#### 07,01

# Анализ изменения диффузионных свойств неравновесных границ зерен при рекристаллизации и сверхпластической деформации субмикрокристаллических металлов и сплавов

© В.Н. Чувильдеев<sup>1</sup>, А.В. Нохрин<sup>1,¶</sup>, О.Э. Пирожникова<sup>1</sup>, М.Ю. Грязнов<sup>1</sup>, Ю.Г. Лопатин<sup>1</sup>, М.М. Мышляев<sup>2,3</sup>, В.И. Копылов<sup>1,4</sup>

<sup>1</sup> Научно-исследовательский физико-технический институт

Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского, Нижний Новгород, Россия

<sup>2</sup> Институт физики твердого тела РАН,

Черноголовка, Россия

<sup>3</sup> Институт металлургии и материаловедения им. А.А. Байкова РАН,

Москва, Россия

<sup>4</sup> Физико-технический институт НАН Беларуси,

Минск, Беларусь

<sup>¶</sup> E-mail: nokhrin@nifti.unn.ru

(Поступила в Редакцию 21 ноября 2016 г. В окончательной редакции 14 февраля 2017 г.)

> Описаны результаты исследований эффекта повышения коэффициента зернограничной диффузии при рекристаллизации и сверхпластической деформации субмикрокристаллических (СМК) материалов, полученных методами интенсивного пластического деформирования. Показано, что коэффициент зернограничной диффузии СМК-материалов зависит от интенсивности потока решеточных дислокаций, величина которого пропорциональна скорости миграции границ зерен при отжиге СМК-металлов или скорости внутризеренной деформации в условиях сверхпластической деформации СМК-сплавов. Установлено, что при высокой скорости миграции границ зерен или повышенных скоростей сверхпластической деформации интенсивность потока решеточных дислокаций, бомбардирующих границы зерен СМК-материала, превосходит интенсивность их диффузионной аккомодации, что приводит к увеличению коэффициента зернограничной диффузии и снижению энергии активации. Результаты численных расчетов сопоставлены с экспериментальными данными. Показано их хорошее согласие.

> Работа выполнена при поддержке РФФИ (гранты № 15-03-08969, 15-08-09298) и частичной поддержке Министерства образования и науки РФ (проект № 2014/134 в рамках государственного задания вузам).

DOI: 10.21883/FTT.2017.08.44759.420

#### 1. Введение

В работах [1–3] было показано, что в процессе дорекристаллизационного отжига субмикрокристаллических (СМК) металлов, полученных методами интенсивного пластического деформирования, наблюдается возврат диффузионных свойств неравновесных границ зерен (НГЗ): увеличение энергии активации  $Q_h^*$  и уменьшение коэффициента зернограничной диффузии  $D_b^*$  от значений, характерных для неравновесных границ зерен и в некоторых случаях близких к параметрам расплава  $(D_h^* \approx D_L, Q_h^* \approx Q_L)$ , до равновесных значений  $(D_b^* \approx D_b, Q_b^* \approx Q_b)$ . Скорость процесса возврата диффузионных свойств неравновесных границ зерен СМК-металлов контролируется кинетикой процесса делокализации дислокаций ориентационного несоответствия (ДОН) в границах зерен, а в более крупнозернистых материалах — кинетикой процесса диффузионного "ухода" скользящих компонент делокализованных дислокаций [1-3].

В соответствии с этим следовало бы ожидать, что диффузионные свойства границ зерен СМК-металлов при температурах отжига выше температуры начала рекристаллизации будут соответствовать диффузионным свойствам равновесных границ зерен. Тем не менее анализ экспериментальных данных по исследованию процессов миграции границ зерен при отжиге СМК-сплавов [4–9], а также процессов сверхпластической деформации СМК-металлов при повышенных температурах [10,11] показывает, что диффузионные свойства границ зерен в некоторых случаях весьма значительно отличаются от равновесных. Следует также отметить ряд работ, в которых наблюдалась немонотонная зависимость коэффициента зернограничной диффузии  $D_b$  и энергии активации  $Q_b$  от температуры нагрева [4,6,8,12–14].

Непостоянство значений энергии активации  $Q_b$  также было обнаружено при анализе экспериментальных результатов исследования процессов ползучести [15], сверхпластичности [16,17] и внутреннего трения [18,19].

Причины такого поведения остаются неясными и, по мнению некоторых авторов, связаны с влиянием процесса миграции границ зерен на их диффузионные свойства при отжиге СМК-материалов [20].

