05,12

Ферромагнитный резонанс в монокристаллических спиновых вентилях CoFeB/Ta/CoFeB и пленках CoFeB с перпендикулярной магнитной анизотропией

© А.Д. Таланцев¹, Г.Л. Львова¹, О.В. Коплак^{1,2}, О.С. Дмитриев³, Ү. Lu⁴, S. Mangin⁴, Р.Б. Моргунов^{1,3,¶}

 ¹ Институт проблем химической физики РАН, Черноголовка, Россия
² Балтийский федеральный университет им. И. Канта, Калининград, Россия
³ Тамбовский государственный технический университет, Тамбов, Россия
⁴ Institut Jean Lamour, UMR 7198 CNRS, Université de Lorraine, Nancy, France
[¶] E-mail: morgunov2005@yandex.ru

(Поступила в Редакцию 21 февраля 2017 г.)

В пленке MgO/CoFeB/MgO/Ta с одним ферромагнитным слоем (монослой) и спиновом вентиле MgO/CoFeB/Ta/CoFeB/MgO/Ta, состоящем из двух ферромагнитных слоев CoFeB с монокристаллической структурой, разделенных немагнитным слоем Ta (бислой), исследованы ориентационные зависимости ферромагнитного резонанса. Анализ ориентационных зависимостей структур с перпендикулярной магнитной анизотропией позволил извлечь константы магнитной анизотропии, а также коэффициенты демпфирования. Обсуждаются физические причины различий этих параметров в однослойных и двухслойных структурах.

Работа поддержана Министерством образования и науки РФ (грант № 3.1992.2017/ПЧ в рамках конкурса научных проектов, выполняемых научными коллективами исследовательских центров и (или) научных лабораторий образовательных организаций высшего образования), а также грантом № 14.W03.31.0001.

DOI: 10.21883/FTT.2017.08.44753.47

1. Введение

Инженерия спиновых логических вентилей на основе туннельного гигантского магнетосопротивления (ГМС) успешно завоевывает свою нишу в индустрии элементов магнитной памяти, считывающих и записывающих устройств, биосенсоров [1-3]. Главным элементом таких устройств является гетероструктура с несколькими ферромагнитными слоями, разделенными немагнитными прослойками. Имеется большое количество модификаций таких гетероструктур, однако до сих пор инженерные, технологические и фундаментальные аспекты их функционирования до конца неясны. Среди "белых пятен" можно упомянуть отсутствие систематической информации о роли доменных стенок и фазы обратной намагниченности при перемагничивании ферромагнитных слоев, нестабильность и сложность поведения намагниченности на рабочих частотах (более 10 GHz), неадекватность теории макроспина при описании релаксационных процессов в вентилях и многие другие. Даже самые простые гетероструктуры, состоящие из пары ферромагнитных слоев CoFeB, популярные у исследователей, продолжают привлекать внимание в связи с многообразием физических эффектов, а также появлением новых идей их использования в спинтронике [4-8].

Настоящая работа посвящена исследованию и сравнению ферромагнитного резонанса (ФМР), возбуждаемого в отдельном слое CoFeB, а также в двухслойной системе СоFeB/Ta/CoFeB в условиях существования перпендикулярной магнитной анизотропии ферромагнитных слоев. Перпендикулярная анизотропия в таких системах, как известно, обеспечивается гибридизацией 3d-орбиталей переходных металлов (Co,Fe) с О_{2p}-орбиталями оксида MgO. Такая гибридизация обеспечивает перпендикулярную магнитную анизотропию на границе CoFeB/MgO [9]. При толщинах слоев CoFeB менее 2nm вклад перпендикулярной анизотропии начинает доминировать, и ось легкого намагничивания пленок оказывается направленной перпендикулярно плоскости слоев. Монокристаллические образцы, приготовленные нами, обладают ГМС в среднем до 100% [10,11] и могут рассматриваться в качестве готовых спиновых вентилей. ФМР, возбуждаемый в тонких пленках с кубической структурой, сам по себе хорошо известен и не представляет самостоятельного интереса. Однако сравнение ФМР в тонкой пленке и двухслойной системе показывает существенные различия, что является предметом обсуждения в настоящей работе.

