Концентрационный коллапс в слоистых кристаллах семейства $[(Ge,Sn,Pb)(Te,Se)]_m[(Bi,Sb)_2(Te,Se)_3]_n$ (*m*, *n* = 0, 1, 2...)

© М.А. Коржуев

Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, 119334 Москва, Россия

E-mail: korzhuev@imet.ac.ru

(Получена 27 декабря 2016 г. Принята к печати 12 января 2017 г.)

Обсуждаются причины "концентрационного коллапса" — резкого увеличения равновесной концентрации носителей заряда $n, p = 1 \cdot 10^{19} \rightarrow (2-5) \cdot 10^{20} \text{ см}^{-3}$ при переходе от бинарных сплавов типа GeTe и Bi₂Te₃ к тройным сплавам семейства $[(\text{Ge}, \text{Sn}, \text{Pb})(\text{Te}, \text{Se})]_m [(\text{Bi}, \text{Sb})_2(\text{Te}, \text{Se})_3]_n (m, n = 0, 1, 2...)$. Явление связывается с позиционным разупорядочением гетеровалентных катионов $(\text{Ge}^{+2}, \text{Sn}^{+2}, \text{Pb}^{+2} \leftrightarrow \text{Bi}^{+3}, \text{Sb}^{+3})$ в катионной подрешетке тройных сплавов. При разупорядочении изовалентных катионов $(\text{Bi}^{+3} \leftrightarrow \text{Sb}^{+3})$ либо анионов $(\text{Te}^{-2} \leftrightarrow \text{Se}^{-2})$ явление не наблюдается.

DOI: 10.21883/FTP.2017.07.44654.40

При исследовании тройных сплавов (TC) семейства $[(Ge,Sn,Pb)(Te,Se)]_m[(Bi,Sb)_2(Te,Se)_3]_n$ (*m*, n = 0, 1, 2...) было обнаружено, что при переходе БС \rightarrow TC (здесь БС — бинарные сплавы) наблюдается "концентрационный коллапс"(КК) — резкое увеличение концентрации носителей заряда (электронов *n*, дырок *p*) на 1–1.5 порядка, $n, p = 1 \cdot 10^{19} \rightarrow (2-5) \cdot 10^{20}$ см⁻³ (стрелки на рис. 1) [1-5].¹ Целью настоящей работы было выяснить причины явления КК, возникающего в сплавах семейства $[(Ge,Sn,Pb)(Te,Se)]_m[(Bi,Sb)_2(Te,Se)_3]_n$ (*m*, n = 0, 1, 2...) при переходе БС \rightarrow TC.

Переход БС \rightarrow **ТС**. На рис. 2 приведены зависимости концентрации носителей заряда *n*, *p* от параметров собственной наноидентичности $\bar{\xi}_1$ и ξ_2 TC. Здесь $\xi_1 = 1-3$ нм — толщина слоевых пакетов, $\xi_2 = c = 2-18$ нм — период сверхструктуры вдоль тригональной оси кристаллов, $\bar{\xi}_1$ — средневзвешенное значение ξ_1 , используемое далее для мультислойных TC. Штриховыми линиями на рис. 1 и 2 показаны соответствующие характеристики сплавов Bi₂Te₃ ($\xi_1 = 1$ нм, $\xi_2 = 3$ нм), пунктирными линиями — статистические линейные тренды исследуемых зависимостей. Численные значения соответствующих трендов приведены в таблице.

Из рис. 1 и 2 видно, что КК развивается при переходе БС \rightarrow TС в области составов, соответствующих 0 < $\nu = n/(n+m)$ < 1. При этом параметры $\bar{\xi}_1$ и ξ_2 TC отклоняются от соответствующих параметров Bi₂Te₃ в ту либо другую сторону (стрелки на рис. 2, *a* и *b*). Изменения ξ_1 и $\bar{\xi}_1$ при переходе БС \rightarrow TC связаны с изменением слойности пакетов, образующих сверхструктуры (например, $s5 \rightarrow s7$ для Ge₈Bi₂Te₁₁, $s5 \rightarrow s9$ для Ge₂Bi₂Te₅, $s5 \rightarrow s5 + s7$ для GeSb₄Te₇, $s5 \rightarrow s5 + s2$ для Pb₅Bi₆Se₁₄ и т.п. [1–4]). В свою очередь, изме

нения ξ_2 при переходе БС \rightarrow ТС определяются как изменением параметра ξ_1 пакетов, так и симметрией получаемых сверхструктур. Например, $\xi_2 = \xi_1$ для сплава Ge₅Bi₂Te₈ (пространственная группа симметрии $P\bar{3}m_1$), образуемого пакетами s9, или $\xi_2 = 3\xi_1$ для сплава Ge₃Bi₂Te₆ ($R\bar{3}m$), образуемого пакетами s11, и т.п. Во всех случаях при переходе БС \rightarrow ТС средняя равновесная концентрация носителей заряда возрастала скачком, $n, p = 1 \cdot 10^{19} \rightarrow 2 \cdot 10^{20}$ см⁻³, а затем слабо менялась в зависимости от состава (от ν) ТС (пунктирная линия на рис. 1). Исключение составляют сплавы германия, испытывающие конверсию типа проводимости при $\nu \approx 0.5$. В целом для ТС величина n(p) слегка убывала с ростом ν и монотонно возрастала с ростом ξ_1 ($\bar{\xi}_1$) и ξ_2 (пунктирные линии на рис. 1 и 2).

