Оценка ширины запрещенной зоны ряда новых термоэлектрических материалов

© М.А. Кретова, М.А. Коржуев

Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, 119334 Москва, Россия

E-mail: kretova@imet.ac.ru; korzhuev@imet.ac.ru

(Получена 27 декабря 2016 г. Принята к печати 12 января 2017 г.)

Проведены оценки ширины запрещенной зоны E_g ряда новых термоэлектрических материалов — скутерудитов, клатратов, фаз Гейслера, тройных сплавов $[(Ge,Sn,Pb)(Te,Se)]_m[(Bi,Sb)_2(Te,Se)_3]_n$ (m, n = 0, 1, 2...) и др. Оценки производили по формуле Голдсмита-Шарпа $E_g = 2e |\alpha_{\max}|T_{\max}$, по правилу Вегарда $E_g = (mE_g^A + nE_g^B)/(m + n)$, а также с использованием эмпирической зависимости $T_{\max} = f(E_g)$ (A, B — соответствующие бинарные сплавы, T_{\max} — температура максимума термоэдс $|\alpha_{\max}|$ или термоэлектрической зависимости ZT_{\max} , e — элементарный заряд). Показано, что использование эмпирической зависимости $E_g = f(T_{\max})$ дает наиболее точные оценки E_g различных классов термоэлектрических материалов.

DOI: 10.21883/FTP.2017.07.44648.34

Термоэлектрические материалы (ТЭМ), используемые для прямого преобразования тепловой энергии в электрическую, представляют собой полуметаллы или полупроводники с шириной запрещенной зоны $E_g \approx 0-1$ эВ и энергией Ферми электронов (n), дырок $(p) E_{\rm F} \approx 0 - 0.1$ эВ [1,2]. В настоящее время синтезированы новые группы ТЭМ с повышенными значениями термоэлектрической добротности $ZT = \alpha^2 \sigma T / \kappa > 1$, величина Eg которых точно не определена [3,4]. В выражении для ZT α — дифференциальная термоэдс, $\sigma =
ho^{-1}$ и $\kappa = \kappa_{
m ph} + \kappa_e$ — удельные электропроводность и теплопроводность, ho — удельное сопротивление, κ_e и *к*_{ph} — электронная и фононная составляющие теплопроводности, Т — абсолютная температура. В связи с этим возникает необходимость оценок величины Eg новых ТЭМ различными методами. При этом наибольший интерес представляют методы, основанные на анализе температурных зависимостей ZT, α , ρ , получаемых при исследованиях ТЭМ. Указанные зависимости при некоторой температуре T_{max}, как правило, имеют максимумы $(ZT)_{\max}$, α_{\max} , ρ_{\max} , связанные с развитием в образцах собственной проводимости.

Начало собственной проводимости в ТЭМ определяется условием

$$E_g + E_F \approx b k_0 T_{\text{max}},\tag{1}$$

где b — коэффициент, различный для разных материалов, b = 5-10 [5,6], k_0 — постоянная Больцмана. Формула (1) позволяет оценивать величину E_g ТЭМ по температурам T_{max} , соответствующим (ZT)_{max}, α_{max} и ρ_{max} [5,6]. В [7] для оценки E_g была предложена формула

$$E_g = 2e |\alpha_{\max}| T_{\max} \tag{2}$$

(здесь *е* — элементарный заряд), справедливая для невырожденных полупроводников в случае совпадающих зонных параметров и механизмов рассеяния электронов и дырок. Из-за своей простоты формула (2) широко

используется специалистами, несмотря на то что в ряде случаев она дает ошибку в оценке E_g до 200–300% и более [8]. В [9] на основе соотношения (1) был

Экспериментальные (5-8) и расчетные по формуле (1) (3, 4) с b = 5 и 10 соответственно зависимости T_{max} (5, 6) (a), n, p (7) и E_{F} (8) (b) от величины $E_g(T_{\text{max}})$ для ТЭМ n- (1) и р-типа (2) проводимости. Материалы (в порядке роста E_g): 1 — BiSb, Bi₂Te₃, PbTe, CoSb₃, SiGe; 2 — BiSb(Sn), Sb₂Te₃, PbTe, TAGS, GeTe, SiGe, Cu_{1.99}Se [9].