Еще один важный параметр гетероструктур спинтроники — коэффициент затухания прецессии намагниченности α, который является феноменологическим параметром в уравнении Ландау—Лифшица—Гильберта [1–3]. Именно этот параметр определяет пригодность или непригодность созданных гетероструктур для практического использования на сверхвысоких частотах. В инженерной практике принято, что верхний предел значений α , приемлемый для использования, составляет 0.027. Причина этого ограничения состоит в том, что перемагничивание вентилей в реальных устройствах производится с помощью спин-поляризованного тока, прямо пропорционального величине α . При высоком значении величины α нужен значительный спин-поляризованный ток, чтобы развернуть вектор намагниченности слоя на 180° и переключить спиновый вентиль. Это делает неприемлемыми структуры с большим значением α . Поэтому еще одной целью настоящей работы является установление того, как меняется коэффициент затухания при переходе от однослойной к двухслойной системе.

2. Образцы и методика экспериментов

MgO (2.5 nm)/ Многослойные структуры СоFeB (1.1 nm)/MgO (2.5 nm)/Ta (5 nm) (образец І монослой с одним слоем CoFeB) и MgO(2.5 nm)/ CoFeB(1.1 nm)/Ta(0.75 nm)/CoFeB(0.8 nm)/MgO (2.5 nm)/ Та (5 nm) (образец II — бислой, состоящий из двух ферромагнитных слоев CoFeB, разделенных антиферромагнитным слоем Та) были выращены на подложках нелегированного GaAs (001) методом магнетронного распыления. Подробно методика роста описана в работах [10,11]. Для увеличения перпендикулярной анизотропии производился быстрый температурный отжиг при 250°С в течение 3 min, который приводил к увеличению кристалличности слоев СоFeB. Характерный размер образцов составлял 0.4 × 2 × 2 mm. Отметим, что толщина пленки CoFeB в монослойном образце точно совпадала с толщиной одной из пленок бислойного образца: 1.1 nm. Такой подбор образцов был необходим для корректного сравнения магнитного резонанса в этих структурах, чтобы в случае обнаружения различий они не объяснялись тривиальным эффектом различия толщин пленок. Ферромагнитный резонанс был исследован с помощью ЭПР-спектрометра X-диапазона Bruker ESP 300. Частота микроволнового поля составляла 9447 Hz, мощность 6.3 mW, частота модулирующего поля 100 kHz, амплитуда модулирующего поля 10 Oe.

3. Экспериментальные результаты и их обсуждение

Анизотропные спектры ФМР для монослоя и бислоя, измеренные при температуре 296 К в четырех ориентациях магнитного поля относительно нормали к плоскости образца: $\theta = 0$, 45, 60 и 90°, представлены на рис. 1, *a*, *b*. В спектрах наблюдалась интенсивная несимметричная линия *A*, положение которой зависит от угла θ , соответствующая сигналу от образца (рис. 1, *b*). Изотропная линия слабой интенсивности *B* с центром на 2700 Ос соответствует сигналу контрольного образца. Далее обсуждается только линия *A*.

Рис. 1. Спектры ФМР монослойного (a) и бислойного (b) образцов для четырех ориентаций θ магнитного поля H относительно нормали к плоскости образца: $\theta = 0$ (1), 45 (2), 60 (3) и 90° (4). Пик при 2850 Ос соответствует сигналу контрольного образца и не зависит от угла θ .

Зависимость резонансного поля линии H_{RES} от угла как для монослоя, так и для бислоя имела классический вид и в интервале углов от -0 до 360° содержала два максимума (при $\theta = 90$ и 270°) и два минимума (при $\theta = 0$ и 180°). При этом для монослоя разность резонансных полей при $\theta = 0$ и 90° больше, чем разность резонансных полей для бислоя. Это означает, что энергия перпендикулярной анизотропии выше для монослойного образца. Причиной такого различия энергий анизотропии монослоя и бислоя может служить то, что перпендикулярная анизотропия — это поверхностная анизотропия. Она возникает вследствие гибридизации орбиталей Со и О₂, на интерфейсе СоFeB и MgO. Ее вклад будет тем более существенным, чем тоньше слой и чем больше площадь интерфейса между CoFeB и MgO на единицу объема слоя. В бислойном образце слои CoFeB граничат с разделяющим слоем Та с одной стороны и с MgO с другой. В монослойном образце MgO находится по обеим сторонам слоя CoFeB, в результате чего площадь интерфейса CoFeB/MgO для монослоя оказывается выше.

