронный парамагнитный резонанс. Наука, М. (1972). 672 с.
- [7] C. Fainstein, M. Tovar, C. Ramos. Phys. Rev. B 25, 5, 3039 (1982).
- [8] J.M. Baker. J. Phys. C: Solid State Phys. 12, 19, 4093 (1979).
- [9] L.I. Levin. Phys. Stat. Sol. (b) 134, 2, 275 (1986).

- [10] М.В. Еремин. В сб.: Спектроскопия кристаллов. Наука, Л. (1989). С. 30.
- [11] Р. Ватсон, А. Фримен. В сб.: Сверхтонкие взаимодействия в твердых телах. Мир, М. (1970). 62 с.
- [12] J. Andriessen, D. van Ormondt, S.N. Ray, T.P. Das. J. Phys. B: Atom. Molec. Phys. 11, 15, 2601 (1978).
- [13] J. Casas, P. Stydzinski, J. Andriessen, J.Y. Buzare, J.C.Fayet, J.M. Spaeth. J. Phys. C: Solid State Phys. 19, 34, 6767 (1986).
- [14] О.А. Аникиенок, М.В. Еремин, О.Г. Хуцишвили. ФТТ 28, 6, 1690 (1986).
- [15] D.J. Newman, W. Uraban. Adv. Phys. 24, 2, 793 (1973).
- [16] L.I. Levin, A.D. Gorlov. J. Phys.: Condens. Matter. 4, 2, 1981 (1992).