12

Синтез кластеров оксидов железа в мезопорах монодисперсных сферических частиц кремнезема

© Е.Ю. Стовпяга¹, Д.А. Еуров¹, Д.А. Курдюков^{1,2}, А.Н. Смирнов¹, М.А. Яговкина¹, В.Ю. Григорьев³, В.В. Романов³, D.R. Yakovlev⁴, В.Г. Голубев¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
² Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия
³ Санкт-Петербург, Россия
⁴ Ехрегіmentelle Physik 2, Technische Universität Dortmund, Dortmund, Germany

E-mail: kattrof@gvg.ioffe.ru

(Поступила в Редакцию 12 декабря 2016 г.)

Предложен метод получения нанокластеров α -Fe₂O₃ в порах монодисперсных сферических частиц мезопористого кремнезема ($mSiO_2$) путем однократной пропитки пор расплавом кристаллогидрата нитрата железа и его последующей термодеструкции. Восстановлением в термодинамически равновесных условиях из α -Fe₂O₃ в порах синтезированы нанокластеры Fe₃O₄. Затем частицы, содержащие Fe₃O₄, были отожжены в кислороде для превращения Fe₃O₄ обратно в α -Fe₂O₃. В результате получены частицы со структурой ядро–оболочка $mSiO_2/Fe_3O_4$ ($mSiO_2/\alpha$ -Fe₂O₃. Исследованы состав и структура синтезированных материалов, а также полевая зависимость магнитного момента от напряженности магнитного поля.

Работа выполнена при финансовой поддержке РФФИ (проект № 15-52-12011) и DFG в рамках ICRC TRR 160.

DOI: 10.21883/FTT.2017.08.44764.439

1. Введение

Магнитные нано- и микрочастицы оксидов железа имеют широкий спектр применения в катализе, магнитной сепарации, в качестве биологических сенсоров и адсорбентов для очистки воды от тяжелых металлов [1-3]. Наночастицы магнетита (Fe₃O₄), гематита (α-Fe₂O₃) и маггемита (у-Fe₂O₃) благодаря низкой токсичности и биосовместимости интенсивно исследуются для применения в биомедицине в качестве Т₂ контрастных средств для магнитно-резонансной томографии (МРТ) [4] и магнитной гипертермии [5]. Намагниченность и магнитная анизотропия наноразмерных однодоменных частиц могут быть заметно больше, чем у массивного материала, а отличия в температурах Кюри и Нееля достигают сотен процентов. У магнитных наночастиц обнаружены высокие значения обменного взаимодействия и аномально большой магнитокалорический эффект [6,7].

Наночастицы оксидов железа размером менее 100 nm агрегативно неустойчивы, что обусловлено их магнитным взаимодействием друг с другом. Это затрудняет масштабное практическое применение частиц в медицине и катализе. Для использования частиц оксидов железа в катализе и в качестве электрохимических сенсоров было предложено размещать частицы (нанокластеры) в пористых носителях, например, заполнять подсистему цилиндрических мезопор кремнезема типа МСМ-41 водными растворами солей железа (FeCl₃, $Fe(NO_3)_3$) или вводить соли железа в процессе гидротермального синтеза MCM-41, с последующим термическим разложением для формирования оксидных нанокластеров [8–10].

Другим способом решения проблемы агрегативной неустойчивости магнитных частиц и сохранения их магнитных характеристик является покрытие их оболочками из немагнитного материала, в частности, наночастицы оксидов железа покрывают оболочкой кремнезема различной толщины [11]. Кремнезем имеет ряд преимуществ перед органическими оболочками, например, он менее подвержен биодеградации [12]. Покрытие частиц оболочкой кремнезема позволяет сохранять их индивидуальные магнитные свойства и легко контролировать взаимодействие частиц между собой в суспензиях, что обеспечивает агрегативную устойчивость водных коллоидных растворов в широком диапазоне значений рН [13]. Альтернативным подходом к получению ансамблей изолированных магнитных нанокластеров является их синтез внутри темплатов из немагнитного материала, обладающих пространственно-периодической структурой монодисперсных пор, например, в порах искусственных опалов [14].