Номер	Состав и тип	$ \alpha_{\rm max} ,$	$T_{\rm max}$,	Оценка различными методами E_g , эВ			
образца	проводимости	мкВ/К	K	[7]	[9]	Метод Вегарда	
1	<i>p</i> -GeTe (α)	310	700	0.43 (β)	$0.7(\beta)$	$0.1(\alpha)$ [1]	
2	p-Ge ₉ Bi ₂ Te ₁₂	> 103	> 450	> 0.09	> 0.25	0.11	
3	p-Ge ₈ Bi ₂ Te ₁₁	> 100	> 450	> 0.09	> 0.24	0.11	
4	p-Ge ₇ Bi ₂ Te ₁₀					0.11	
5	p-Ge ₆ Bi ₂ Te ₉					0.11	
6	p-Ge ₅ Bi ₂ Te ₈	> 90	> 450	> 0.08	> 0.25	0.11	
7	<i>p</i> -Ge ₄ Bi ₂ Te ₇					0.11	
8	p-Ge ₃ Bi ₂ Te ₆	> 55	> 450	> 0.05	> 0.2	0.12	
9	<i>p</i> -Ge ₂ Bi ₂ Te ₅	> 65	> 400	> 0.05	> 0.15	0.13	
10	n-Ge ₁ 2Bi2Te ₄					0.13	
11	<i>n</i> -GeBi ₂ Te ₄	107	450	0.1	0.1	0.13	
12	<i>n</i> -GeBi ₄ Te ₇	165	315	0.1	0.07	0.14	
13	n-Ge ₂ Bi ₁₀ Te ₁₇	> 75	> 450	> 0.07	> 0.13	0.14	
14	n-GeBi ₆ Te ₁₀	> 100	> 450	> 0.09	> 0.13	0.15	
15	n-GeBisTe13					0.15	
16	n-GeBi10Te16					0.15	
17	<i>p</i> -Bi ₂ Te ₃	250	300	0.15	0.2	0.16 [1]	
18	p-Ge ₅ Sb ₂ Te ₈					0.14	
19	p-Ge ₄ Sb ₂ Te ₇					0.14	
20	p-Ge ₃ Sb ₂ Te ₆	> 54	> 450	> 0.05	> 0.18	0.15	
21	p-Ge ₂ Sb ₂ Te ₅	> 45	> 450	> 0.04	> 0.17	0.16	
22	<i>p</i> -GeSb ₂ Te ₄	> 55	> 450	> 0.05	> 0.18	0.20	
23	<i>p</i> -GeSb ₄ Te ₇	> 55	> 450	> 0.05	> 0.18	0.23	
24	p-GeSb ₆ Te ₁₀		100		, 0110	0.23	
25	p-GeSb ₈ Te ₁₃					0.26	
26	$p-Sb_2Te_3$		500		0.24	0.3 [1]	
27	<i>p</i> -SnTe	80	800	0.13	0.14	0.2 [1]	
28	p-Sn ₂ Bi ₂ Te ₅	66	600	0.09	0.22	0.19	
29	p-SnBi ₂ Te ₄	130	400	0.1	0.21	0.16	
30	<i>n</i> -SnBi ₄ Te ₇	125	352	0.09	0.16	0.17	
31	p-SnBi ₆ Te ₁₀	116	352	0.08	0.18	0.17	
32	<i>p</i> -PbTe	200	650	0.26	0.35	0.32 [1]	
33	<i>n</i> -Pb ₉ Bi ₄ Te ₁₅					0.29	
34	n-Pb5Bi6Te14					0.26	
35	<i>n</i> -PbBi ₂ Te ₄	125	650	0.16	0.21	0.24	
36	<i>n</i> -Pb ₂ Bi ₆ Te ₁₁					0.22	
37	n-PbBi4Te7	125	600	0.15	0.2	0.21	
38	<i>n</i> -PbBi ₆ Te ₁₀	118	640	0.15	0.2	0.20	
39	<i>n</i> -PbBi ₈ Te ₁₃	95	570	0.11	0.14	0.19	
40	<i>p</i> -PbSe	160	600	0.19	0.3	0.29 [1]	
41	<i>n</i> -Pb ₃ Bi ₂ Se ₆					0.29	
42	n-Pb5Bi6Se14	> 32	> 350	> 0.02	> 0.2	0.27	
43	n-PbBi ₂ Se ₄	_				0.24	
44	$n-Pb_5Bi_{12}Se_{23}$	> 31	> 350	> 0.02	> 0.2	0.24	
45	n-Pb5Bi18Se32	> 64	> 350	> 0.04	> 0.2	0.22	
46	n-PbBi ₄ Se ₇					0.23	
47	<i>n</i> -Bi ₂ Se ₃					0.18 [1]	
48	p-PbSb ₂ Te ₄	95	660	0.13	0.25	0.31	

