# 04 Влияние нестехиометрии на период решетки кубического карбида ванадия VC<sub>v</sub>

© А.С. Курлов, А.И. Гусев¶

Институт химии твердого тела УрО РАН, Екатеринбург, Россия <sup>¶</sup> E-mail: gusev@ihim.uran.ru

#### (Поступила в Редакцию 6 февраля 2017 г.)

Изучено влияние нестехиометрии на период решетки кубического карбида ванадия  $VC_y$  (0.65 < y < 0.875). Установлено, что упорядочение карбида ванадия  $VC_y$  с образованием сверхструктур  $V_6C_5$  и  $V_8C_7$  приводит к росту периода базисной кристаллической решетки по сравнению с неупорядоченным карбидом. С учетом изменения периода решетки обсуждается вопрос о направлении статических смещений атомов вблизи вакансии.

Исследование выполнено в ИХТТ УрО РАН за счет гранта Российского научного фонда (проект РНФ № 14-23-00025).

DOI: 10.21883/FTT.2017.08.44748.30

## 1. Введение

Карбид ванадия принадлежит семейству карбидов переходных металлов IV–VI групп (M = Ti, Zr, Hf, V, Nb, Ta), являющихся одними из самых твердых и тугоплавких соединений. В системе ванадий–углерод V–C наибольший интерес представляет кубический карбид ванадия VC<sub>y</sub>. Карбид ванадия VC<sub>y</sub> широко используется в металлургической промышленности в качестве легирующей добавки для упрочнения сталей [1–3], а также как ингибитор роста зерен WC в субмикро- и нанокристаллических твердых сплавах WC–Co [4–8], которые применяются для производства самого высококачественного бурильного и режущего инструмента. Другая перспективная область применения карбида ванадия — использование как катализатора для восстановления кислорода и окисления спиртов [9–12].

Влияние нестехиометрии на период базисной кристаллической решетки нестехиометрических карбидов  $MC_y$  ( $MC_{y\square1-y}$ ) со структурой *B*1 изучали многие авторы. Согласно результатам исследований, по мере уменьшения содержания атомов углерода С или, что то же самое, с ростом концентрации структурных вакансий  $\square$  наблюдается нелинейное уменьшение периода решетки  $a_{B1}$  этих соединений.

Неупорядоченный кубический карбид ванадия VC<sub>y</sub> (пространственная группа (пр. гр.)  $Fm\bar{3}m$ ) имеет широкую область гомогенности от VC<sub>0.65</sub> до VC<sub>0.875</sub> с уникальным положением верхней границы, существенно удаленной от стехиометрического состава MC<sub>1.0</sub> [13,14]. Других неупорядоченных кубических карбидов с таким положением верхней границы области гомогенности нет. В области гомогенности неупорядоченного кубического карбида VC<sub>y</sub> в результате отжига при температуре ниже 1360 К могут образовываться две упорядоченные

фазы V<sub>6</sub>C<sub>5</sub> и V<sub>8</sub>C<sub>7</sub> [13–15]. Особенно легко образуется кубическая (пр. гр. *P*4<sub>3</sub>32) упорядоченная фаза V<sub>8</sub>C<sub>7</sub>.

Ранее уже изучалось изменение периода кристаллической решетки в зависимости от состава нестехиометрического кубического карбида ванадия VC<sub>y</sub>. Однако в большинстве исследований не было определено, каково структурное состояние изученных образцов — неупорядоченное или упорядоченное.