Магнитные наночастицы также покрывают различными магнитными оболочками, что позволяет изменять физические свойства частиц [15,16]. В работе [17] показано, что в частицах, состоящих из ядра Fe_xO диаметром 3 nm, покрытого ферримагнитной оболочкой Fe_3O_4 толщиной 3.5 nm, при $x \sim 0.80$ ядро не обладает магнитными свойствами, а при $x \sim 0.95$ ядро становится антиферромагнитным. Авторы работы [15] описали методику получения частиц ядро-оболочка со структурой $Fe_3O_4@\alpha$ - Fe_2O_3 диаметром ~ 50 nm и продемонстрировали изменение свойств от ферромагнитных к суперпарамагнитным после того, как поверхность исходных частиц Fe_3O_4 была окислена до α - Fe_2O_3 . Кроме того, покрытие магнитных наночастиц магнитной оболочкой позволяет плавно регулировать теплоотвод, что увеличивает эффективность применения частиц в магнитной гипертермии [16].

В настоящей работе описан метод синтеза нанокластеров α -Fe₂O₃ и Fe₃O₄ в монодисперсных сферических мезопористых частицах кремнезема (МСМЧК), имеющих монодисперсные цилиндрические мезопоры. Предложен способ заполнения МСМЧК расплавом кристаллогидрата нитрата железа (III) под действием капиллярных сил. В едином технологическом цикле посредством термодеструкции Fe(NO₃)₃ · 9H₂O в порах МСМЧК синтезированы нанокластеры *α*-Fe₂O₃. Степень заполнения пор составила 30% vol. Методом термодинамически контролируемого восстановления из α-Fe₂O₃ внутри пор МСМЧК получены изолированные нанокластеры Fe₃O₄. На последнем этапе МСМЧК, содержащие Fe₃O₄, были отожжены в потоке кислорода, что позволило получить частицы со структурой ядро-оболочка. Поры в глубине МСМЧК были заполнены нанокластерами Fe₃O₄, а поры, находящиеся вблизи внешней поверхности частиц, содержали *α*-Fe₂O₃. Структура синтезированных нанокомпозитов исследована методом рентгеновской дифракции и рамановской спектроскопии. Изучены магнитные свойства полученных материалов.

2. Методика эксперимента

Монодисперсные сферические мезопористые частицы кремнезема синтезированы согласно ранее разработанной методике [18,19]. В статье приведены результаты для МСМЧК диаметром 200 nm. Частицы имеют сферическую форму, среднеквадратичное отклонение размеров частиц не преваышает 6%. Внутри МСМЧК имеется подсистема плотноупакованных пор диаметром 3.1 nm. Объемная доля пор составляет ~ 50% vol. от объема частиц.

Нанокластеры α -Fe₂O₃ синтезированы в мезопорах МСМЧК посредством капиллярной пропитки [20] расплавом кристаллогидрата Fe(NO₃)₃ · 9H₂O и его последующего разложения. Методика заполнения МСМЧК расплавами описана в работе [21]. К расплаву добавляли навеску частиц, затем проводили отжиг для разложения нитрата при 250°C до α -Fe₂O₃ в течение 2 h. Нанокластеры магнетита синтезировали в порах МСМЧК восстановлением гематита водородом в термодинамически равновесных условиях, аналогично методике, описанной в работе [22]. В качестве газа-носителя использовали

аргон. Парциальное давление H_2 было равно 0.2 bar. Температура отжига составляла 350°С. Затем магнетит вновь окисляли при температуре 700°С в течение 20 h для получения α -Fe₂O₃ в порах вблизи внешней поверхности частиц.

Степень заполнения пор МСМЧК гематитом определялась по значению плотности частиц, рассчитываемой из уравнения Стокса. Необходимое для расчета значение скорости седиментации диспергированных в воде частиц измерялось экспериментально.