Оценка ширины запрещенной зон
ы E_g сплавов $[({\rm Ge},{\rm Sn},{\rm Pb}){\rm Te}]_m[({\rm Bi},{\rm Sb})_2({\rm Te},{\rm Se})_3]_n$

разработан другой метод оценки E_g ТЭМ, основанный на статистическом анализе экспериментальных зависимостей $T_{\text{max}} = f(E_g)$ (рисунок, *a*), полученных для основных групп ТЭМ с оптимальными значениями концентрации носителей заряда (электронов *n*, дырок *p*) и E_F (рисунок, *b*, кривые 7, 8). Примеры использования

метода [9] для оценки E_g ряда новых ТЭМ приведены в *Приложении* [2].¹ При оценках [2] предполагалось, что n, p и E_F сплавов были близки к своим оптимальным значениям (рисунок, *b*, кривые *7*, *8*).

 $^{^1}$ Знак ">" используется в оценках $E_g,$ для которых величина $T_{\rm max}$ не была достигнута.

Целью настоящей работы была оценка E_g тройных сплавов (TC) семейства $[(Ge,Sn,Pb)(Te,Se)]_m \times [(Bi,Sb)_2(Te,Se)_3]_n$ (*m*, *n* = 0, 1, 2...), параметры *n*, *p* и E_F которых существенно превышают оптимальные [4].

В таблице приведены результаты оценок различными методами значений E_g TC семейства [(Ge,Sn,Pb)× (Te,Se)]_m[(Bi,Sb)₂(Te,Se)₃]_n (m, n = 0, 1, 2...) [1,4,10,11]. Оценки проводили по формуле Голдсмита-Шарпа (1), с использованием эмпирической зависимости $T_{\text{max}} = f(E_g)$ [9], а также по правилу Вегарда

$$E_g = (mE_g^{\rm A} + nE_g^{\rm B})/(m+n).$$
 (3)

Здесь А, В — соответствующие бинарные сплавы (БС) с известными значениями ширины запрещенной зоны Е , (300 K) [1]). При оценках E_g по методу [9] учитывалось превышение параметрами n, p и E_F TC значений, оптимальных для термоэлектрического генератора (ТЭГ) (кривые 7,8 на рисунке, b). Поправку вводили путем замены $E_g \leftrightarrow E_g^* - (E_{\rm F} - E_{\rm F}^*)$. Здесь величины E_g^* и $E_{\rm F}^*$, "оптимальные" для ТЭГ, определяли из рисунка (кривые 5-8), а величину $E_{\rm F} = 0.07 - 0.19$ эВ рассчитывали методом термоэдс по экспериментальным значениям $\alpha(T = 300 \,\mathrm{K})$ для TC. Результаты расчетов E_g , проведенных различными методами, представлены в таблице. Статистический анализ данных (см. таблицу) показывает, что средние значения оценок E_g , полученные для ТС методом Голдсмита-Шарпа [7], по Вегарду и с помощью эмпирической зависимости $T_{\text{max}} = f(E_g)$ [9], соотносятся как $\sim 0.6: 0, 9: 1$. Метод [9], учитывающий фермиевское вырождение образцов и различия зонных параметров электронов и дырок (рисунок), представляется нам более точным. Это заключение подтверждается согласием известных значений E_g бинарных сплавов [1] с оценками (см. таблицу), проведенными методом [9]. С другой стороны, сравнение полученных данных с формулой (1) показывает, что оценки E_g методом [9] близки к зависимости $E_g \sim 10k_0T$ (рисунок, кривая 4). Наконец, подставляя в формулу (2) общее выражение для термоэдс полупроводника со "стандартной зоной" $lpha = -(k_0/e)(F_{r+2}/F_{r+1} + E_{
m F}/k_0T)$ (здесь F_{r+2} и F_{r+1} интегралы Ферми, *г* — параметр рассеяния), для случая ТЭМ $(E_{\rm F} \sim 0)$ и акустического механизма рассеяния (r = 0), получаем $E_g \sim 5k_0T$ (прямая 3 на рисунке, *a*). Таким образом, оценки E_g TC по формуле Голдсмита–Шарпа (2) занижены в ~ 2 раза по сравнению с оценками методом [9]. Основной причиной погрешности является фермиевское вырождение образцов TC. В свою очередь, оценки E_g TC методами [9] $(E_g \sim 10k_0T)$ и Вегарда $(E_g \sim 9k_0T)$ (3) практически совпадают (см. таблицу). Это совпадение может указывать на линейный характер смещения экстремумов при изменении состава TC.

Таким образом, различными методами проведены оценки ширины запрещенной зоны E_g ряда новых термоэлектрических материалов.