Упорядочение влияет на период базисной кристаллической решетки карбида ванадия, приводя к его росту [13,14,16-21]. Впервые увеличение периода базисной решетки при превращении VC<sub>0.875</sub> — V<sub>8</sub>C<sub>7</sub> было зафиксировано в работе [16] при изучении упорядочения нестехиометрического карбида ванадия. Согласно [16], при комнатной температуре период базисной решетки закаленного неупорядоченного карбида VC<sub>0.875</sub> составлял 0.41662 nm, а упорядоченного карбида этого же состава — 0.41667 nm (или 0.83334 nm для кубической сверхструктуры V<sub>8</sub>C<sub>7</sub> с удвоенным периодом решетки). Это хорошо согласуется со скачкообразным изменением периода базисной решетки карбида ванадия от 0.4202 до 0.4200 nm в результате разупорядочения фазы V8C7 при нагреве выше температуры превращения порядок-беспорядок  $T_{\text{trans}} = 1413 \pm 10 \text{ K}.$ Этот эффект был обнаружен при высокотемпературном рентгеновском исследовании [16]. В [20] показано, что при комнатной температуре период базисной решетки упорядоченной фазы V<sub>6</sub>C<sub>5</sub> во всей области гомогенности больше, чем период *a*<sub>*B*1</sub> неупорядоченного карбида VC<sub>v</sub>.

Работ по определению периода решетки именно неупорядоченного карбида ванадия мало. Это работы, в которых карбид ванадия был синтезирован при высоких (более 1500 K) температурах с последующей закалкой, что обеспечивало получение неупорядоченного карбида, или работы, где целенаправленно получали кар-

бид VC<sub>y</sub> как в неупорядоченном, так и в упорядоченном состояниях.

В работе [22] однофазные образцы кубического карбида ванадия VC<sub>y</sub> (y = 0.762, 0.782, 0.808, 0.825, 0.869) были синтезированы газовой карбидизацией (gas carburization) волокон ванадия диаметром ~ 0.25 mm в метане CH<sub>4</sub> при ~ 1780 K в течение 8 h. Дополнительно карбид VC<sub>0.876</sub> был получен горячим прессованием смеси порошков ванадия и графита в вакууме при температуре около 2200 K и давлении прессования ~ 1.6 MPa в течение 30 min.

В работе [23] образцы кубического карбида ванадия VC<sub>y</sub> (y = 0.72, 0.74, 0.76, 0.79, 0.84 и 0.88) были синтезированы карботермическим восстановлением оксида V<sub>2</sub>O<sub>3</sub> газовой сажей при температуре ~ 2300 K в течение 15 h. Согласно предшествующей работе [24], синтезированные образцы от VC<sub>0.72</sub> до VC<sub>0.79</sub> содержали до 1.0 at.% примесного кислорода, в образцах VC<sub>0.84</sub> и VC<sub>0.88</sub> содержание примесного кислорода было ~ 0.3 at.%.

В работах [17–21] образцы неупорядоченного кубического карбида ванадия VC<sub>y</sub> (y = 0.66, 0.79, 0.83. 0.87) были получены горячим прессованием смеси порошков карбида ванадия VC<sub>0.87</sub> и металлического ванадия в атмосфере аргона Ar при температуре около 2200 K и давлении прессования 35 MPa в течение 30 min. Содержание примесного кислорода в полученных образцах составляло от 0.3 до 0.6 at.%.

Данная работа посвящена определению зависимости периода решетки от состава неупорядоченного кубического (пр. гр.  $Fm\bar{3}m$ ) карбида ванадия VC<sub>y</sub> с разной нестехиометрией в пределах его области гомогенности от VC<sub>0.65</sub> до VC<sub>0.875</sub>.

# Образцы и экспериментальные методы

Образцы нестехиометрического кубического (пр. гр.  $Fm\bar{3}m$ ) карбида ванадия VC<sub>v</sub> с разным составом (у = 0.68, 0.71, 0.73, 0.76, 0.81, 0.85 и 0.87) в пределах его области гомогенности были синтезированы твердофазным вакуумным спеканием смеси порошков ванадия и черной газовой сажи МТ-900. Перед приготовлением шихты сажу для удаления влаги сушили в течение 2 h при температуре 470-500 К в разряженной атмосфере с остаточным давлением 10<sup>3</sup> Ра. Тщательно перемешанные порошки ванадия и просушенной сажи, взятые в требуемых пропорциях с учетом потери углерода при синтезе, прессовали под давлением 200 МРа. Синтез проводили в вакуумной высокотемпературной печи LF-22-2000 (Centorr/Vacuum Industries) при температуре от 1573 до 2073 К в течение 5 h.