| Параметр                                                            |                           | Единицы           | Значение              |                       |
|---------------------------------------------------------------------|---------------------------|-------------------|-----------------------|-----------------------|
| Tapano Ip                                                           |                           | измерения         | Cu                    | Al                    |
| Вектор Бюргерса                                                     | b                         | m                 | $2.56\cdot 10^{-10}$  | $2.86\cdot10^{-10}$   |
| Атомный объем                                                       | Ω                         | m <sup>3</sup>    | $1.18 \cdot 10^{-29}$ | $1.66 \cdot 10^{-29}$ |
| Характерный размер зерна                                            | d                         | b                 | $2 \cdot 10^3$        | $4 \cdot 10^3$        |
| Ширина границы зерна                                                | δ                         | b                 | 2                     |                       |
| Модуль сдвига                                                       | G                         | GPa               | 43.6                  | 25                    |
| Температура плавления                                               | $T_m$                     | K                 | 1356                  | 933                   |
| Отношение $\lambda \rho b^3 / kT_m$                                 | $\lambda  ho b^3/kT_m$    | _                 | 1.15                  | 1.96                  |
| Скачок объема при плавлении                                         | $\Delta v_m$              | -                 | $5 \cdot 10^{-2}$     |                       |
| Энтальпия поверхности жидкость-кристалл                             | $\gamma_{S/L}^0 b^2/kT_m$ |                   | 0.900                 | 1.160                 |
| Энтропия поверхности жидкость-кристалл                              | $S_{S/L}b^2/k$            | _                 | 0.767                 | 0.920                 |
| Относительный свободный объем границ зерен                          | α                         | —                 | 0.36                  | 0.38                  |
| Критический свободный объем границ зерен                            | $lpha^*$                  | -                 | 0.                    | 50                    |
| Избыточный свободный объем границ зерен                             | $\Delta \alpha$           | - 0.001, 01       |                       |                       |
| Свободная энергия границы зерна                                     | $\gamma_b b^2/kT_m$       | _                 | 1.93                  | 2.125                 |
| Свободная (поверхностная) энергия "сухих" участков границы          | $\gamma_0 b^2/kT_m$       | —                 | 1.95                  | 1.50                  |
| Энтальпия границы зерна                                             | $\gamma_b^0 b^2/kT_m$     | —                 | 4.32                  | 4.98                  |
| Энтропия границы зерна                                              | $S_b b^2/k$               | —                 | 2.30                  | 2.76                  |
| Предэкспоненциальный множитель коэффициента зернограничной диффузии | $\delta D_{b0}$           | m <sup>3</sup> /s | $5.0 \cdot 10^{-15}$  | $5.0 \cdot 10^{-14}$  |
| Энергия активации зернограничной самодиффузии                       | $Q_b$                     | $kT_m$            | 9.2                   | 10.8                  |
| Предэкспоненциальный множитель коэффициента диффузии в расплаве     | $D_{L0}$                  | m <sup>2</sup> /s | $14.6 \cdot 10^{-8}$  | $14.9 \cdot 10^{-8}$  |
| Энергия активации диффузии в расплаве                               | $Q_L$                     | $kT_m$            | 3.6                   | 3.8                   |

Таблица 1. Значения параметров, используемых для расчетов [3,22,23]

Целью настоящей работы является построение модели, описывающей зависимость параметров зернограничной диффузии от температурно-временных условий рекристаллизационного отжига и температурно-скоростных условий сверхпластической деформации СМК-материалов.

# Эффект повышения коэффициента зернограничной диффузии при миграции границ

2.1. Описание модели. В соответствии с представлениями [3,21] энергия активации  $Q_b^*$  и коэффициент зернограничной диффузии  $D_b^*$  зависят от степени неравновесности границ зерен, которая определяется плотностью внесенных в границы дефектов: дислокаций ориентационного несоответствия с вектором Бюргерса  $\Delta b$  и плотностью  $\rho_b$  и скользящих компонент делокализованных дислокаций с плотностью вектора Бюргерса  $w_t$ .

Особенно сложным представляется решение задачи о поведении зависимости  $Q_b^*(T)$  и  $D_b^*(T)$  в случае одновременного протекания процессов возврата и рекристаллизации. Как известно, мигрирующие границы зерен "заметают" распределенные в зернах дислокации и обеспечивают тем самым поток дефектов, активно "бомбардирующих" границы зерен и изменяющих уровень их неравновесности [3,21].

При рекристаллизации (росте зерен) поток дислокаций на границу зерна *I* пропорционален скорости миграции границ зерен  $V_m$  и плотности решеточных дислокаций  $\rho_v$ , заметаемых движущейся границей:  $I = \xi_m V_m b \rho_v$ , где  $\xi_m$  — доля дислокаций одного знака, попадающих в мигрирующую границу зерна ( $\xi_m = 10^{-4} - 10^{-2}$ ), b — вектор Бюргерса решеточной дислокации [1,3].

В этом случае кинетические уравнения, описывающие скорость накопления дефектов на границах зерен СМК-материалов, могут быть представлены в виде

$$\Delta b\dot{\rho}_b = \xi_m V_m b\rho_v - \frac{\Delta b\rho_b}{t_1},\tag{1}$$

$$\dot{w}_t = \xi_m V_m b \rho_v - \frac{w_t}{t_2},\tag{2}$$

где  $t_1$  — характерное время процесса делокализации ДОН,  $t_2$  — характерное время диффузионного "ухода" скользящих компонент делокализованных дислокаций. Величины  $t_1$  и  $t_2$  в соответствии с теорией НГЗ могут быть рассчитаны с помощью следующих уравнений [3]:

$$t_1 = \frac{A_1}{(\rho_b \Delta b)^3} \frac{kT}{G\Omega} \frac{b^3}{\delta D_b},\tag{3}$$

$$t_2 = \frac{(d/b)^2}{C_1 w_t} \frac{kT}{G\Omega} \frac{b^3}{\delta D_b},\tag{4}$$

где  $A_1 = 10$  и  $C_1 = 50$  — численные константы, d — размер зерна,  $\delta = 2b$  — ширина границы зерна, G — модуль сдвига,  $D_b$  — коэффициент диффузии по равновесным границам зерен, k — постоянная Больцмана (табл. 1).

В том случае, когда скорость миграции границ зерен  $V_m$  при отжиге СМК-материала превышает величину  $V_m^*$ , следует ожидать повышения коэффициента зернограничной диффузии. В случае, если  $V_m < V_m^*$ , коэффициент зернограничной диффузии  $D_b^*$  останется близким к его равновесному значению  $D_b$ .