Фазовый состав нанокомпозитов определялся рентгенодифракционным методом на установке Bruker D2 Phaser (использовалась линия CuK α). Рамановские спектры исследовались при комнатной температуре на спектрометре Horiba Jobin Yvon T64000 с использованием в качестве источника излучения второй гармоники Nd:YAG-лазера ($\lambda = 532$ nm), плотность возбуждения на поверхности образца не превышала P = 2 kW/cm².

Изучение магнитных свойств нанокомпозитов проводилось путем анализа полевых зависимостей магнитных моментов образцов, измеренных методом Фарадея при комнатной температуре с дискретной разверткой внешнего магнитного поля на установке, созданной на базе спектрометра MGD 312 FG. Калибровка установки проводилась с помощью эталонного образца, в качестве которого использовался монокристалл магнитно-чистого фосфида индия с восприимчивостью $\chi = -313 \cdot 10^{-9} \text{ cm}^3/\text{g}$. Масса образца определялась на весах BP 211 D с точностью до 10^{-5} g. Подробно методика эксперимента описана в работе [23].

3. Результаты и обсуждение

Рассмотрим подробно методику получения нанокластеров α-Fe₂O₃ и Fe₃O₄ в мезопорах. На первом этапе (рис. 1, *a*) осуществлялась пропитка МСМЧК прекурсором — расплавом кристаллогидрата нитрата железа (III) и проводился отжиг с целью разложения нитрата до *α*-Fe₂O₃. В качестве прекурсора был выбран расплав кристаллогидрата, а не раствор, поскольку в расплаве выше содержание целевых элементов — Fe и O [21]. Процесс образования нанокластеров оксидов железа в порах можно представить следующим образом (рис. 1). Первоначально поры МСМЧК заполняются расплавом Fe(NO₃)₃ · 9H₂O вследствие капиллярного эффекта. При нагревании происходит терморазложение жидкого кристаллогидрата по следующей схеме: $Fe(NO_3)_3 \cdot 9H_2O \rightarrow Fe(OH)(NO_3)_2 \rightarrow$ $Fe(OH)_2NO_3 \rightarrow FeO(OH) \rightarrow \alpha$ -Fe₂O₃ [24]. Газообразными продуктами реакций являются NO₂, O₂, H₂O.

Мольный объем материала в порах при терморазложении кристаллогидрата сильно уменьшается. Поскольку мольные объемы $Fe(NO_3)_3 \cdot 9H_2O$ и α -Fe₂O₃ при 20°C на один атом Fe равны соответственно 246.3 и 15.2 cm³/mol, максимально возможная расчетная степень заполнения МСМЧК α -Fe₂O₃ за один цикл пропитки

Рис. 1. Схема заполнения МСМЧК оксидами железа: (*a*) Капиллярная пропитка МСМЧК расплавом $Fe(NO_3)_3 \cdot 9H_2O$ и последующее разложение при температуре 250° с образованием α -Fe₂O₃ в порах МСМЧК; (*b*) Отжиг МСМЧК $-\alpha$ -Fe₂O₃ при 350°C в потоке водорода, получение частиц МСМЧК $-Fe_3O_4$; (*c*) отжиг МСМЧК $-Fe_3O_4$ при температуре 700°C в кислороде, получение частиц ядро–оболочка $mSiO_2/Fe_3O_4@mSiO_2/\alpha$ -Fe₂O₃.

составляет $\sim 6\%$ от объема пор. В то же время экспериментально определенное значение степени заполнения пор МСМЧК а-Fe₂O₃ составило 30% от объема пор. Ранее [21,25] было показано, что увеличивать степень заполнения пор (вплоть до полного) оксидами d- и f-элементов можно, изменяя время контакта частиц с расплавом кристаллогидрата. При этом происходит постоянная "подпитка" пор расплавом, который, в свою очередь, разлагается до оксида, благодаря чему объем наполнителя в порах снова уменьшается. Затем расплав вновь заполняет поры и т.д. Расплавный метод заполнения мезопор исключает присутствие массивного вещества на внешней поверхности частиц [21,25]. При полном заполнении пор оксидом происходит формирование нанонитей, диаметр которых равен диаметру пор в темплате [26,27]. В настоящей работе время контакта частиц с кристаллогидратом (2h) было достаточным для "подпитки" незаполненного объема пор расплавом, поэтому заполнение пор было больше расчетного значения. Массы навесок МСМЧК и Fe(NO₃)₃ · 9H₂O были выбраны таким образом, чтобы после отжига гематитом было заполнено не более 30% от общего объема мезопор в частицах.