Константы анизотропии могут быть найдены с помощью стандартных аппроксимаций зависимости резонансного поля от полярного угла для магнитокристаллической анизотропии [12–15]. Зависимость резонансного поля ферромагнитной пленки кубической симметрии от полярного θ и азимутального φ углов с учетом констант кристаллической анизотропии второго $K_{2\perp}$, $K_{2\parallel}$ и четвертого K_4 порядков следует из магнитной части свободной энергии, которая запишется в виде [12]

$$E = -\mathbf{H}\mathbf{M} - (K_{2\perp} - 2\pi M^2) \cos^2 \theta$$
$$+ K_{2\parallel} \sin^2 \theta \cos^2(\varphi - \varphi_{2\parallel}) + E_4(K_4, \theta, \varphi), \qquad (1)$$

где *М* — намагниченность насыщения, а энергия четвертого порядка анизотропии равна [13,14]

$$E_4 = -\frac{1}{2} K_4 \left[\cos^4 \theta + \frac{1}{4} \left(3 + \cos 4\varphi \right) \sin^4 \theta \right].$$
 (2)

Резонансная угловая частота ω запишется в виде

$$\left(\frac{\omega}{\gamma}\right)^{2} = \frac{1}{M^{2}} \left[E_{\theta\theta} \left(\frac{E_{\varphi\phi}}{\sin^{2}\theta} + \frac{\cos\theta}{\sin\theta} E_{\theta} \right) \right. \\ \left. \times \left(\frac{E_{\theta\phi}}{\sin\theta} - \frac{\cos\theta}{\sin\theta} \frac{E_{\phi}}{\sin\theta} \right)^{2} \right],$$
(3)

где $E_{\phi\phi}$, $E_{\theta\phi}$, E_{θ} и E_{ϕ} — производные от энергии (1) по соответствующим углам [15].

В результате дифференцирования соотношений (1) и (2) и подстановки в (3) получим условие для резонансного поля *H*_{RES}

$$(\omega_0/\gamma)^2 = \left(H_{\text{RES}}\cos(\theta - \theta_H) - 4\pi M_{\text{eff}}\cos^2\theta\right) \\ \times \left(H_{\text{RES}}\cos(\theta - \theta_H) - 4\pi M_{\text{eff}}\cos(2\theta) + H_{2\parallel}\right), \quad (4)$$

в котором $4\pi M_{\rm eff} = (-2K_{2\perp}/M_S) + 4\pi M_S$ — эффективное поле, $\omega_0 = 9.447 \,{\rm GHz}$ — резонансная частота спектрометра, $\gamma = g/\mu_{\rm B}h$ — гиромагнитное отношение, M_S — намагниченность насыщения слоя, $K_{2\perp}$ — искомое значение константы анизотропии, θ — угол между вектором намагниченности и нормалью к плоскости образца, θ_H — угол между направлением магнитного поля и нормалью к плоскости образца.

Вклад анизотропии в плоскости образца (in-plane) пренебрежимо мал по сравнению с анизотропией относительно полярного угла (out-of-plane). Направление оси анизотропии определяется знаком эффективного поля H_{eff} . Если $(-2K_{2\perp}/M_S) + 4\pi M_S > 0$, ось легкого намагничивания лежит в плоскости пленки. Если же $(-2K_{2\perp}/M_S) + 4\pi M_S < 0$, ось легкого намагничивания перпендикулярна плоскости пленки. В нашем случае $H_{\text{eff}} < 0$ как для монослоя, так и для бислоя.

Результаты аппроксимации угловых зависимостей резонансного поля показаны на рис. 2, *a* сплошными линиями. При аппроксимации были получены следующие параметры: для монослоя $M_S = 775$ G, g = 1.95, $K_{2\perp} = 4.2 \cdot 10^6$ erg/cm³, $K_S = K_{2\perp}V/S = 0.42$ erg/cm² (*V* и *S* — объем и площадь поверхности монослоя соответственно), $4\pi M_{\rm eff} = 1230$ G; для бислоя $4\pi M_{\rm eff} = 890$ G, g = 2.025. В спиновом вентиле в более тонком слое СоFeB толщиной 0.8 nm были получены следующие параметры: $M_S = 657$ G, $K_{2\perp} = 3.0 \cdot 10^6$ erg/cm³, $K_{S2} = 0.3$ erg/cm². В более

Рис. 2. Угловые зависимости резонансного поля $H_{\text{RES}}(a)$ и ширины линии $H_{\text{P-P}}(b)$ для монослоя (I) и бислоя (II).