В условиях быстрой миграции границ зерен ( $V_m \ge V_m^*$ ) уравнения для стационарной плотности ДОН и скользящих компонент делокализованных дислокаций удобно представить в виде [1]

$$\rho_b^{\rm st}\Delta b = \left(g_1 \rho_v V_m\right)^{1/4},\tag{5}$$

$$w_t^{\rm st} = d \left( g_2 \rho_v V_m \right)^{1/2},$$
 (6)

где *g*<sub>1</sub>, *g*<sub>2</sub> — параметры материала.

Как следует из анализа формул (5), (6), в силу зависимости  $w_t$  от d, если размеры зерен малы  $(d < d_1)$ или низка температура отжига  $(T < T^*)$ , в границах зерен преимущественно будут накапливаться ДОН  $(\rho_b \Delta b \gg w_t)$ . При высокой температуре  $(T > T^*)$  или больших размерах зерен  $(d > d_1)$  в границах будут преобладать скользящие компоненты делокализованных дислокаций  $(w_t \gg \rho_b \Delta b)$ .

Величина критического размера зерна  $d_1$  в условиях миграции границ зерен может быть оценена исходя из соотношения  $\rho_b^{\text{st}}\Delta b = w_t^{\text{st}}$ :

$$d_1 = \left[ \left( \frac{A_1 C_1^2}{\xi_m} \right) \left( \frac{\delta D_b}{\rho_v V_m} \right) \left( \frac{G\Omega}{kT} \right) \right]^{1/4}.$$
 (7)

Оценим характерные плотности дефектов в границах зерен и скорости миграции, при которых возможно повышение коэффициента зернограничной диффузии. Для этого необходимо, чтобы интенсивность потока "падающих" в границу зерна дислокаций  $(I^+ = \xi_m \rho_v V_m)$ была больше интенсивности "ухода" дефектов из границ вследствие развития процессов возврата  $(I^- = \rho_b/t_1, I^- = w_t/t_2b)$ . Приравняв эти интенсивности, можно определить значение  $V_m^*$ , при котором возможно повышение коэффициента зернограничной диффузии  $D_b^*$ :

$$V_{m1}^* = \frac{\rho_b^{\rm st}}{\rho_v t_1 \xi_m},\tag{8}$$

$$V_{m2}^* = \frac{w_t^{\text{st}}}{\rho_v t_2 b \xi_m}.$$
(9)

При начальной плотности дефектов  $\rho_b \Delta b = 10^{-3}$  и  $w_t = 10^{-3}$  [1] характерное время  $t_1$ , вычисленное по формуле (3), для СМК-меди при  $T \sim 0.385T_m$  (523 K), где  $T_m = 1356$  К — температура плавления, составляет  $t_1 \sim 5.9 \cdot 10^3$  s. Величина критической скорости миграции границ зерен СМК-меди  $V_{m1}^*$ , полученная по формуле (8) при  $\rho_v = 10^{14}$  m<sup>-2</sup> и T = 523 K, составляет  $\sim 1.3 \cdot 10^{-9}$  m/s.

Величина  $t_2$  для СМК-меди, вычисленная по формуле (4) при той же температуре и  $d = 0.2 \, \mu$ m, равна  $t_2 = 89$  s, а величина критической скорости миграции  $V_{m2}^*$ , найденная по формуле (9), составляет  $\sim 1.4 \cdot 10^{-16}$  m/s.

Аналогичные результаты могут быть получены и для СМК-алюминия: при  $T = 373 \text{ K} \sim 0.4T_m \ (\rho_b \Delta b = 10^{-3}, w_t = 10^{-3}, \rho_v = 10^{14} \text{ m}^{-2}, d = 1 \,\mu\text{m})$  характерные значения  $t_1$  и  $V_{m1}^*$ , вычисленные по формулам (3) и (8), будут составлять  $3.2 \cdot 10^4$  s и  $2.2 \cdot 10^{-10}$  m/s соответственно, а значения  $t_2$  и  $V_{m2}^*$ , вычисленные по формулам (4) и (9), будут равны 0.47 s и  $2.1 \cdot 10^{-15}$  m/s соответственно.

Полученные оценки  $(t_1 \gg t_2)$  подтверждают ранее сделанное предположение о том, что в границах зерен СМК-материалов (при малом размере зерна и/или низких температурах отжига) доминируют ДОН  $(\rho_b^{t}\Delta b \gg w_t^{st})$ .

Зависимости критической скорости миграции границ зерен  $V_{m1}^*$  от температуры отжига для СМК-меди и СМК-алюминия при различных начальных плотностях решеточных дислокаций представлены на рис. 1.



**Рис. 1.** Зависимости критической скорости миграции границ зерен  $V_{m1}^*$  от температуры отжига для СМК-меди (*a*) и СМК-алюминия (*b*).



**Рис. 2.** Зависимость среднего размера зерна от температуры отжига СМК-металлов в полулогарифмических координатах. *а* — СМК-магниевый сплав Mg-AZ31 [14], *b* — СМК-алюминиевый сплав Al-3.3 wt.%Mg-0.2 wt.%Sc-0.2 wt.%Zr [17].

В соответствии с подходом, изложенным в [1,3], величина коэффициента зернограничной диффузии в СМК-металлах может быть представлена в виде

$$D_b^* = D_b \exp\left(\frac{\rho_b^{\text{st}} \Delta b + w_t^{\text{st}}}{\alpha_B w_0}\right), \qquad (10)$$

где  $\alpha_B = 0.02$  и  $w_0 = 0.1$  — численные коэффициенты [1,3].