Описанная технологическая схема, вероятно, приволит к формированию в порах МСМЧК изолированных кластеров *α*-Fe₂O₃ сферической или продолговатой формы. На формирование нанокластеров α-Fe₂O₃ при термодеструкции Fe(NO₃)₃ · 9H₂O влияют: 1) значительное уменьшение мольного объема наполнителя; 2) большое газовыделение. Во-первых, если цилиндрическая мезопора полностью заполнена расплавом, то при его разложении объем вещества в этой поре уменьшится приблизительно в 15 раз (см. выше) и образуются один или несколько кластеров, диаметр которых равен диаметру поры и в то же время в несколько раз меньше ее длины. Во-вторых, объем выделяющихся газообразных продуктов (при нормальных условиях) на 3-4 порядка превышает объем расплава кристаллогидрата, что также влияет на процесс разложения расплава и на распределение наполнителя в порах. Массоперенос газов в порах синтезированных частиц определяется особенностями их внутренней структуры. МСМЧК состоят из блоков плотноупакованных трубок кремнезема [18,19]. Между блоками имеются транспортные поры размером 3-7 nm [28]. Газообразные продукты будут преимущественно выходить наружу через поры наибольшего диаметра. Капиллярное (лапласово) давление расплава в цилиндрических трубках mSiO₂ диаметром 3 nm составляет примерно 1000 bar, что, вероятно, больше давления газообразных продуктов, выходящих через транспортные мезопоры. Поэтому выделяющиеся газы не могут вытолкнуть жидкость из трубок mSiO₂, и кристаллогидрат, разлагаясь, образует внутри них нанокластеры гематита. Ранее при аналогичном терморазложении нитратов и органосиланов в макропорах синтетических опалов и мезопорах МСМЧК были получены изолированные нанокластеры NiO, Co₃O₄, NiCo₂O₄ и углерода [23,29].

Наличие в порах МСМЧК гематита подтверждено методами рентгенофазового анализа (РФА) и рамановской спектроскопии. По данным РФА (рис. 2, кривая 2) для МСМЧК, содержащих Fe₂O₃, наблюдается набор дифракционных рефлексов, соответствующий орторомбическому α -Fe₂O₃ (рис. 2, кривая 1). Исследование этого материала методом рамановской спектроскопии показало наличие в спектрах раман-активных фононных мод симметрии A_{1g} и E_g , характерных для гематита (рис. 3, кривая 1) [30]. Слабая полоса на частоте ~ 826 сm⁻¹ соответствует магнонной моде M [31]. Также в спектре наблюдается интенсивная широкая полоса с максимумом на частоте ~ 1322 сm⁻¹, соответствующая фононному спектру второго порядка (SO) [32].

На втором этапе (рис. 1, *b*), МСМЧК, заполненные α -Fe₂O₃, отжигали в потоке водорода при 350°С до полного перехода α -Fe₂O₃ в Fe₃O₄. Согласно расчету равновесного состава смеси [22], превращение гематита в магнетит осуществляется при парциальном давлении водорода 0.2 bar, парциальном давлении водяного пара 10⁻⁴ bar и общем давлении 1 bar при температурах до 380°С. При этом равновесное количество твердофазных примесей составляет менее 0.01% mol. По литературным данным [33], железо со степенью

Рис. 2. Дифрактограммы: $1 - \alpha$ -Fe₂O₃ (JCPDS 84-0309), 2 — МСМЧК- α -Fe₂O₃, 3 — МСМЧК-Fe₃O₄, 4 — частицы ядро-оболочка $mSiO_2/Fe_3O_4@mSiO_2/\alpha$ -Fe₂O₃, 5 — Fe₃O₄ (JCPDS 75-0449). Звездочкой отмечены рефлексы магнетита.