Кристаллическую структуру, фазовый состав и параметры решетки синтезированных образцов VC<sub>y</sub> определяли методом рентгеновской дифракции на автодифрактометре Shimadzu XRD-7000 с геометрией съемки плоского образца по Бреггу–Брентано в интервале углов  $2\theta$  от 10 до 140° с пошаговым сканированием  $\Delta(2\theta) = 0.03^\circ$  и временем экспозиции 2 sec в точке в излучении Cu $K_{\alpha_{1,2}}$ . Рентгенограммы анализировались с помощью программного пакета X'Pert HighScore Plus [25]. Кристаллическую структуру упорядоченного карбида V<sub>8</sub>C<sub>7</sub> дополнительно исследовали методом TOF-нейтронографии (time-of-flight — по времени пролета).

Морфологию и размер частиц синтезированных образцов VC<sub>y</sub> изучали с помощью сканирующего электронного микроскопа JEOL JSM 6390 LA.

Химический анализ образцов VC<sub>y</sub> на общее содержание углерода  $C_{total}$  и содержание свободного углерода  $C_{free}$  проводили с помощью анализатора МЕТАВАК CS-30. Содержание примесных элементов определяли на масс-спектрометре Perkin Elmer SCIEX-ELAN 9000 и энергодисперсионным рентгеновским (EDX) анализом на микроскопе JEOL JSM 6390 LA с анализатором JED 2300.

# 3. Обсуждение результатов

На рис. 1 показаны рентгенограммы синтезированных карбидов ванадия VC<sub>v</sub> с разным относительным содержанием углерода у в интервале от 0.68 до 0.87. О высокой степени гомогенности синтезированных карбидов ванадия VC<sub>v</sub> свидетельствует расщепление Cu $K_{\alpha_1,2}$ -дублетов, которое наблюдается уже для линии (200) в области малых углов  $2\theta \approx 43^{\circ}$  (см. правую вставку на рис. 1). Образцы VC<sub>v</sub> (*y* = 0.68, 0.71, 0.73, 0.76, 0.81, 0.85) содержат только неупорядоченный кубический (пр. гр.  $Fm\bar{3}m$ ) карбид ванадия. Уточнение дифракционных данных образца VC<sub>0.87</sub> показало, что даже после закалки от температуры  $\sim 2000\,\mathrm{K}$  этот образец содержит  $\sim 82\,\mathrm{wt.\%}$ упорядоченной кубической (пр. гр. P4<sub>3</sub>32) фазы V<sub>8</sub>C<sub>7</sub>  $(VC_{0.875})$  и ~ 18 wt.% неупорядоченного карбида  $VC_{0.87}$ с периодом 0.4162 nm (см. рис. 1, левая вставка). Период решетки  $a_{\text{ord}}$  упорядоченной фазы V<sub>8</sub>C<sub>7</sub> равен 0.8336 nm. Период решетки базисной неупорядоченной кубической фазы равен половине периода решетки a<sub>ord</sub> упорядоченной фазы, т.е.  $a_{\rm ord}/2 = 0.4168\,{\rm nm},$  и больше периода  $a_{B1} = 0.4162 \,\mathrm{nm}$  неупорядоченного карбида VC<sub>0.875</sub>. Это согласуется с данными [16,19] о скачкообразном увеличении периода базисной решетки карбида ванадия при превращении беспорядок-порядок VC<sub>0.875</sub>-V<sub>8</sub>C<sub>7</sub>.