Подставляя (5), (6) в (10), получим выражение для  $D_b^*$  в условиях миграции границ (при  $V_m \ge V_m^*$ )

$$D_b^* = D_b \exp\left\{\frac{(g_1 \rho_v V_m)^{1/4} + d(g_2 \rho_v V_m)^{1/2}}{\alpha_B w_0}\right\}.$$
 (11)

В случае СМК-материалов и при  $d < d_1$  выражение (11) может быть преобразовано к более простому виду

$$D_b^* = D_b \exp\left\{\frac{(g_1 \rho_v V_m)^{1/4}}{\alpha_B w_0}\right\}.$$
 (12)

Таким образом, скорость миграции границ зерен V<sub>m</sub> оказывает существенное влияние на диффузионные

свойства границ зерен СМК-материалов: при аномальном росте зерен, для которого характерны высокие скорости миграции границ [1,3], а также высоких начальных плотностях решеточных дислокаций, при отжиге СМК-металлов может наблюдаться уменьшение  $Q_{h}^{*}$  (этот эффект условно можно назвать эффектом от ускорения зернограничной диффузии), а в условиях собирательной рекристаллизации, при которой наблюдаются заметно меньшие скорости миграции границ [24], величина энергии активации зернограничной диффузии может быть близка к равновесному значению. Отметим, что эффект уменьшения энергии активации роста зерен, который при традиционном анализе данных по рекристаллизации должен проявляться как изменение угла наклона зависимости  $\ln(d^2 - d_0^2) - 1/T$ , наблюдается довольно часто для широкого круга СМК-материалов [6,8,14,17] (рис. 2).

Перейдем теперь к анализу полученных результатов и их сопоставлению с экспериментальными данными.

2.2. Сопоставление с экспериментом. Для проверки корректности модели рассмотрим результаты экспериментальных исследований рекристаллизации в СМК-меди М0б (99.995%) и СМК меди М1ф (99.98%), структура которой сформирована методом равноканального углового прессования (РКУП) (режим  $B_c$ ,  $T_{\rm ECAP} = 293$  K, число циклов прессования N = 8) [25].

На рис. 3, а представлены зависимости среднего размера зерна d и объемной доли f<sub>v</sub> материала, охваченного процессом рекристаллизации, от температуры отжига СМК-меди. Как видно из рис. 3, а, зависимость среднего размера зерна d(T) имеет трехстадийный характер. На первой стадии отжига (при  $T \leq T_1$ ) в материале наблюдается незначительный рост зерен. Зеренная структура СМК-металла при этом остается однородной. Начиная с температуры  $T \sim T_1$  в материале начинается процесс аномального роста зерен [25]. При этом возникает бимодальная структура: появляются крупные зерна, размер которых d<sub>max</sub> на порядок превосходит средний размер зерен однородной СМК-матрицы. При увеличении температуры отжига объемная доля f<sub>v</sub> материала, охваченного процессом аномального роста зерен, увеличивается, и при достижении температуры Т2 величина f v достигает единицы. При последующем повышении температуры отжига (при  $T \ge T_2$ ) процесс рекристаллизации принимает обычный характер. Более подробно механизм аномального роста зерен в СМК-материалах описан в [1].

Кинетика роста зерен на первой  $(T \le T_1)$  и третьей  $(T \ge T_2)$  стадиях может быть описана с помощью закона собирательной рекристаллизации [24]

$$d^{2} - d_{0}^{2} = 2\gamma_{b}b \, \frac{\delta D_{b}^{*}}{kT} t, \qquad (13)$$

где *d*<sub>0</sub> — начальный размер зерна, *γ*<sub>b</sub> — энергия границы зерна.



**Рис. 3.** Зависимость среднего размера зерна d и объемной доли  $f_v$  материала, охваченного процессом аномального роста зерен [25] (a), а также зависимости коэффициента диффузии (b) и энергии активации зернограничной диффузии (c) от температуры отжига для СМК-меди М0б (99.995%) и М1ф (99.98%). Ромбами на всех частях рисунка обозначены данные для СМК-меди М0б (99.95%), кружками — для СМК-меди М1ф (99.98%). На части a темные символы — данные по зависимости среднего размера зерна от температуры отжига, светлые — данные по зависимости объемной доли рекристаллизованной структуры от температуры отжига. На части b темные символы — экспериментальные данные, светлые — результаты расчетов.

На стадии аномального роста зерен зависимость среднего размера зерна от времени и температуры отжига может быть рассчитана по формуле [1,3]

$$d = d_{\max}\left(1 - \exp\left(-\frac{t}{t_3}\right)\right),\tag{14}$$

где  $t_3 = (d/b)^2 kT/C_1 w_t D_b^* \delta G$  — характерное время "ухода" стыковых дисклинаций, определяющих миграционную подвижность неравновесных границ зерен при отжиге СМК-металлов [1,3].

Воспользовавшись уравнениями (13), (14), можно каждому размеру зерна *d* на каждой стадии процесса рекристаллизации СМК-материала поставить в соответ-

ствие значение  $D_b^*$  (рис. 3, *b*) и, используя соотношение

$$Q_b^* = -\frac{T}{T_m} \ln\left(\frac{D_b^*}{D_{b0}^*}\right),\tag{15}$$

найти соответствующее значение  $Q_b^*$ . Результаты такого расчета представлены на рис. 3, *c*.