Рис. 3. Рамановские спектры: $I - MCMЧK - \alpha$ -Fe₂O₃, $2 - MCMЧK - Fe_3O_4$, $3 - частицы ядро-оболочка <math>mSiO_2/Fe_3O_4@mSiO_2/\alpha$ -Fe₂O₃. Обозначены раман-активные фононные моды соответствующих оксидов. Звездочкой отмечена фононная мода A_{1g} магнетита.

окисления III не образует силикатов, а для железа со степенью окисления II есть вероятность образования при температуре свыше 1200° C силиката со структурой фаялита (Fe₂SiO₄). Поскольку процесс получения Fe₃O₄

из α -Fe₂O₃ является относительно низкотемпературным, образование силиката маловероятно. Кроме того, согласно расчету [22], повышение температуры приводит к образованию примесных фаз FeO и α -Fe, а при температурах свыше 550°C реакция полностью идет до элементарного железа. Поскольку мольные объемы α -Fe₂O₃ и Fe₃O₄ при 20°C на один атом Fe равны 15.2 и 14.9 cm³/mol соответственно существенного перераспределения наполнителя в порах не происходит, поэтому при восстановлении из кластеров α -Fe₂O₃ образуются кластеры Fe₃O₄ той же формы и размеров. Полученный композит содержит только одну кристаллическую фазу — магнетит, что подтверждается данными РФА (рис. 2, кривая 3) и рамановской спектроскопии (рис. 3, кривая 2) [30].

Ha третьем этапе синтезированные частицы МСМЧК-Fe₃O₄ были отожжены в потоке кислорода при давлении 3 bar и температуре 700° C (рис. 1, *c*). При окислении происходит накопление катионных вакансий кристаллической решетке Fe₃O₄, что приводит в образованию *α*-Fe₂O₃ [34,35]. Вероятно, процесс к превращения идет в две стадии: $Fe_3O_4 \rightarrow \gamma$ - Fe_2O_3 и затем γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ [34]. В α -Fe₂O₃ железо находится в наивысшей степени окисления (III), поэтому данная кристаллическая фаза является термодинамически стабильной в кислороде. По данным РФА (рис. 2, кривая 4), основной кристаллической фазой синтезированного композита является α -Fe₂O₃, однако слабые рефлексы Fe₃O₄ также присутствуют (отмечены звездочкой). В рамановских спектрах частиц МСМЧК-Fe₃O₄, отожженных в кислороде, в основном наблюдаются интенсивные фононные моды, характерные для гематита (рис. 3, кривая 3). В спектрах также видна особенность на частоте $670\,\mathrm{cm}^{-1}$, которая, вероятно, связана с фононной модой симметрии A_{1g} магнетита. Малая интенсивность этой моды относительно интенсивности фононных мод гематита может быть объяснена как малым количеством Fe₃O₄ внутри МСМЧК, так и меньшим эффективным сечением рамановского рассеяния для Fe_3O_4 , чем для α - Fe_2O_3 .

Несмотря на продолжительный отжиг (20 h) в кислороде при температуре 700°С процесс окисления Fe₃O₄ в порах МСМЧК прошел не полностью. Ранее [22], в порах синтетических опалов полное превращение магнетита в гематит было достигнуто уже при температуре 500°С. Мы полагаем, что внутри МСМЧК все поры в приповерхностной области частиц спустя некоторое время закрываются, и молекулы кислорода больше не могут проникать к центру частицы. Первой причиной закрытия пор может служить то, что идет перекристаллизация α-Fe₂O₃ через газовую фазу с участием паров воды [36]. Массоперенос идет в направлении от центра к внешней поверхности частиц, в результате чего размер кристаллитов *α*-Fe₂O₃ и степень заполнения пор в приповерхностной области увеличиваются. Действительно, мы наблюдаем сужение дифракционных рефлексов гематита (рис. 2, кривая 4) по сравнению с рефлексами

Рис. 4. Полевые зависимости магнитного момента синтезированных материалов при комнатной температуре: *1* — МСМЧК-Fe₃O₄, *2* — частицы ядро-оболочка *m*SiO₂/Fe₃O₄@*m*SiO₂/α-Fe₂O₃.