Изменение периода решетки  $a_{B1}(y)$  синтезированного карбида ванадия в области гомогенности кубической (пр. гр.  $Fm\bar{3}m$ ) неупорядоченной фазы VC<sub>y</sub> показано на рис. 2. Для сравнения приведены данные предшествующих исследований [18,20,22,23]. В пределах точности экспериментальных результатов все концентрационные зависимости периода являются квадратичными функциями от содержания атомов углерода *y*, т.е.  $\sim a_{B1}(y) = a_0 + a_{1y} + a_2y^2$ . Данные [23] явно занижены из-за большого содержания примесного кислоро-



**Рис. 1.** Рентгенограммы синтезированных образцов VC<sub>y</sub>. На вставке справа показано расщепление дифракционных отражений  $(200)_{B1}$  синтезированных карбидов VC<sub>y</sub> и их смещение в область меньших углов  $2\theta$  (и больших межплоскостных расстояний d) при увеличении содержания углерода. На левой вставке показан участок рентгенограммы карбида VC<sub>0.87</sub> с дифракционными отражениями, характерными для упорядоченной фазы V<sub>8</sub>C<sub>7</sub>. Все рентгенограммы записаны в излучении CuK<sub>α<sub>1,2</sub>.</sub>

да в неметаллической подрешетке карбидов, особенно в области от VC<sub>0.72</sub> до VC<sub>0.79</sub>. Наибольшее согласование данных разных работ наблюдается для VC<sub>y</sub> в области y = 0.80-0.87. Период решетки синтезированного в данной работе неупорядоченного карбида ванадия VC<sub>y</sub> с кубической структурой *B*1 описывается функцией  $a_{B1}(y) = a_0 + a_{1y} + a_2y^2$  с параметрами  $a_0 = 0.38954, a_1 = 0.04550$  и  $a_2 = -0.01693$  nm.

В нестехиометрических карбидах с базисной структурой В1 каждый атом металла находится в ближайшем окружении шести узлов неметаллической подрешетки, которые могут быть заняты атомами углерода или вакантны. Это дает возможность представить кристалл со структурой В1 как совокупность кластеров в форме многогранников Дирихле-Вороного, т.е. искаженной ячейки Вигнера-Зейтца (в структуре В1 ячейкой Вигнера-Зейтца является ромбододекаэдр). Каждый кластер включает в себя атом металла, расположенный в центре, и шесть узлов углеродной подрешетки (рис. 3), которые могут быть заняты атомами углерода или вакантны. Такие кластеры заполняют весь объем кристалла, обеспечивают континуальность среды, учитывают все узлы кристаллической решетки и позволяют описать изменение объема или периода элементарной



**Рис. 2.** Период решетки  $a_{B1}(y)$  карбида ванадия в области гомогенности кубической (пр. гр.  $Fm\bar{3}m$ ) неупорядоченной фазы VC<sub>y</sub> по данным разных работ: 1 - [22], 2 - [23], 3 - [18,20], 4 - данные настоящей работы. Границы области гомогенности фазы VC<sub>y</sub> показаны вертикальными пунктирными линиями.



**Рис. 3.** Кластерная фигура в виде ромбододекаэдра, используемая для описания кристаллической решетки нестехиометрического карбида ванадия  $VC_y$  с базисной кубической структурой типа *B*1.

1501

ячейки карбида  $VC_y$  как функцию состава *у* и степени дальнего порядка  $\eta$ .

В первом приближении будем полагать, что объем кластера  $V_m$  зависит только от числа вакансий m в нем. В этом случае объем кристалла V можно представить в виде

$$V = N \sum_{m=0}^{6} \lambda_m P_m(y, \eta) V_m, \tag{1}$$

где  $P_m(y, \eta)$  — вероятность образования в кристалле кластера с числом вакансий, равным *m*;  $\eta$  — параметр дальнего порядка;  $\lambda_m = C_6^m$  — мультиплетность *m*-конфигурации кластера; *N* — число узлов металлической подрешетки. С другой стороны, объем неупорядоченного карбида можно представить через период решетки  $a_{B1}(y) = a_0 + a_1y + a_2y^2$  как  $V = (N/4)a_{B1}^3(y)$ . С учетом этого уравнение (1) для неупорядоченного карбида примет вид

$$\sum_{m=0}^{6} \lambda_m P_m(y,0) V_m = \frac{(a_0 + a_1 y + a_2 y^2)^3}{4}, \qquad (2)$$