Из рис. 3, b, c видно, что в интервале температур отжига, соответствующих началу аномального роста зерен в СМК-меди М1ф, величина  $D_b^*$  увеличивается от  $1.8 \cdot 10^{-24}$  до ~  $5.5 \cdot 10^{-20}$  m<sup>2</sup>/s; в СМК-меди М0б — от  $6.4 \cdot 10^{-24}$  до  $4.1 \cdot 10^{-16}$  m<sup>2</sup>/s. В этих же условиях наблюдается уменьшение  $Q_b^*$ : в СМК-меди М1ф величина  $Q_b^*$  уменьшается от исходного значения ~  $(9.0-9.2)kT_m$  до значения ~  $7.6kT_m$ , что примерно на

~ 20% ниже, чем значение энергии активации в равновесных границах зерен (~  $9.2kT_m$ ) [22]; в СМК-меди М0б величина энергии активации  $Q_b^*$  уменьшается до ~  $(4.6-5.0)kT_m$ . При дальнейшем повышении температуры отжига величина  $D_b^*$  немонотонно увеличивается, а  $Q_b^*$  стремится к значениям, характерным для диффузии по равновесным границам зерен. Важно подчеркнуть, что характерные значения  $V_m$  в СМК-меди лежат в интервале  $10^{-8}-10^{-9}$  m/s, что более чем на два порядка превышает критическое значение  $V_m^*$  для СМК-меди в рассматриваемом интервале температур (рис. 1, *a*).

Воспользовавшись уравнениями (5), (6), (10) и (12), нетрудно рассчитать зависимость коэффициента зернограничной диффузии СМК-меди от температуры отжига. Результаты расчета зависимости  $D_b^*(T)$  для СМК-меди М1ф и М0б представлены на рис. 3, b. Как видно из рисунка, описанная модель дает удовлетворительное согласие теоретических и экспериментальных результатов. Необходимые для расчета значения параметров меди взяты из [3,22,23] (табл. 1).

В работе [6] описаны результаты исследований процесса рекристаллизации алюминия AA1050, СМК-структура в котором (начальный размер зерна  $d_0 = 0.35 - 0.60 \,\mu\text{m}$ ) сформирована методом РКУП. Отжиг СМК-образцов проводился в интервале температур 293-773 К (время отжига t = 1 h). Авторами [6] отмечается, что зависимость d(T) имеет трехстадийный характер, причем в интервале температур  $T = 548 - 573 \,\mathrm{K}$ наблюдается аномальный рост зерен, при котором средний размер зерна увеличивается от 0.59 до 3.93 µm. Дальнейшее повышение температуры отжига (573-773 К) приводит к плавному повышению размера зерна до  $\sim 40\,\mu$ m. Проведенный в [6] анализ зависимости d(T) показывает, что на первой и третьей стадии процесса рекристаллизации зависимость  $lg(d^2 - d_b^2) - 1/T$ может быть интерполирована прямыми линиями, причем энергия активации  $Q_b^*$  для стадии низкотемпературного отжига (T < 548 K) составляет 49 kJ/mol  $(\sim 6.2kT_m)$ , а для стадии высокотемпературной собирательной рекристаллизации при  $T > 573 \,\mathrm{K} \, Q_b^* = Q_b = 85 \,\mathrm{kJ/mol}$ (~ 10.8*kT<sub>m</sub>*). Оценка энергии активации для стадии аномального роста зерен авторами [6] не проводилась.

В соответствии с описанной выше процедурой поставим в соответствие каждому размеру зерна на зависимости d(T, t) для СМК-алюминия значения  $Q_b^*$ . Проведенная оценка с использованием соотношений (14) и (15) показывает, что на второй стадии отжига (стадия аномального роста) величина  $Q_b^*$  составляет ~ 5.6 $kT_m$  (T = 553-573 K).

Заметим, что в материалах, подвергнутых РКУП, не всегда имеет место аномальный рост зерен, а в ряде случаев плотность решеточных дислокаций может быть мала. При этом эффект ускорения зернограничной диффузии может и не наблюдаться, и, как следствие, величина будет  $Q_b^*$  мало меняться в широком диапазоне температур отжига.

# Эффект повышения коэффициента зернограничной диффузии при сверхпластической деформации СМК-материалов

3.1. Описание модели. Как известно, явление сверхпластичности (СП) связано с развитием зернограничного проскальзывания (ЗГП) — особого механизма деформации, который "включается" при повышенных температурах и особенно эффективно работает в мелкозернистых материалах. Как показано в [26,27], для развития ЗГП необходимы эффективная аккомодация проскальзывания в стыках зерен и неравновесное состояние границ зерен. Выражение для скорости деформации  $\dot{\varepsilon}$  в условиях СП имеет вид [26]

$$\dot{\varepsilon} = A \left(\frac{\sigma}{G}\right)^{1/m} \left(\frac{b}{d}\right)^p \left(\frac{G\Omega}{kT}\right) \frac{\delta D_b^*}{b^3},\tag{16}$$

где m — коэффициент скоростной чувствительности напряжения течения ( $\sigma$ ).

Для зернограничной деформации m = 0.5 и p = 2 [27], но поскольку в условиях СП кроме ЗГП в деформацию вносит вклад и внутризеренное дислокационное скольжение, как правило, в уравнении (16) показатель mменяется от 0.3 до 0.5 [26,27].