толстом слое вентиля толщиной 1.1 nm эти параметры принимали следующие значения: $M_S = 768 \text{ G}$, $K_{2\perp} = 4.05 \cdot 10^6 \text{ erg/cm}^3$, $K_{S2} = 0.4 \text{ erg/cm}^2$. Отметим, что, несмотря на одинаковую толщину слоев 1.1 nm в монослойном и бислойном образцах, параметры магнитной анизотропии в них различались. Монослой проявлял бо́льшую склонность к перпендикулярной анизотропии.

Ширина линии как правило определяется суммой вкладов трех компонент: уширения ΔH_G вследствие конечного времени затухания спиновой прецессии (определяется параметром Гильберта G), уширения ΔH_{2mag} вследствие двухмагнонного рассеяния и неоднородного уширения линии ΔH_{inh} [16]. В тонких кристаллических пленках высокой однородности с большими значениями намагниченности влиянием неоднородного уширения ΔH_{inh} можно пренебречь, в то время как величины ΔH_G и ΔH_{2mag} сопоставимы. В соответствии с данными работы [16] $\Delta H_G = 2\alpha(\omega/\gamma)$. Таким образом, ширина резонансной линии может быть записана в виде $\Delta H = \Delta H_G + \Delta H_{2mag} \sim 2\Delta H_G = 4\alpha(\omega/\gamma)$, откуда параметр Гильберта может быть оценен как $\alpha = (1/4)\Delta H/(\omega/\gamma)$. В нашем случае $\omega/\gamma = 3358$ Oe,

Рис. 3. Схема измерений ФМР в резонаторе H_{102} . Магнитная компонента микроволнового поля осциллирует в плоскости xy, электрическая компонента — вдоль оси z.

 $\Delta H \sim 200-300$ Ос. Отсюда $\alpha \sim 0.015$ для монослоя и $\alpha \sim 0.022$ для бислоя. Полученные значения параметра Гильберта лежат внутри диапазона 0.004–0.027, допустимого для эпитаксиальных структур CoFeB с ГМС, применяемых в спинтронике.

Обсудим теперь форму линий ФМР. Асимметрия линий ФМР также часто бывает связана с потерями, возникающими в скин-слое в результате диссипации электрической компоненты микроволнового поля, проходящего через образец (линия Дайсона) [17]. Схема, показывающая направление электрической и магнитной компонент микроволнового поля относительно нормали к плоскости образца, для произвольного угла θ между направлением постоянного магнитного поля $H_{\rm DC}$ и направлением постоянного магнитного поля $H_{\rm DC}$ и направлением нормали к плоскости образца представлена на рис. 3. Вдоль оси x в резонаторе укладываются две полуволны $h_{\rm AC}$. Образец находится в пучности колебаний микроволнового поля $h_{\rm AC}$, поэтому в области нахождения образца магнитная компонента микроволнового вого поля осциллирует вдоль оси y.

Электрическая компонента микроволнового поля осциллирует вдоль оси z (вдоль направления постоянного магнитного поля спектрометра). Наибольшая величина диссипации электрической компоненты микроволнового поля достигается при $\theta = 90^{\circ}$, когда вектор электрической компоненты направлен вдоль плоскости образца. При $\theta = 0^{\circ}$ колебания электрической компоненты происходят в направлении, перпендикулярном плоскости образца, и потери энергии микроволнового поля минимальны. Таким образом, если бы асимметрия линий ФМР была обусловлена только наличием диэлектрических потерь, то при заданной величине угла θ отношение амплитуд левого A_1 и правого A_2 крыльев линии должно быть одинаковым как для монослоя, так и для бислоя, а наиболее сильное различие амплитуд A₁ и A₂ должно было бы достигаться при $\theta = 90^{\circ}$. Однако, как видно из рис. 1, в нашем случае это не так. Для монослойного образца линия симметрична на всем диапазоне углов θ от 0 до 90° , в то время как для бислоя линия ΦMP асимметрична, наибольшее различие амплитуд A1 и A2 достигается при $\theta = 60^{\circ}$. Это означает, что асимметричность линий ФМР для бислоя в нашем случае не может быть объяснена в рамках модели Дайсона и, скорее всего, является следствием наложения двух линий, по одной от каждого ферромагнитного слоя. Разложение линии на две лоренцевы компоненты и анализ констант анизотропии в этих условиях показали, что значения констант анизотропии в пределах погрешности получаются равными приведенным выше для случая, когда спектр анализировался как одиночная линия.