где  $P_m(y, 0) = (1 - y)^m y^{(6-m)}$  — вероятность образования в неупорядоченном карбиде кластера, включающего *m* вакансий. Решением уравнения (2) является выражение для объема кластера:

$$V_m = \frac{1}{4} \sum_{k=m}^{6} A_{6-k} \frac{k!(6-m)!}{6!(k-m)!},$$
(3)

где  $A_{6-k}$  — коэффициенты при  $y^k$  в правой части уравнения (2).

Вклад каждого типа кластера в общий объем кристалла пропорционален вероятности его образования  $P_m$ . Для равновесных условий вероятность  $P_m(y, \eta)$  существования кластера, содержащего *m* вакансий, в упорядоченной фазе типа  $M_{2t}C_{2t-1}$  с любой степенью дальнего порядка можно представить [13,14] в виде

$$P_{m,t}(y,\eta) = \frac{1}{\Phi} \sum_{j} \frac{g_f}{C_6^{\nu(t,f)}} \sum_{\nu=0}^{\nu(t,f)} C_{6-m}^{\nu(t,f)-\nu} C_m^{\nu} n_1^{[\nu(t,f)-\nu]} \times n_2^{[6-m-\nu(t,f)+\nu]} (1-n_1)^{\nu} (1-n_2)^{m-\nu}, \quad (4)$$

где  $n_1 = y - (2t-1)\eta/2t$  и  $n_2 = y + \eta/2t$  — вероятности обнаружения атома углерода на узле вакансионной и углеродной подрешеток соответственно при образовании сверхструктуры типа  $M_{2t}C_{2t-1}$ ;  $g_f$  — мультиплетность неэквивалентных позиций металлических атомов, находящихся в центре каждого кластера ( $\Sigma_f g_f = \Phi$ ); v(t, f) — число узлов вакансионной подрешетки, принадлежащих кластеру с мультиплетностью  $g_f$  в сверх-структуре типа  $M_{2t}C_{2t-1}$ .

Используя уравнения (1), (3) и (4), можно найти объем кристалла и, соответственно, период базисной решетки  $a_{B1}$  нестехиометрического карбида VC<sub>y</sub> с любой

степенью порядка  $\eta$ . В упорядоченном карбиде величина  $\eta$  может изменяться от  $\eta_{\text{trans}}$  (значение параметра порядка в точке перехода) до  $\eta_{\text{max}}$ , поэтому период  $a_{B1}$  упорядоченного карбида можно рассчитать для этих двух предельных случаев.

Согласно [13,14] зависимости  $\eta_{\text{max}}$  и  $\eta_{\text{trans}}$  от состава карбида  $MC_y$  при образовании упорядоченной фазы типа  $M_{2t}C_{2t-1}$  без учета ее границ имеют вид

$$\eta_{\max}(y) = \begin{cases} 2t(1-y), & \text{если } y > (2t-1)/2t \\ 2ty/(2t-1), & \text{если } y < (2t-1)/2t \end{cases}$$
(5)

И

$$(\eta_{\text{trans}}/2)[\partial S_{c}(y,\eta)/\partial\eta]_{\eta=\eta_{\text{trans}}} - S_{c}(y,\eta_{\text{trans}}) + S_{c}(y,0) = 0,$$
(6)

где конфигурационная энтропия  $S_{c}(y, \eta)$  равна

$$S_{\rm c}(y,\eta) = -(k_{\rm B}/2t) \{ n_1 \ln n_1 + (1-n_1) \ln(1-n_1) + (2t-1)[n_2 \ln n_2 + (1-n_2) \ln(1-n_2)] \}.$$
(7)