Обычно предполагается, что величина  $D_h^*$  при заданной температуре сверхпластичности — постоянная величина, не зависящая от *έ*, и при расчетах скорости деформации по формуле (16) используется равновесное (табличное) значение  $D_b$  [26,27]. При этом, как правило, наблюдается несовпадение теоретических и экспериментальных значений *і*: экспериментальная величина скорости деформации оказывается на один-два порядка выше расчетной. Это несоответствие обычно компенсируют вариацией коэффициента А или объясняют нестабильностью зеренной структуры (изменением d в процессе деформации). Однако в ряде случаев различие экспериментальных и расчетных значений столь существенно, что его трудно объяснить неточностью подгоночных параметров. Особенно ярко это несоответствие проявляется в условиях высокоскоростной сверхпластичности СМК-материалов [28].

На наш взгляд, отмеченная проблема может быть решена на основе теории НГЗ [3], в рамках которой можно показать, что в условиях сверхпластической деформации коэффициент зернограничной диффузии может существенно зависеть от скорости деформации [29]. Для того чтобы "уловить" эту зависимость, необходимо имеющиеся экспериментальные данные по сверхпластичности проанализировать с учетом представлений о зависимости  $D_b^*$  от состояния границ зерен и их свободного объема [1,3]. Для этого, подставляя в выражение (16) экспериментально полученные значения m,  $\dot{\varepsilon}$ ,  $\sigma$ , d и другие легко измеряемые в эксперименте параметры и принимая A = const, можно определить

зависимость  $D_b^*(\dot{\varepsilon})$ 

$$D_b^* = \left(\frac{\dot{\varepsilon}b^2}{A}\right) \left(\frac{G}{\sigma}\right)^{1/m} \left(\frac{d}{b}\right)^p \left(\frac{kT}{G\Omega}\right).$$
(17)

Для такого анализа в качестве примера используем результаты исследований высокоскоростной сверхпластичности СМК-сплавов Al-3 wt.%Mg-0.2 wt.%Sc [30] и Al-1570 [31].

Необходимые для оценки  $D_b^*$  и  $Q_b^*$  значения переменных  $\dot{\varepsilon}$ ,  $\sigma$  и *m* приведены в табл. 2 и 3 при A = 100. Из табл. 2 видно, что в СМК-сплаве Al-3 wt.%Mg-0.2 wt.%Sc [30] при увеличении скорости сверхпластической деформации от  $10^{-3}$  до  $1 \text{ s}^{-1}$  (при T = 673 K) имеет место повышение коэффициента зернограничной диффузии примерно на порядок.<sup>1</sup>

В табл. З представлены результаты аналогичных оценок величины  $D_b^*$  для СМК-сплава Al-1570 [31]. Из табл. З видно, что при T = 723 К увеличение скорости деформации от  $1.4 \cdot 10^{-3}$  до  $1.4 \,\mathrm{s}^{-1}$  приводит к повышению  $D_b^*$  в ~ 24 раза.

Приведенные результаты хорошо согласуются с результатами единственной экспериментальной работы, где проведены непосредственные измерения диффузионной проницаемости границ в условиях структурной сверхпластичности [32]. В этой работе показано, что в сплаве Zn-22 wt.%A1, деформируемом при температуре ~ 523 K, при изменении скорости деформации от  $10^{-4}$  до  $10^{-2}$  s<sup>-1</sup> величина коэффициента зернограничной диффузии возросла от  $1.28 \cdot 10^{-13}$  до  $1.3 \cdot 10^{-11}$  m<sup>2</sup>/s [32].

Перейдем к объяснению изложенных выше результатов.

Как уже отмечалось, в условиях сверхпластической деформации параметры зернограничной диффузии СМК-металла зависят от параметров потоков решеточных дислокаций, осуществляющих внутризеренную деформацию и бомбардирующих границы зерен, что в свою очередь приводит к появлению на границах зерен стационарной плотности дефектов. Значения  $\rho_b^{\rm st} \Delta b$  и  $w_t^{\rm st}$ в случае СП имеют вид [1]

$$\rho_b^{\rm st} \Delta b = \phi_1 \dot{\varepsilon}_v^{1/4},\tag{18}$$

$$w_t^{\rm st} = \phi_2 \dot{\varepsilon}_v^{1/2},$$
 (19)

где  $\phi_1$  и  $\phi_2$  — параметры материала. Подставляя эти выражения в формулу (10), получим

$$D_b^* = D_b \exp(\phi_1' \dot{\varepsilon}_v^{1/4} + \phi_2' \varepsilon_v^{1/2}), \qquad (20)$$

где  $\phi_1' = \phi_1/\alpha_B w_0, \, \phi_2' = \phi_2/\alpha_B w_0$  — численные коэффициенты.

При большой плотности дефектов в границе зерна, возникающей при очень высоких скоростях деформации,



**Рис. 4.** Численный расчет зависимости коэффициента зернограничной диффузии от скорости сверхпластической деформации СМК-сплава Al-3 wt.%Mg-0.2 wt.%Sc. Анализ данных [30].

значение коэффициента диффузии  $D_b^*$  приближается к величине коэффициента диффузии в расплаве  $D_L$ :  $D_b^* = D_L$ .

Теоретическая зависимость  $D_b^*(\dot{\varepsilon}_v)$ , отражающая поведение, описываемое выражением (20), имеет *S*-образный вид: при малых и больших  $\dot{\varepsilon}_v$  величина  $D_b^*$  не зависит от скорости деформации, а при промежуточных значениях  $\dot{\varepsilon}_v$  коэффициент зернограничной диффузии интенсивно нарастает с увеличением скорости деформации.