Принцип Ле-Шателье–Брауна. Наблюдавшиеся зависимости n(p) (рис. 1 и 2, таблица) могут быть связаны с действием термодинамического принципа Ле-Шателье–Брауна [6]. Известно, что переход БС \rightarrow TC, сопровождающийся увеличением ξ_1 ($\bar{\xi}_1$), ξ_2 , дестабилизирует кристаллическую решетку слоистых кристалов [1–3,7]. Поэтому система увеличивает число собственных заряженных точечных дефектов (доноров либо акцепторов), повышая тем самым концентрацию носителей заряда n, p в образцах. В результате роста n, p возрастает вклад "металлической" компоненты химической связи, стабилизирующей ТС [8]. При этом скачкообразный характер увеличения n, p в TC (рис. 1 и 2) можно связать с особенностями фазового перехода "порядок–беспорядок" (I рода) [1–3].

Статистические линейные тренды зависимостей $n(p) = f(\nu, \bar{\xi}_1, \xi_2)$ в TC

Характеристики	$\Delta n(p)/\Delta v$,	$\Delta n(p)/\Delta \bar{\xi}_1, \ 10^{19} { m cm}^{-3}/{ m Hm}$	$\Delta n(p)/\Delta \xi_2,$
образцов	$10^{19} {\rm cm}^{-3}$		$10^{19} { m cm}^{-3}/{ m Hm}$
$\Delta n(p)/\Delta(v, \bar{\xi}_1, \xi_2)$	-2	15	2.2

¹ Концентрация электронов (дырок) и тип проводимости образцов n, p определялись из величины коэффициента Холла R = A/[(n, p)e] (здесь $A \sim 1$ — холловский фактор, e — элементарный заряд) и знака термоэдс α , измеренных на поликристаллических образцах при комнатной температуре [1-3].

Переход "порядок-беспорядок" в ТС. Отличительной чертой ТС является позиционное разупорядочение их подрешеток [9,10]. Применительно к исследо-

Рис. 1. Зависимость концентрации носителей заряда n, p от состава TC. $1 - (GeTe)_m(Bi_2Te_3)_n; 2 - (GeTe)_m(Sb_2Te_3)_n; 3 - (SnTe)_m(Bi_2Te_3)_n; 4 - (PbTe)_m(Bi_2Te_3)_n; 5 - (PbSe)_m(Bi_2Se_3)_n.$ Тип проводимости: p - I (при v = n/(n+m) < 0.5), 2, 3; n - I (при v = n/(n+m) > 0.5), 4, 5. T = 300 K.

Рис. 2. Зависимости концентрации носителей заряда *n*, *p* от параметров $\bar{\xi}_1(a)$ и $\xi_2(b)$ ТС различного состава. Обозначения: см. рис. 1.

Рис. 3. Схемы образования СКС в результате фазового перехода "порядок-беспорядок" в сплавах GeBi₂Te₄ $(M_1 \approx 2M_2 \approx 50 \text{ ar}\% \text{ Ge} + 50 \text{ ar}\% \text{ Bi})$ [1] (*a*) и SnBi₄Te₇ $(M_1 \approx 2M_3 \approx 20 \text{ ar}\% \text{ Sn} + 80 \text{ ar}\% \text{ Bi})$ [11](*b*).

ванному семейству TC (рис. 1) было найдено, что при формировании сверхструктуры TC атомы металлов разупорядочиваются по всем возможным катионным позициям, образуя пакеты со смешанными катионными слоями (CKC) [1–3]. CKC наблюдали рентгеновскими методами в пакетах s7 (GeBi₂Te₄, GeSb₂Te₄, SnBi₂Te₄) [1,11] и s11 (Ge₃Bi₂Te₆) [3], а также в сверхструктурах со смешанными слоями (s5 + s7) (GeBi₄Te₇ [1], SnBi₄Te₇ [1,11]), (s2 + s5) (Pb₅Bi₆Te₁₄ [2]), где процесс разупорядочения охватывает также пакеты s5, ранее устойчивые в Bi₂Te₃ [1]. Схемы образования СКС в сплавах GeBi₂Te₄ (слойность элементарной ячейки 5–7) приведены на рис. 3. Концентрации различных металлов в СКС сплавов (рис. 3) указаны по данным [1–3,11].