Области гомогенности упорядоченных фаз  $M_{2t}C_{2t-1}$  ограничены нижней  $y_{\text{lower}}$  и верхней  $u_{\text{upper}}$  границами. На границах области гомогенности параметр дальнего порядка обращается в ноль, а максимальная величина  $\eta$  может быть достигнута для стехиометрического состава  $y_{\text{st}} = (2t - 1)/2t$  упорядоченной фазы. Это можно учесть, представив зависимость параметра дальнего порядка  $\eta_{\text{b}}$  от состава у упорядоченной фазы как

$$\eta_{b} = \begin{cases} \eta_{id}(y - y_{lower}) / (y_{st} - y_{lower}), & \text{если} \quad y_{st} \ge y \ge y_{lower} \\ \eta_{id}(y - y_{upper}) / (y_{st} - y_{upper}), & \text{если} \quad y_{st} \le y \le y_{upper} \end{cases},$$
(8)

где  $\eta_{id}(y)$  — зависимость максимального или равновесного параметра дальнего порядка для сверхструктуры  $M_{2t}C_{2t-1}$  от ее состава *y*, рассчитанная без учета границ области гомогенности по формулам (5) или (6) соответственно.

Фаза  $V_6C_5$  имеет область гомогенности от  $VC_{0.75}$  до  $VC_{0.845}$  [13,18,20], фаза  $V_8C_7$  имеет очень узкую область гомогенности от  $VC_{0.871}$  ( $V_8C_{6.97}$ ) до  $VC_{0.877}$  ( $V_8C_{7.02}$ ) [26].

В первом варианте расчета предполагалось, что в нестехиометрическом карбиде ванадия VC<sub>y</sub> достигнута максимальная степень дальнего порядка  $\eta_{b-max}$ . Во втором варианте расчета предполагалось, что в упорядоченном карбиде параметр дальнего порядка имеет такую же величину, как при температуре фазового перехода беспорядок—порядок  $T_{trans}$ , т.е.  $\eta_{b-trans}$ .

Рассчитанные изменения периода базисной решетки  $a_{B1}$  неупорядоченного карбида ванадия VC<sub>y</sub> и упорядоченных фаз V<sub>6</sub>C<sub>5</sub> и V<sub>8</sub>C<sub>7</sub> в их областях гомогенности показаны на рис. 4. Видно, что упорядочение сопровождается некоторым ростом периода  $a_{B1}$  по сравнению с неупорядоченным карбидом. Сравнение результатов расчета с литературными данными по периоду базисной **Рис. 4.** Зависимости периода базисной кубической решетки  $a_{B1}$  от состава карбида ванадия VC<sub>y</sub> в неупорядоченном (*I*) и упорядоченных (2, 3) состояниях при температуре 300 К. 2 — расчет в приближении максимальной степени дальнего порядка  $\eta_{b-max}$  в упорядоченных фазах, 3 — расчет в приближении степени дальнего порядка, равной параметру дальнего порядка при температуре фазового перехода беспорядок–порядок  $T_{trans}$ , т. е.  $\eta_{b-trans}$ . Границы областей гомогенности фаз VC<sub>y</sub>, V<sub>6</sub>C<sub>5</sub> и V<sub>8</sub>C<sub>7</sub> показаны вертикальными пунктирными линиями.

решетки  $a_{B1}$  упорядоченных фаз V<sub>6</sub>C<sub>5</sub> [17,18,20] и V<sub>8</sub>C<sub>7</sub> [16,19] показало, что к экспериментальным значениям  $a_{B1}$  наиболее близки значения периода, рассчитанные в приближении  $\eta = \eta_{b-\text{trans}}$ . Это значит, что в результате отжига в нестехиометрическом карбиде ванадия достигается степень дальнего порядка, соответствующая термодинамически равновесному распределению атомов углерода и вакансий в решетке.