Показано, что использование эмпирической зависимости $E_g = f(T_{\text{max}})$ дает наиболее точные оценки E_g различных классов ТЭМ.

Установлено, что для TC удовлетворительные результаты при оценке E_g дает также правило Вегарда, существенно упрощающее расчеты.

Список литературы

- Физико-технические свойства полупроводниковых веществ. Справочник, под ред. А.В. Новоселовой (М., Наука, 1979) с. 95.
- [2] N.N. Kiseleva, V.A. Dudarev, M.A. Korzhuev. Inorg. Mater.: Applied Research, 7 (1), 34 (2016).
- [3] J.R. Sootsman, D.Y. Xhung, M.G. Kanatzidis. Angew. Chem. Int. Ed., 47, 8616 (2009).
- [4] В.С. Земсков, Л.Е. Шелимова, О.Г. Карпинский, П.П. Константинов, Е.С. Авилов, М.А. Кретова, И.Ю. Нихезина. Термоэлектричество, № 1, 18 (2010); Термоэлектричество, № 1, 18 (2012).
- [5] М.А. Коржуев. Высокочистые вещества, № 2, 74 (1996).
- [6] M.A. Korzhuev. J. Electron. Mater., 39 (9), 1381 (2010).
- [7] H.J. Goldsmid, J.W. Sharp. J. Electron. Mater., 28 (7), 869 (1999).
- [8] Z.M. Gibbs, H.-S. Kim, H. Wang, J. Snyder. Appl. Phys. Lett., 106, 022112 (2015).
- [9] М.А. Коржуев. Термоэлектричество, № 5, 11 (2013).
- [10] Л.Е. Шелимова, О.Г. Карпинский, П.П. Константинов, Е.С. Авилов, М.А. Кретова, В.С. Земсков. Неорг. матер., 37 (4), 421 (2001); Неорг. матер., 40 (5), 451 (2004).

Приложение

Класс материала	Составы сплавов и тип проводимости	$(ZT)_{\max}$	T _{max} , K	<i>Еg</i> , эВ
Скутерудиты	<i>p</i> -, <i>n</i> -Co ₄ Sb ₁₂	0.2	480	0.3
	p-, n -Yb _{0.19} Co ₄ Sb ₁₂	1.2	> 680	> 0.4
Клатраты	$n-Ba_8Ga_{16}Ge_{30}$	1.4	> 800	> 0.5
Фазы Гейслера	<i>p</i> -TiNiSn	0.45	650	0.4(5)
_	$n-Zr_{0.25}Hf_{0.25}Ti_{0.5}NiSn_{1-y}Sby$	1.4	700	0.4
Фазы Цинтля	$p-Yb_{14}MnSb_{11}$	1.0	1200	1.0
Перовскиты	$n-SrTiO_3(Nb)$	0.37	1000	1.1
LAST-m	p-AgPb _m SbTe _{m+2} ($m = 18-22$)	1.7	700	0.5
SOLT-m	$NaPb_mSb_nTe_{m+2}$ ($m = 20$)	1.6	675	0.5
Тип FeSb ₂	<i>n</i> -FeSb ₂	0.005	12	~ 0

Примеры оценки E_g ряда новых ТЭМ по известной температуре T_{max} [2]

[11] В.С. Земсков, Л.Е. Шелимова, П.П. Константинов, Е.С. Авилов, М.А. Кретова, И.Ю. Нихезина. Персп. матер., № 3, 5 (2011); Персп. матер., № 5, 5 (2012).

Редактор Л.В. Шаронова

Estimation of the band gaps of some new thermoelectric materials

M.A. Kretova, M.A. Korzhuev

Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, 119334 Moscow, Russia

Abstract We evaluated the band gaps E_g of some new thermoelectric materials — skutterudites, clathrates, Heusler phases, ternary alloys of $[(Ge,Sn,Pb)(Te,Se)]_m[(Bi,Sb)_2(Te,Se)_3]_n$ (m, n = 0, 1, 2...) and others. The evaluations were made using the formula of Goldsmith–Sharpe $E_g = 2e|\alpha_{max}|T_{max}$, the Vegard rule $E_g = (mE_g^A + nE_g^B)/(m + n)$, and by an empirical relationship $T_{max} = f(E_g)$. A, B — are the corresponding binary alloys, T_{max} or figure of merit $(ZT)_{max}$ versus temperature, and e is the elementary charge. It is shown that the use of the empirical relationship $E_g = f(T_{max})$ provides the most accurate assessment E_g for different classes of thermoelectric materials.