Известно, однако, что при изовалентном замещении атомов металлов $Bi \leftrightarrow Sb$ (либо халькогенов $Te \leftrightarrow Se$) в сплавах типа Bi_2Te_3 СКС также образуются, однако явление КК не наблюдается $(n, p \approx \text{const})$ (сплавы $Bi_2Te_3 - Sb_2Te_3$; $Bi_2Te_3 - Bi_2Se_3$ и др.) [5,10]. Поэтому развитие КК в семейства ТС [(Ge,Sn,Pb)(Te,Se)]_m[(Bi,Sb)₂(Te,Se)₃]_n (m, n = 0, 1, 2...) (рис. 1 и 2) можно связать с участием в процессах разупорядочения в ТС металлов с различной валентностью (Ge⁺², Sn⁺², Pb⁺², Bi⁺³, Sb⁺³).

Точечные дефекты и механизмы "самолегирования" TC. Известно, что БС типа (Ge,Sn,Pb)(Te,Se) кристаллизуются с отклонением от стехиометрии в сторону халькогена и имеют р-тип проводимости в результате "самолегирования" материала за счет дефектов акцептороного типа — дважды ионизованных вакансий [V"Ge. Sn. Pb] [10]. В свою очередь, БС типа (Bi,Sb)₂(Te,Se)₃ кристаллизуются с отклонением от стехиометрии в сторону металла. Отклонение от стехиометрии возрастает в ряду $n-Bi_2Se_3 \rightarrow n, p-Bi_2Te_3 \rightarrow p-Sb_2Te_3$ и сопровождается конверсией типа проводимости $(n \to p)$ [10]. При этом тип проводимости сплавов n-Bi₂Se₃ обычно связывается с донорным действием вакансий селена $[V_{\mathrm{Se}}^{**}]$, а переход $n \to p$ в сплавах $\mathrm{Bi}_2\mathrm{Te}_3$ и $\mathrm{Sb}_2\mathrm{Te}_3$ — с возрастающей ролью антиструктурных дефектов [Bi'_{Te}] и [Sb'_{Se}], обладающих акцепторным действием. При переходе БС \rightarrow ТС процессы дефектообразования в образцах существенно усложняются, при этом уравнение электронейтральности имеет вид [3]

$$n + [(\text{Bi},\text{Sb})'_{\text{Te},\text{Se}}] + [(\text{Ge},\text{Sn},\text{Pb})'_{\text{Bi},\text{Sb}}] + 2[V''_{\text{Ge},\text{Sn},\text{Pb}}] + 3[V''_{\text{Bi},\text{Sb}}]$$

= $p + [(\text{Bi},\text{Sb})^*_{\text{Ge},\text{Sn},\text{Pb}}] + [(\text{Te},\text{Se})^*_{\text{Bi},\text{Sb}}] + 2[V^{**}_{\text{Te},\text{Se}}].$ (1)

Здесь [(Ge,Sn,Pb)'_{Bi,Sb}] и [(Bi,Sb)*_{Ge,Sn,Pb}] — дефекты замещения, возникающие при разупорядочении катионной решетки, [(Bi,Sb)'_{Te,Se}] и [(Te,Se)*_{Bi,Sb}] — антиструктурные дефекты, [$V''_{Ge,Sn,Pb}$], [$V''_{Bi,Sb}$] и [$V^{\prime\prime\prime}_{Te,Se}$] — вакансии металлов и халькогенов. Индексы (') и (*) в выражении (1) показывают кратность собственных отрицательных и положительных зарядов дефектов.

Согласно выражению (1), тип проводимости ТС определяется совместным действием акцепторных и донорных дефектов. Для сплавов p-(GeTe)_m(Bi₂Te₃)_n (v < 0.5) основными заряженными дефектами являются $[V''_{Ge}]$ и $[Bi'_{Te}]$, для сплавов p-(GeTe)_m(Bi₂Te₃)_n $(\nu > 0.5)$ — [Te^{*}_{Bi}], [Bi^{*}_{Ge}] и [V^{**}_{Te}]. Для сплавов p-(GeTe)_m(Sb₂Te₃)_n — это $[V''_{Ge}]$, $[Sb'_{Te}]$ и $[Sb^*_{Ge}]$; для сплавов p-(SnTe)_m(Bi₂Te₃)_n — [V''_{Ge}], [Bi'_{Te}]. Для сплавов $n-(PbTe)_m(Bi_2Te_3)_n$ — это $[V_{Te}^{**}]$, $[Te_{Bi}^*]$ и, возможно, $[Bi_{Pb}^*]$; наконец, для сплавов n- $(PbSe)_m(Bi_2Se_3)_n$ — это $[V_{\text{Se}}^{**}]$, [Bi_{Pb}] [1]. Во всех случаях при переходе БС \rightarrow ТС число дефектов в образцах возрастает. Согласно оценке, при полном разупорядочении СКС концентрация дефектов замещения металлов IV и V групп в катионной подрешетке может достигать $C \sim 10^{21} \,\mathrm{cm}^{-3}$, что объясняет существенное уменьшение решеточной теплопроводности к_{ph} образцов ТС [1-3]. При этом доля заряженных нестехиометрических дефектов возрастает до величины $C' \sim n, p \sim 10^{20} \, {
m cm^{-3}} \, (C' \sim 0.1C),$ что объясняет явление КК, наблюдавшееся в ТС (рис. 1 и 2).