Рентгеновское и нейтронографическое исследования [26,27] упорядоченной фазы  $V_8C_7$  показали, что атомы V, образующие октаэдрическое окружение вакантных узлов  $\Box$  неметаллической подрешетки, смещены по направлению к вакансии. Если в неупорядоченном карбиде VC<sub>y</sub> атомы V тоже смещаются к вакансии, то рост концентрации вакантных междоузлий  $\Box V_6$ , имеющих меньший линейный размер по сравнению с заполненными октаэдрическими междоузлиями CV<sub>6</sub>, должен сопровождаться уменьшением периода  $a_{B1}$ . Действительно, увеличение концентрации вакансий (или уменьшение концентрации атомов углерода) сопровождается наблюдаемым уменьшением периода решетки неупорядоченного карбида ванадия VC<sub>y</sub>.

В последние годы основное внимание обращено на получение и применение нанокристаллических порошков карбида ванадия [9,10,28–30]. Как правило, синтезированные нанопорошки аттестуют по составу и кристаллической структуре путем сравнения экспериментальных данных по рентгеновской дифракции со стандартными дифракционными данными фазы  $V_8C_7$  без полнопрофильного уточнения структуры [9,10]. Однако в работах [9,10] нет никаких доказательств наличия сверхструктуры  $V_8C_7$  в синтезированных образцах карбида ванадия, а наблюдаемые дифракционные отражения принадлежат не фазе  $V_8C_7$ , а неупорядоченному кубическому карбиду  $VC_v$ ,  $y \sim 0.88$ .

Другой неудачный способ аттестации нанопорошков карбида ванадия — сравнение периода решетки с концентрационной зависимостью периода решетки крупнозернистого (bulk) карбида ванадия VC<sub>y</sub>. Это тоже совершенно неправильно, так как нанопорошки имеют чрезвычайно большую удельную поверхность и обладают высокой химической активностью по отношению к пара́м воды и газовым примесям, особенно к кислороду. Нанопорошки карбида ванадия химически более активны, чем нанопорошки других карбидов с таким же средним размером частиц. Хранение нанопорошков карбида ванадия на воздухе приводит к их быстрому, в течение 1-2h, загрязнению и окислению кислородом, а также к поверхностной адсорбции воды. В наших предшествующих работах [27,31,32] было показано, что содержание примесного кислорода в нанопорошках карбида ванадия со средним размером частиц менее 80-100 nm достигает  $\sim 3$  wt.%, содержание физически адсорбированной воды составляет от 2 до 8 wt.%. Период кристаллической решетки таких нанопорошков существенно отличается от такового для крупнозернистого (bulk) карбида ванадия VC<sub>v</sub> и не может служить надежной характеристикой их состава.

Таким образом, изучение и применение нанокристаллических порошков карбида ванадия требует их тщательной всесторонней аттестации по химическому составу, содержанию примесей и параметрам кристаллической структуры.

## 4. Заключение

Уменьшение периода решетки карбида ванадия  $VC_y$ в области гомогенности неупорядоченной фазы при уменьшении содержания углерода (или увеличении концентрации структурных вакансий) обусловлено смещением атомов ванадия по направлению к вакансии, аналогичном таковому смещению в упорядоченной фазе  $V_8C_7$ . Упорядочение карбида ванадия  $VC_y$  с образованием сверхструктур  $V_6C_5$  и  $V_8C_7$  приводит к росту периода базисной кристаллической решетки по сравнению с неупорядоченным карбидом.

### Список литературы

- H.J. Goldschmidt. Interstitial Alloys. Plenum Press, N.Y. (1967). 820 p.
- [2] R. Kesri, S. Hamar-Thibault. Acta Met. 36, 1, 149 (1988).
- [3] T.N. Baker. Mater. Sci. Techn. 25, 9, 1083 (2009).