материала, полученного из кристаллогидрата на первом этапе (рис. 2, кривая 2). Второй причиной закупорки пор, вероятно, является то, что в процессе отжига при температуре 700°С происходит размягчение материала МСМЧК — аморфного SiO₂ [37], при этом диаметр пор уменьшается и доступ кислорода к центру частиц прекращается. В результате остаются непрореагировавшие с кислородом нанокластеры Fe₃O₄, расположенные в мезопорах в глубине МСМЧК, и образуется ядро состава $mSiO_2/Fe_3O_4$ (рис. 1, *c*). Область, ограниченная сферами, одна из которых является внешней поверхностью ядра, а вторая — внешней поверхностью МСМЧК, представляет собой оболочку $mSiO_2/\alpha$ -Fe₂O₃. Таким образом, синтезированные нанокомпозитные частицы имеют гибридную структуру $mSiO_2/Fe_3O_4$ @mSiO₂/ α -Fe₂O₃ (рис. 1, *c*).

Магнитные измерения МСМЧК, заполненных оксидами железа (рис. 4), выявляют поведение магнитного момента I образцов в процессе перемагничивания, обусловленное однодоменными состояниями нанокластеров ферримагнетика Fe₃O₄, и демонстрируют изменение характера полевой зависимости *I*(*H*) вследствие частичной трансформации Fe_3O_4 в антиферромагнетик α - Fe_2O_3 . Действительно, для каждого ферри- или ферромагнетика существует критический размер, ниже которого его частицы становятся однодоменными, и соответствующее ему значение размагничивающего поля Н_с. В настоящей работе показано, что петля гистерезиса (рис. 4, кривая 1) магнитного момента демонстрирует характерное для однодоменного состояния ферримагнетика Fe₃O₄ [38] значение коэрцитивной силы при комнатной температуре, соответствующее размеру частицы магнетита ниже критического однодоменного [39]. Уменьшение значения коэрцитивной силы Н_с и намагниченности насыщения (рис. 4, кривая 2) в частицах после частичного окисления Fe₃O₄ до *α*-Fe₂O₃ отражает уменьшение как

размеров однодоменных частиц магнетита, так и намагниченности насыщения в результате перехода части ферримагнитного магнетита в антиферромагнитный гематит.

4. Заключение

Разработан метод заполнения пор МСМЧК расплавом кристаллогидрата нитрата железа с одновременным термическим разложением кристаллогидрата, позволяющий формировать в порах нанокластеры α -Fe₂O₃. В термодинамически равновесных условиях гематит восстановлен до магнетита. Степень заполнения мезопор оксидами железа составила 30% от общего объема пор в частицах. Синтезированные частицы, содержащие магнетит, отожжены в кислороде для превращения Fe₃O₄ обратно в α -Fe₂O₃. Показано, что процесс окисления проходит не полностью, в результате образуются частицы со структурой ядро–оболочка, в которых в глубине МСМЧК мезопоры заполнены нанокластерами Fe₃O₄, а ближе к внешней поверхности частиц в мезопорах содержится α -Fe₂O₃.

Характер и параметры полученных полевых зависимостей магнитного момента частиц до и после неполного окисления Fe₃O₄ в мезопорах служат экспериментальным подтверждением как образования нанокластеров магнетита, так и их частичной трансформации в гематит в результате проведенной технологической процедуры окисления.

В перспективе, синтезированные монодисперсные сферические частицы ядро-оболочка — *m*SiO₂/ Fe₃O₄@*m*SiO₂/α-Fe₂O₃ могут найти широкое применение в качестве МРТ контрастных средств и для магнитной гипертермии.