3.2. Сопоставление с экспериментом. Воспользовавшись уравнениями (18)–(20), можно рассчитать зависимость коэффициента зернограничной диффузии от скорости сверхпластической деформации. Результаты расчетов для сплава Al–3 wt.%Mg–0.2 wt.%Sc представлены в табл. 2 и на рис. 4, для сплава Al-1570 — в табл. 3. Расчет для сплава Zn–22 wt.%Al (T = 523 K) приведен в [3,28].

Необходимые для расчетов значения параметров содержатся в табл. 1.

Как видно из табл. 2 и 3, предложенная элементарная модель удовлетворительно описывает экспериментальные зависимости коэффициента зернограничной диффузии от скорости сверхпластической деформации  $D_h^*(\dot{\varepsilon}_v)$ .<sup>2</sup>

<sup>&</sup>lt;sup>1</sup> При численных оценках не принималась во внимание возможность изменения в условиях ЗГП геометрических характеристик неравновесных границ зерен и, как следствие, их возможное влияние на диффузионные свойства границ зерен при сверхпластической деформации СМК-материалов.

<sup>&</sup>lt;sup>2</sup> Определенное расхождение результатов численных расчетов с данными работы [30] связано с влиянием деформационно-стимулированного роста зерна: расчет по формуле (20), результаты которого приведены в табл. 2, выполнены при  $d_0 = 0.4 \mu m$ . Вместе с тем авторы [30] отмечают, что в процессе испытаний на СП было обнаружено, что в зависимости от температуры и времени деформации средний размер зерна увеличивается до  $1-4\mu m$ . В связи с тем, что в [30] авторы не приводят данных по зависимости  $d(\varepsilon_v, T)$ , а точный расчет этой зависимости настоящее время невозможен, сопоставление результатов расчета с экспериментом проводится при  $d_0 = 0.4 \mu m$ .

| Эк                                    | сперимент [30]  |      | Анализ [30]                                                    |                                                | Расчет        |                                                                 |
|---------------------------------------|-----------------|------|----------------------------------------------------------------|------------------------------------------------|---------------|-----------------------------------------------------------------|
| $\dot{\varepsilon},  \mathrm{s}^{-1}$ | $\sigma^*,$ MPa | т    | $D_b^{*(\mathrm{exp})}\cdot 10^{11},\mathrm{m}^{2}/\mathrm{s}$ | $D_{b0}^* \cdot 10^6, \mathrm{m}^2/\mathrm{s}$ | $Q_b^*, kT_m$ | $D_b^{*(\mathrm{calc})}\cdot 10^{11},\mathrm{m}^{2}/\mathrm{s}$ |
| $1 \cdot 10^{-3}$                     | 8               | 0.34 | 52                                                             | 6.76                                           | 8.8           | 3.45                                                            |
| $3 \cdot 10^{-3}$                     | 11              | 0.22 | 4.00                                                           | 6.37                                           | 8.6           | 3.92                                                            |
| $1 \cdot 10^{-2}$                     | 15.5            | 0.37 | 6.96                                                           | 3.49                                           | 7.6           | 4.63                                                            |
| $3 \cdot 10^{-2}$                     | 28              | 0.55 | 10.8                                                           | 2.83                                           | 7.3           | 5.48                                                            |
| $1\cdot 10^{-1}$                      | 48              | 0.41 | 11.1                                                           | 2.73                                           | 7.3           | 8.7                                                             |
| $3 \cdot 10^{-1}$                     | 78              | 0.42 | 12.0                                                           | 2.51                                           | 7.2           | 15.5                                                            |
| 1                                     | 101             | 0.23 | 22.5                                                           | 1.11                                           | 6.1           | 43.3                                                            |

**Таблица 2.** Влияние скорости деформации на параметры зернограничной диффузии в СМК-сплаве Al-3 wt.%Mg-0.2 wt.%Sc ( $d_0 = 0.4 \,\mu$ m, T = 673 K), анализ данных [30]

**Таблица 3.** Влияние скорости сверхпластической деформации на диффузионные свойства границ зерен в СМК-сплаве Al-1570 ( $d_0 \sim 1 \, \mu m, T = 723 \, K$ ), анализ данных [31]

| Экс                                   | перимент [30]    |      | Анализ [30]                                                    |                                        | Расчет        |                                                           |
|---------------------------------------|------------------|------|----------------------------------------------------------------|----------------------------------------|---------------|-----------------------------------------------------------|
| $\dot{\varepsilon},  \mathrm{s}^{-1}$ | $\sigma^*$ , MPa | т    | $D_b^{*(\mathrm{exp})} \cdot 10^{11}, \mathrm{m}^2/\mathrm{s}$ | $D_{b0}^* \cdot 10^6, { m m}^2/{ m s}$ | $Q_b^*, kT_m$ | $D_b^{*(\text{calc})} \cdot 10^{11}, \text{m}^2/\text{s}$ |
| $1.4 \cdot 10^{-3}$                   | 10               | 0.11 | 2.03                                                           | 7.79                                   | 9.9           | 2.21                                                      |
| $1.4\cdot 10^{-2}$                    | 13               | 0.23 | 12.1                                                           | 5.27                                   | 8.3           | 11.8                                                      |
| $5.6 \cdot 10^{-2}$                   | 18               | 0.44 | 25.1                                                           | 2.34                                   | 7.1           | 24.6                                                      |
| $1.4\cdot 10^{-1}$                    | 27               | 0.34 | 27.9                                                           | 2.01                                   | 6.9           | 27.4                                                      |
| $5.6 \cdot 10^{-1}$                   | 43               | 0.45 | 44.1                                                           | 0.9                                    | 6.0           | 41.7                                                      |
| 1.4                                   | 65               | 0.45 | 48.2                                                           | 0.8                                    | 5.8           | 45.8                                                      |

## 4. Выводы

1. Разработана модель изменения диффузионных свойств неравновесных границ зерен при рекристаллизации СМК-металлов. Показано, что необходимым условием для повышения коэффициента зернограничной диффузии при отжиге СМК-металлов является аномальный рост зерен, характеризующийся повышенной скоростью миграции границ зерен.