- [4] Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn. Int. J. Refr. Met. Hard Mater. 27, 2, 288 (2009).
- [5] J. Poetschke, V. Richter, R. Holke. Int. J. Refr. Met. Hard Mater. 31, 218 (2012).
- [6] A.S. Kurlov, A.I. Gusev. Tungsten Carbides: Structure, Properties and Application in Hardmetals. Springer, Cham– Heidelberg–N. Y.–Dordrecht–London (2013). 256 p.
- [7] А.С. Курлов, А.И. Гусев. Физика и химия карбидов вольфрама. Физматлит, М. (2013). 272 с.
- [8] J.M. Marshall, A. Kusoffsky. Int. J. Refr. Met. Hard Mater. 40, 23 (2013).
- [9] Z. Hu, C. Chen, H. Meng, R. Wang, P.K. Shen, H. Fu. Electrochem. Commun. 13, 763 (2011).
- [10] Z. Yan., M. Zhang, J. Xie, P.K. Shen. J. Power Source 243, 336 (2013).
- [11] T. Huang, J. Yu, J. Han, Z. Zhang, Y. Xing, C. Wen, X. Wu, Y. Zhang, J. Power Source **300**, 483 (2015).
- [12] J. Yu, X. Gao, G. Chen, X. Yuan. Int. J. Hydrogen Energy 41, 4150 (2016).
- [13] A.I. Gusev, A.A. Rempel, A.J. Magerl. Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides. Springer, Berlin–Heidelberg– N.Y.–London. (2001). 607 p.
- [14] А.И. Гусев. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. Физматлит, М. (2007). 856 с.
   [15] А.И. Б. М. Б. (2007). 400 (2000)
- [15] А.И. Гусев. ЖФХ 74, 600 (2000).
- [16] T. Athanassiadis, N. Lorenzelli, C.H. de Novion. Ann. Chum. France 12, 2, 129 (1987).
- [17] V.N. Lipatnikov, P. Ettmayer. In: Proc. of the Intern. Plansee Seminar / Eds G. Kneringer, P. Rodhammer, P. Wilhartitz. Plansee Group, Reutte Austria (1997). V. 2. P. 485–497.
- [18] V.N. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth, E. Kny. J. Alloys Comp. 261, 192 (1997).
- [19] D. Rafaja, W. Lengauer, P. Ettmayer, V.N. Lipatnikov. J. Alloys Comp. 269, 60 (1998).
- [20] V.N. Lipatnikov, A.I. Gusev, P. Ettmayer, W. Lengauer. J. Phys.: Condens. Matter 11, 1, 163 (1999).
- [21] В.Н. Липатников, А.И. Гусев, П. Эттмайер, В. Ленгауэр. ФТТ 41, 529 (1999).
- [22] L. Ramqvist. Jernkontorets Annaler 152, 9, 467 (1968).
- [23] А.С. Борухович, Н.М. Волкова. Изв. АН СССР. Неорган. материалы 7, 9, 1529 (1971).
- [24] Н.М. Волкова, П.В. Гельд. Труды Института химии УФАН СССР. Вып. 14, 41–46 (1967).
- [25] X'Pert HighScore Plus. Version 2.2e (2.2.5). © 2009 PANalytical B. V., Almelo, The Netherlands.
- [26] А.И. Гусев, А.С. Курлов, А.А. Ремпель. Письма в ЖЭТФ 101, 8, 589 (2015).
- [27] А.И. Гусев, А.С. Курлов, И.А. Бобриков, А.М. Балагуров. Письма в ЖЭТФ 102, 3, 179 (2015).
- [28] J. Ma, M. Wu, Y. Du, S. Chen, J. Ye, L. Jin. Mater. Lett. 63, 11, 905 (2009).
- [29] Z. Zhao, H. Zuo, Y. Liu, W.Q. Song, S.F. Mao, Y.R. Wang. Int. J. Refr. Met. Hard Mater. 27, 6, 971 (2009).
- [30] M. Mahajan, K. Singh, O.P. Pandey. Int. J. Refr. Met. Hard Mater. 36, 106 (2013).
- [31] А.А. Ремпель, А.И. Гусев. Письма в ЖЭТФ **69**, *6*, 436 (1999).
- [32] A.S. Kurlov, A.I. Gusev, E.Yu. Gerasimov, I.A. Bobrikov, A.M. Balagurov, A.A. Rempel. Superlatt. Microstr. 90, 148 (2016).