Исследования частично выполнены с использованием оборудования ЦКП "Материаловедение и диагностика в передовых технологиях".

Список литературы

- A.G. Hu, Y.G. Tee, W.B. Lin. J. Am. Chem. Soc. 127, 12486 (2005).
- [2] L. Huo, W. Li, L. Lu, H. Cui, S. Xi, J. Wang, B. Zhao, Y. Shen, Z. Lu. Chem. Mater. 12, 790 (2000).
- [3] S. Kalantari, M. Yousefpour, Z. Taherian. Rare Met. 4, 1 (2016).
- [4] S. Xuan, F. Wang, J.M.Y. Lai, K.W.Y. Sham, Y.X.J. Wang, S.-F. Lee, J.C. Yu, C.H.K. Cheng, K.C. Leung. Appl. Mater. Int. 3, 237 (2011).
- [5] Y.V. Kolen'ko, M. Bañobre-López, C. Rodríguez-Abreu, E. Carbó-Argibay, A. Sailsman, Y. Piñeiro-Redondo, M.F. Cerqueira, D.Y. Petrovykh, K. Kovnir, O.I. Lebedev, J. Rivas. J. Phys. Chem. C **118**, 8691 (2014).
- [6] G. Srajer, L.H. Lewis, S.P. Bader, A.J. Epstein, C.S. Fadley. E.E. Fullerton, A. Hoffmann, J.B. Ortright, K.M. Krishnan, S.A. Majetich, T.S. Rahman, C.A. Ross, M.B. Salamon, I.K. Schuller, T.C. Schulthess, J.Z. Sun. J. Magn. Magn. Mater, **307**, 1 (2006).