Таким образом, показано, что при переходе БС \rightarrow TC в сплавах семейства [(Ge,Sn,Pb)(Te,Se)]_m[(Bi,Sb)₂(Te,Se)₃]_n (m,n = 0, 1, 2...) наблюдается "концентрационный коллапс" — резкое увеличение равновесной концентрации носителей заряда $n, p = 1 \cdot 10^{19} \rightarrow (2-5) \cdot 10^{20}$ см⁻³, связанное с позиционным разупорядочением гетеровалентных катионов (Ge⁺², Sn⁺², Pb⁺² \leftrightarrow Bi⁺³, Sb⁺³) в катионной подрешетке TC.

Список литературы

- Л.Е. Шелимова, О.Г. Карпинский, П.П. Константинов, Е.С. Авилов, М.А. Кретова, В.С. Земсков. Неорг. матер., **36** (3), 302 (2000); Неорг. матер., **36** (8), 928 (2000); Неорг. матер., **37** (4), 421 (2001); Неорг. матер. **40** (5), 451 (2004).
- [2] В.С. Земсков, Л.Е. Шелимова, П.П. Константинов, Е.С. Авилов, М.А. Кретова. Персп. матер., № 3, 5 (2011); Персп. матер., № 5, 5 (2012).
- [3] L.E. Shelimova, O.G. Karpinsky, M.A. Kretova, E.S. Avilov, J.-P. Fleurial. J. Alloys Comp., 243, 194 (1996); J. Alloys Comp., 265, 170 (1998); J. Alloys Comp., 329, 50 (2001).
- [4] Е.С. Авилов, М.А. Коржуев, М.А. Кретова, А.Б. Михайлова. Персп. матер., № 12, 15 (2015).

- [5] Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃ (M., Hayka, 1972) с. 147.
- [6] И.П. Базаров. *Термодинамика* (М., Физматгиз, 1961) с. 159.
- [7] А.И. Потекаев, С.В. Дмитриев, В.В. Кулагина, И.И. Наумов, О.И. Великохатный, С.В. Еремеев. Слабоустойчивые длиннопериодические структуры в металлических системах (М., Флинта, 2011) с. 7.
- [8] М.А. Коржуев. ФТТ, **38**, 883 (1996).
- [9] Г.А. Бордовский. Соросовский образовательный журн., № 4, 106 (1996).
- [10] Н.Х. Абрикосов, В.Ф. Банкина, Л.В. Порецкая, Е.В. Скуднова, С.Н. Чижевская. Полупроводниковые халькогениды и сплавы на их основе (М., Наука, 1975).
- [11] B.A. Kuropatwa, H.Z. Kleinke. Anorg. Alleg. Chem., 638 (15), 2640 (2012).

Редактор Л.В. Шаронова

Collapse of carreier density in layered crystals of the family $[(Ge,Sn,Pb)(Te,Se)]_m[(Bi,Sb)_2(Te,Se)_3]_n$ (m, n = 0, 1, 2 ...)

M.A. Korzhuev

Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, 119334 Moscow, Russia

Abstract The reasons for the "collapse of carrier density" — a sharp increase in the equilibrium carrier density $n, p = 1 \cdot 10^{19} \rightarrow (2-5) \cdot 10^{20} \text{ cm}^{-3}$, occurring in the transition from binary GeTe and Bi₂Te₃ type alloys into ternary alloys of the family $[(\text{Ge},\text{Sn},\text{Pb})(\text{Te},\text{Se})]_m[(\text{Bi},\text{Sb})_2 \ (\text{Te},\text{Se})_3]_n$ (m, n = 0, 1, 2...) are discussed. The phenomenon is associated with positional disordering of variously charged cations (Ge⁺², Sn⁺², Pb⁺² \leftrightarrow Bi⁺³, Sb⁺³) in the cation sublattice of ternary alloys. The phenomenon is not observed when disordering similarly charged cations (Bi⁺³ \leftrightarrow Sb⁺³), or anions (Te⁻² \leftrightarrow Se⁻²) occured.