2. Разработана модель ускорения зернограничной диффузии при сверхпластической деформации СМК-материалов. Установлено, что условием, необходимым для повышения коэффициента зернограничной диффузии при сверхпластичности СМК-материалов, являются высокая скорость внутризеренной деформации и высокая плотность решеточных дислокаций.

Результаты численных расчетов, проведенных в рамках разработанных моделей, хорошо согласуются с литературными данными.

### Список литературы

- V.M. Segal, I.J. Beyerlein, C.N. Tome, V.N. Chuvil'deev, V.I. Kopylov. Fundamentals and engineering of severe plastic deformation. Nova Science Publ., N.Y. (2010). 549 p.
- [2] В.Н. Чувильдеев, О.Э. Пирожникова, А.В. Петряев. ФММ 92, 6, 14 (2001).
- [3] В.Н. Чувильдеев. Неравновесные границы зерен в металлах. Теория и приложения. Физматлит, М. (2004). 304 с.

- [4] S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, G. Wilde. Acta Mater. 59, 1974 (2011).
- [5] S.V. Divinski, G. Reglitz, I.S. Golovin, M. Peterlechner, R. Lapovok, Y. Estrin, G. Wilde. Acta Mater. 82, 11 (2015).
- [6] C.Y. Yu, P.L. Sun, P.W. Kao, C.P. Chang. Mater. Sci. Eng. A 366, 310 (2004).
- [7] H.-K. Kim. J. Mater. Sci. 39, 7107 (2004).
- [8] J. Stráská, M. Janeček, J. Čižek, J. Stráský, B. Hadzima. Mater. Charact. 94, 69 (2014).
- [9] X. Molodova, G. Gottstein, M. Winning, R.J. Hellmig. Mater. Sci. Eng. A 460–461, 204 (2007).
- [10] V.N. Chuvil'deev, T.G. Nieh, M.Yu. Gryaznov, A.N. Sysoev, V.I. Kopylov. J. Alloys. Compd. **378**, 253 (2004).
- [11] R. Kapoor, J.K. Chakravartty. Acta Mater. 55, 5408 (2007).
- [12] T. Fujita, Z. Horita, T.G. Langdon. Mater. Science Eng. A 371, 241 (2004).
- [13] S.V. Divinski, J. Ribbe, D. Baither, G. Schmitz, G. Reglitz, H. Rösner, K. Sato, Y. Estrin, G. Widle. Acta Mater. 57, 5706 (2009).
- [14] H.K. Kim, W.J. Kim. Mater. Sci. Eng. A 385, 300 (2004).
- [15] Ю.Р. Колобов, Г.П. Грабовецкая, К.В. Иванов, Н.В. Гирсова. ФММ 91, 5, 107 (2001).
- [16] В.Н. Чувильдеев, В.И. Копылов, М.Ю. Грязнов, А.Н. Сысоев, Б.В. Овсянников, А.А. Флягин. ДАН 423, 334 (2008).
- [17] H.B. Geng, S.B. Kang, B.K. Min. Mater. Sci. Eng. A 373, 229 (2004).
- [18] М.Ю. Грязнов, А.Н. Сысоев, В.Н. Чувильдеев. ФММ 87, 2, 84 (1999).
- [19] И.С. Головин. ФММ 110, 424 (2010).
- [20] D. Prokoshkina, L. Klinger, A. Moros, G. Wilde, E. Rabkin, S.V. Divinski. Acta Mater. 69, 314 (2014).

- [21] В.Н. Чувильдеев. ФММ 81, 5, 5 (1996).
- [22] Г.Дж. Фрост, М.Ф. Эшби. Карты механизмов деформации. Металлургия, Челябинск. (1989). 328 с.
- [23] А.Р. Уббелоде. Расплавленное состояние вещества. Металлургия, М. (1982). 376 с.
- [24] С.С. Горелик, С.В. Добаткин, Л.М. Капуткина. Рекристаллизация металлов и сплавов. МИСИС, М. (2005). 432 с.
- [25] А.В. Пискунов, В.Н. Чувильдеев, Ю.Г. Лопатин. В сб.: ВНКСФ-15. АСФ России, Екатеринбург–Кемерово (2009). С. 759.
- [26] T.G. Nieh, D. Wadsworth, O.D. Sherby. Superplasticity in metals and ceramics. Cambridge Univ. Press, Cambridge (1997). 316 p.
- [27] V.N. Perevezentsev, V.V. Rybin, V.N. Chuvil'deev. Acta Met. Mater. 40, 887 (1992).
- [28] T.G. Langdon. J. Mater. Sci. 44, 5998 (2009).
- [29] В.Н. Чувильдеев, А.В. Петряев. ФММ 89, 2, 24 (2000).
- [30] M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, T.G. Langdon. Acta Mater. 49, 3829 (2001).
- [31] F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh. Scripta Mater. 50, 511 (2004).
- [32] С.В. Земский, Н.Е. Фомин, Г.К. Мальцева. ФХОМ 4, 91 (1978).