- [7] Д.А. Баранов, С.П. Губин. Радиоэлектроника. Наносистемы. Информационные технологии 1, 129 (2009).
- [8] I. Ursachi, A. Stancu, A. Vasile. J. Colloid Interf. Sci. 377, 184 (2012).
- [9] M. Fröba, R. Köhn, G. Bouffaud. Chem. Mater 11, 2858 (1999).
- [10] S. Rostamizadeh, N. Shadjou, M. Azad, N. Jalali. Catalysis Commun. 26, 218 (2012).
- [11] H.L. Ding, Y.X. Zhang, S. Wang, J.M. Xu, S.C. Xu, G.H. Li. Chem. Mater. 24, 4572 (2012).
- [12] A. Lu, E.L. Salabas, F. Schuth. Angew. Chem. Int. Ed. 46, 1222 (2007).
- [13] M.A. Gonzalez-Fernandez, T.E. Torres, M. Andrés-Vergés, R. Costo, P. Presa, C.J. Serna, M.P. Morales, C. Marquina, M.R. Ibarra, G.F. Goya. J. Solid State Chem. **182**, 2779 (2009).
- [14] Д.А. Курдюков, Д.А. Еуров, Е.Ю. Стовпяга, С.А. Яковлев, Д.А. Кириленко, В.Г. Голубев. ФТТ 56, 995 (2014).
- [15] Y. Tian, D. Wu, X. Jia, B. Yu, S. Zhan. J. Nanomaterials 2011, 1 (2011).
- [16] J.H. Lee, J. Jang, J. Choi, S.H. Moon, S.H. Noh, J. Kim, J. Kim, I. Kim, K.I. Park, J. Cheon. Nature Nanotech. 6, 418 (2011).
- [17] M. Estrader, A. López-Ortega, I.V. Golosovsky, S. Estradé, A.G. Roca, G. Salazar-Alvarez, L. López-Conesa, D. Tobia, E. Winkler, J.D. Ardisson, W.A.A. Macedo, A. Morphis, M. Vasilakaki, K.N. Trohidou, A. Gukasov, I. Mirebeau, O.L. Makarova, R.D. Zysler, F. Peiró, M. Dolors-Baró, L. Bergström, J. Nogués. Nanoscale 7, 3002 (2015).
- [18] Е.Ю. Трофимова, Д.А. Курдюков, Ю.А. Кукушкина, М.А. Яговкина, В.Г. Голубев. Физ. хим. стекла 37, 38 (2011).
- [19] E.Yu. Trofimova, D.A. Kurdyukov, S.A. Yakovlev, D.A. Kirilenko, Yu.A. Kukushkina, A.V. Nashchekin, A.A. Sitnikova, M.A. Yagovkina, V.G. Golubev. Nanotechnology 24, 155601 (2013).
- [20] V.Yu. Davydov, V.G. Golubev, N.F. Kartenko, D.A. Kurdyukov, A.B. Pevtsov, N.V. Sharenkova, P. Brogueira, R. Schwarz. Nanotechnology 11, 291 (2000).
- [21] D.A. Eurov, D.A. Kurdyukov, D.A. Kirilenko, J.A. Kukushkina, A.V. Nashchekin, A.N. Smirnov, V.G. Golubev. J. Nanopart. Res. 17, 82 (2015).
- [22] S.A. Grudinkin, S.F. Kaplan, N.F. Kartenko, D.A. Kurdyukov, V.G. Golubev. J. Phys. Chem. C 112, 17855 (2008).
- [23] Д.А. Курдюков, А.Б. Певцов, А.Н. Смирнов, М.А. Яговкина, В.Ю. Григорьев, В.В. Романов, Н.Т. Баграев, В.Г. Голубев. ФТТ 58, 12 (2016).
- [24] K. Wieczorek-Ciurowa, A.J. Kozak, J. Therm. Anal. Calorim. 58, 647 (1999).
- [25] K.N. Orekhova, D.A. Eurov, D.A. Kurdyukov, V.G. Golubev, D.A. Kirilenko, V.A. Kravets, M.V. Zamoryanskaya. J. Alloys Comp. 678, 434 (2016).
- [26] I.V. Golosovsky, I. Mirebeau, V.P. Sakhnenko, D.A. Kurdyukov, Y.A. Kumzerov. Phys. Rev. B 72, 144409 (2005).
- [27] I.V. Golosovsky, I. Mirebeau, E. Elkaim, D.A. Kurdyukov, Y.A. Kumzerov. Eur. Phys. J. B 47, 55 (2005).
- [28] D.A. Kurdyukov, D.A. Eurov, D.A. Kirilenko, J.A. Kukushkina, V.V. Sokolov, M.A. Yagovkina, V.G. Golubev. Microp. Mesop. Mater. 223, 225 (2016).
- [29] Д.А. Курдюков, Д.А. Еуров, Е.Ю. Стовпяга, Д.А. Кириленко, С.В. Коняхин, А.В. Швидченко, В.Г. Голубев. ФТТ 58, 12 (2016).
- [30] A.M. Jubb, H.C. Allen. Appl. Mater. Interf. 2, 2804 (2010).
- 10* Физика твердого тела, 2017, том 59, вып. 8

[31] T.P. Martin, R. Merlin, D.R. Huffman, M. Cardona. Solid State Commun. 22, 565 (1977).

1603

- [32] K.F. McCarty. Solid State Commun. 68, 799 (1988).
- [33] B. Verdes, I. Chira, M. Virgolichi, V. Moise. U.P.B. Sci. Bull. B 74, 257 (2012).
- [34] U. Schwertmann, R.M. Cornell. Iron oxides in the laboratory. VCH Verlagsgesellschaft mbH, Weinhem (1991). 138 p.
- [35] R.M. Cornell, R. Giovanoli, W. Shneider. J. Chem. Technol. 46, 115 (1989).
- [36] Г. Шефер. Химические транспортные реакции. Мир, М. (1964). 194 с.
- [37] G.M. Gajiev, D.A. Kurdyukov, V.V. Travnikov. Nanotechnology 17, 5349 (2006).
- [38] C.V. Thach, N.H. Hai, N. Chau. J. Korean Phys. Soc. 52, 1332 (2008).
- [39] Дж. Киршвик. Биогенный магнетит и магниторецепция. Мир, М. (1990). Т. 41. 590 с.