Нельзя исключить также и взаимного влияния двух близко расположенных ферромагнитных слоев CoFeB в спиновом вентиле. Толщина прослойки Та между ними обеспечивает обменное взаимодействие между слоями и таким образом изменяет эффективную толщину слоев, что также может приводить к изменению констант анизотропии и фактора затухания прецессии. Отметим, что при комнатной температуре перемагничивание слоев в магнитном поле спектрометра, развертка которого занимает 10–15 min, сопровождается релаксационными процессами, связанными с доменными стенками и зародышами обратной намагниченности. Эти объекты создают предпосылки неоднородной намагниченности пленок и способны увеличивать значение константы демпфирования, а также приводить к асимметрии линии ФМР.

4. Заключение

Обнаружены различия констант анизотропии и фактора затухания спиновой прецессии в пленке MgO/CoFeB/MgO/Ta, содержащей один ферромагнитный слой CoFeB, и в спиновом вентиле MgO/CoFeB/Ta/CoFeB/MgO/Ta, состоящем из двух ферромагнитных слоев CoFeB, разделенных антиферромагнитным слоем Ta, один из слоев которого имеет такую же толщину, как и пленка в однослойном образце. Эти различия объясняются разной удельной долей интерфейса CoFeB/MgO, обеспечивающего перпендикулярную анизотропию путем гибридизации 3*d*-орбиталей переходных металлов (Co,Fe) с O²_p-орбиталями оксида MgO.

Список литературы

- S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno. Nature Mater. 9, 721 (2010).
- [2] X. Wang. Metallic spintronic devices. CRC Press, Fl., USA (2014). 273 p.
- [3] L. Cuchet, B. Rodmacq, S. Auffret, R.C. Sousa, I.L. Prejbeanu, B. Dieny. Sci. Rep. 6, 21246 (2016).

- [4] T. Zhu, P. Chen, Q.H. Zhang, R.C. Yu, B.G. Liu. Appl. Phys. Lett. 104, 202404 (2014).
- [5] R. Soucaille, M. Belmeguenai, J. Torrejon, J.V. Kim, T. Devolder, Y. Roussigne, S.M. Cherif, A.A. Stashkevich, M. Hayashi, J.P. Adam. Phys. Rev. B 94, 104431 (2016).
- [6] N. Lei, T. Devolder, G. Agnus, P. Aubert, L. Daniel, J.V. Kim, W. Zhao, T. Trypiniotis, R.P. Cowburn, C. Chappert, D. Ravelosona, P. Lecoeur. Nature Commun. 4, 1378 (2013).
- [7] S.M. Watson, T. Hauet, J.A. Borchers, S. Mangin, E.E. Fullerton. Appl. Phys. Lett. 92, 202507 (2008).
- [8] S. Mangin, L. Thomas, F. Montaigne, W. Lin, T. Hauet, Y. Henry. Phys. Rev. B 80, 224424 (2009).
- [9] H. Yang, M. Chshiev, B. Dieny, J. Lee, A. Manchon, K. Shin. Phys. Rev. B 84, 054401 (2011).
- [10] D.B. Gopman, D. Bedau, S. Mangin, E.E. Fullerton, J.A. Katine, A.D. Kent. J. Appl. Phys. 115, 113910 (2014).
- [11] S. Mangin, A. Sulpice, G. Marchal, C. Bellouard, W. Wernsdorfer, B. Barbara. Phys. Rev. B 60, 1204 (1999).
- [12] S.A. Oliver, C. Vittoria, E. Schloemann, H.J. Van Hook, R.W. Tustison. J. Appl. Phys. 63, 3802 (1988).
- [13] B. Schulz, K. Baberschke. Phys. Rev. B 50, 13467 (1994).
- [14] G. Gubbiotti, G. Carlotti, B. Hillebrands. J. Phys.: Condens. Matter 10, 2171 (1998)
- [15] L. Baselgia, M. Warden, F. Waldner, S.L. Hutton, J.E. Drumheller, Y.Q. He, P.E. Wigen, M. Marysko. Phys. Rev. B 38, 2237 (1988).
- [16] J. Dubowik, K. Załeski, H. Głowinski, I. Goscianska. Phys. Rev. B 84, 184438 (2011).
- [17] Ч. Пул. Техника ЭПР-спектроскопии. Мир, М. (1970). С. 448.